Based on theoretical analysis and experiment, when the difference between the ropes length is ensured, the radius difference between the rope grooves and the difference of the rope strain of a double rope friction hoi...Based on theoretical analysis and experiment, when the difference between the ropes length is ensured, the radius difference between the rope grooves and the difference of the rope strain of a double rope friction hoist will decrease with the increasing of hoisting times. Then the rope grooves cutting are not needed. If the connection form of the ropes or the structure of the frictional wheel of a four ropes friction hoist are changed into as a double ropes hoists, the hoist rope grooves will not need to be cut as well, and the working time will be saved and the service life of the rope lining will be lengthened also.展开更多
The automatic cutting of intersecting pipes is a challenging task in manufacturing.For improved automation and accuracy,this paper proposes a model-driven path planning approach for the robotic plasma cutting of a bra...The automatic cutting of intersecting pipes is a challenging task in manufacturing.For improved automation and accuracy,this paper proposes a model-driven path planning approach for the robotic plasma cutting of a branch pipe with a single Y-groove.Firstly,it summarizes the intersection forms and introduces a dual-pipe intersection model.Based on this model,the moving three-plane structure(a description unit of the geometric characteristics of the intersecting curve)is constructed,and a geometric model of the branch pipe with a single Y-groove is defined.Secondly,a novel mathematical model for plasma radius and taper compensation is established.Then,the compensation model and groove model are integrated by establishing movable frames.Thirdly,to prevent collisions between the plasma torch and workpiece,the torch height is planned and a branch pipe-rotating scheme is proposed.Through the established models and moving frames,the planned path description of cutting robot is provided in this novel scheme.The accuracy of the proposed method is verified by simulations and robotic cutting experiments.展开更多
Grooving method can restrain the deformation and destruction of surrounding rock by transferring the maximum stress to deep rock,bringing about the effective control for floor heave in soft rock roadway. Based on this...Grooving method can restrain the deformation and destruction of surrounding rock by transferring the maximum stress to deep rock,bringing about the effective control for floor heave in soft rock roadway. Based on this important effect,and to discuss the relationship between cutting parameters and pressurerelief effect,this paper carried out a numerical simulation of grooving along bottom slab and two sides of gateway with finite difference software FLAC^(2D).The results show that the control effect on floor heave in soft rock tunnel can be improved by selecting appropriate cutting parameters.Appropriately increasing the crevice depth in the middle of the floor can improve the stress state of bottom slab by stress transfer. So the floor heave can be more effectively controlled.To lengthen the crevice in the corners of roadway can simultaneously transfer the maximum stresses of bottom slab and two sides to deep rock,and promote the pressure-relief effect.Extending the crevice length and crevice width on both sides within a certain range can decrease the stress concentration in the corners of roadway,and reduce the deformation of two sides.The cutting position beneficial to restrain the floor heave is close to the bottom slab.展开更多
文摘Based on theoretical analysis and experiment, when the difference between the ropes length is ensured, the radius difference between the rope grooves and the difference of the rope strain of a double rope friction hoist will decrease with the increasing of hoisting times. Then the rope grooves cutting are not needed. If the connection form of the ropes or the structure of the frictional wheel of a four ropes friction hoist are changed into as a double ropes hoists, the hoist rope grooves will not need to be cut as well, and the working time will be saved and the service life of the rope lining will be lengthened also.
基金the National Natural Science Foundation of China(Grant No.62103234)the Shandong Provincial Natural Science Foundation(Grant Nos.ZR2021QF027,ZR2022QF031).
文摘The automatic cutting of intersecting pipes is a challenging task in manufacturing.For improved automation and accuracy,this paper proposes a model-driven path planning approach for the robotic plasma cutting of a branch pipe with a single Y-groove.Firstly,it summarizes the intersection forms and introduces a dual-pipe intersection model.Based on this model,the moving three-plane structure(a description unit of the geometric characteristics of the intersecting curve)is constructed,and a geometric model of the branch pipe with a single Y-groove is defined.Secondly,a novel mathematical model for plasma radius and taper compensation is established.Then,the compensation model and groove model are integrated by establishing movable frames.Thirdly,to prevent collisions between the plasma torch and workpiece,the torch height is planned and a branch pipe-rotating scheme is proposed.Through the established models and moving frames,the planned path description of cutting robot is provided in this novel scheme.The accuracy of the proposed method is verified by simulations and robotic cutting experiments.
文摘Grooving method can restrain the deformation and destruction of surrounding rock by transferring the maximum stress to deep rock,bringing about the effective control for floor heave in soft rock roadway. Based on this important effect,and to discuss the relationship between cutting parameters and pressurerelief effect,this paper carried out a numerical simulation of grooving along bottom slab and two sides of gateway with finite difference software FLAC^(2D).The results show that the control effect on floor heave in soft rock tunnel can be improved by selecting appropriate cutting parameters.Appropriately increasing the crevice depth in the middle of the floor can improve the stress state of bottom slab by stress transfer. So the floor heave can be more effectively controlled.To lengthen the crevice in the corners of roadway can simultaneously transfer the maximum stresses of bottom slab and two sides to deep rock,and promote the pressure-relief effect.Extending the crevice length and crevice width on both sides within a certain range can decrease the stress concentration in the corners of roadway,and reduce the deformation of two sides.The cutting position beneficial to restrain the floor heave is close to the bottom slab.