The work done in this work deals with the efficacy of cutting parameters on surface of EN-8 alloy steel.For knowing the optimal effects of cutting parameters response surface methodology was practiced subjected to cen...The work done in this work deals with the efficacy of cutting parameters on surface of EN-8 alloy steel.For knowing the optimal effects of cutting parameters response surface methodology was practiced subjected to central composite design matrix.The motive was to introduce an interaction among input parameters,i.e.,cutting speed,feed and depth of cut and output parameter,surface roughness.For this,second order response surface model was modeled.The foreseen values obtained were found to be fairly close to observed values,showed that the model could be practiced to forecast the surface roughness on EN-8 within the range of parameter studied.Contours and 3-D plots are generated to forecast the value of surface roughness.It was revealed that surface roughness decreases with increases in cutting speed and it increases with feed.However,there were found negligible or almost no implication of depth of cut on surface roughness whereas feed rate affected the surface roughness most.For lower surface roughness,the optimum values of each one were also evaluated.展开更多
Titanium alloy is a kind of typical hard-to-cut material due to its low thermal conductivity and high strength at elevated temperatures, this contributes to the fast tool wear in the milling of titanium alloys. The in...Titanium alloy is a kind of typical hard-to-cut material due to its low thermal conductivity and high strength at elevated temperatures, this contributes to the fast tool wear in the milling of titanium alloys. The influence of cutting conditions on tool wear has been focused on the turning process, and their influence on tool wear in milling process as well as the influence of tool wear on cutting force coefficients has not been investigated comprehensively. To fully understand the tool wear behavior in milling process with inserts, the influence of cutting parameters on tool wear in the milling of titanium alloys Ti6A14V by using indexable cutters is investigated. The tool wear rate and trends under different feed per tooth, cutting speed, axial depth of cut and radial depth of cut are analyzed. The results show that the feed rate per tooth and the radial depth of cut have a large influence on tool wear in milling Ti6A14V with coated insert. To reduce tool wear, cutting parameters for coated inserts under experimental cutting conditions are set as: feed rate per tooth less than 0.07 mm, radial depth of cut less than 1.0 mm, and cutting speed sets between 60 and 150 m/min. Investigation on the relationship between tool wear and cutting force coefficients shows that tangential edge constant increases with tool wear and cutter edge chipping can lead to a great variety of tangential cutting force coefficient. The proposed research provides the basic data for evaluating the machinability of milling Ti6A14V alloy with coated inserts, and the recommend cutting parameters can be immediately applied in practical production.展开更多
To solve the problem of difficulty in selecting NC cutting parameters by the redundancy technique, a method is put forward to optimize cutting parameters based on a revolutionary mathematical model and a revolutionary...To solve the problem of difficulty in selecting NC cutting parameters by the redundancy technique, a method is put forward to optimize cutting parameters based on a revolutionary mathematical model and a revolutionary cutting parameters database. By use of fuzzy inference rules, it can not only make the method itself evolved and updated, but also ensure data to be correct and feasible from the two optimization routes. Practical running and testing proved that this method can facilitate for the user to select parameters and greatly improve the processing efficiency.展开更多
Using LBR-370 numerical control lathe,high speed cutting was applied to AZ31 magnesium alloy.The influence of cutting parameters on microstructure,surface roughness and machining hardening were investigated by using t...Using LBR-370 numerical control lathe,high speed cutting was applied to AZ31 magnesium alloy.The influence of cutting parameters on microstructure,surface roughness and machining hardening were investigated by using the methods of single factor and orthogonal experiment.The results show that the cutting parameters have an important effect on microstructure,surface roughness and machine hardening.The depth of stress layer,roughness and hardening present a declining tendency with the increase of the cutting speed and also increase with the augment of the cutting depth and feed rate.Moreover,we established a prediction model of the roughness,which has an important guidance on actual machining process of magnesium alloy.展开更多
By the use of ANSYS/LS-DYNA FEA software,numerical simulation on the cutting process of cutting plates with a reamer was carried out in the paper. The logical improvement was brought forward and the phenomenon of stre...By the use of ANSYS/LS-DYNA FEA software,numerical simulation on the cutting process of cutting plates with a reamer was carried out in the paper. The logical improvement was brought forward and the phenomenon of stress concentration was deceased by weighted analysis. The effects of different cut velocities and cutting thickness on life-spans of reamers were investigated, and the cutting parameters were optimized to satisfy the cutting precision and cutting efficiency. The study will provide a guide for the practical production.展开更多
The intelligent optimizing method of cutting parameters and the cutting stable districts searching method are set up. The cutting parameters of each cutting pass could be optimized automatically, the cutting chatter i...The intelligent optimizing method of cutting parameters and the cutting stable districts searching method are set up. The cutting parameters of each cutting pass could be optimized automatically, the cutting chatter is predicted through setting up the dynamic cutting force AR(2) model on line, the spindle rotation speed is adjusted according to the predicting results so as to ensure the cutting system work in stable district.展开更多
The outcome of the cutting blasting in a one-step shaft excavation is heavily related to the cutting parameters used for parallel cutting method. In this study, the relationships between the cutting parameters(such a...The outcome of the cutting blasting in a one-step shaft excavation is heavily related to the cutting parameters used for parallel cutting method. In this study, the relationships between the cutting parameters(such as the hole spacing L and the empty hole diameter D) and damage zones were investigated by numerical simulation. A damage state index γ was introduced and used to characterize the crushing and crack damage zones through a user-defined subroutine. Two indices, i.e., η1 and η2 that can reflect the cutting performance, were also introduced. The simulation results indicate that an optimal value of L can be obtained so that the η1 and η2 can reach their optimal states for the best cutting performance. A larger D results in better cutting performance when the L value maintains its best. In addition, the influences of the loading rate and the in-situ stress on the cutting performance were investigated. It is found that an explosive with a high loading rate is suit for cutting blasting. The propagation direction and the length of the tensile cracks are affected by the direction and the magnitude of the maximum principal stress.展开更多
Pure iron is one of the difficult-to-machine materials due to its large chip deformation,adhesion,work-hardening,and built-up edges formation during machining.This leads to a large workpiece deformation and challenge ...Pure iron is one of the difficult-to-machine materials due to its large chip deformation,adhesion,work-hardening,and built-up edges formation during machining.This leads to a large workpiece deformation and challenge to meet the required technical indicators.Therefore,under varying the grain size of pure iron,the influence of cutting speed,feed,and depth of cut on the cutting force,heat generation,and machining residual stresses were explored in the turning process to improve the machinability without compromising the mechanical properties of the material.The experimental findings have depicted that the influence of grain size on cutting force in the precision turning process is not apparent.However,the cutting temperature and residual stress of machining fine-grain iron were much smaller than the coarse grain at all levels of cutting parameters.展开更多
AIM: To investigate the effects and safety of neodymium: yttrium-aluminium-garnet(Nd:YAG) laser posterior capsulotomy with vitreous strand cuttingMETHODS: A total of 40 eyes of 37 patients with symptomatic poste...AIM: To investigate the effects and safety of neodymium: yttrium-aluminium-garnet(Nd:YAG) laser posterior capsulotomy with vitreous strand cuttingMETHODS: A total of 40 eyes of 37 patients with symptomatic posterior capsular opacity(PCO) were included in this prospective randomized study and were randomly subjected to either cruciate pattern or round pattern Nd:YAG posterior capsulotomy with vitreous strand cutting(modified round pattern). The best corrected visual acuity(BCVA), intraocular pressure(IOP), refractive error, endothelial cell count(ECC), anterior segment parameters, including anterior chamber depth(ACD) and anterior chamber angle(ACA) were measured before and 1 mo after the laser posterior capsulotomy. RESULTS: In both groups, the BCVA improved significantly(P〈0.001 for the modified round pattern group, P=0.001 for the cruciate pattern group); the IOP and ECC did not significantly change. The ACD significantly decreased(P〈0.001 for both) and the ACA significantly increased(P=0.001 for the modified round pattern group and P=0.034 for the cruciate group). The extent of changes in these parameters was not significantly different between the groups.CONCLUSION: Modified round pattern Nd:YAG laser posterior capsulotomy is an effective and safe method for the treatment of PCO. This method significantly changes the ACD and ACA, but the change in refraction is not significant. Modified round pattern Nd:YAG laser posterior capsulotomy can be considered a good alternative procedure in patients with symptomatic PCO.展开更多
This paper studies the influence of cutting parameters on deformation and residual stress of the workpiece with small-aperture deep holes in the process of drilling for the purpose of obtaining the variation law of th...This paper studies the influence of cutting parameters on deformation and residual stress of the workpiece with small-aperture deep holes in the process of drilling for the purpose of obtaining the variation law of the cutting force and residual stress with different cutting parameters.Based on the analysis of cutting technology,using finite element simulation software ABAQUS,selecting appropriate material model and failure criterion and setting multiple groups of cutting parameters,the 3D drilling model is established for the simulation of drilling process.The results show that the suitable cutting parameters can be selected according to the simulation results and the cutting force can be predicted,which provides a theoretical basis for actual drilling technology..展开更多
In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method ...In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method is used to solve the differential equations goveming the dynamics of the milling system. Several chatter detection criteria are applied synthetically to the simulated signals and the stability diagram is obtained in time-domain. The simulation results in time-domain show a good agreement with the analytical prediction, which is validated by the cutting experiments. By simulating the chatter stability lobes in the time-domain and analyzing the influences of different spindle speeds on the vibration amplitudes of the tool under a Fixed chip-load condition, conclusions could be drawn as follows: In rough milling, higher machining efficiency can be achieved by selecting a spindle speed corresponding to the axial depth of cut in accordance with the simulated chatter stability lobes, and in Fmish milling, lower surface roughness can be achieved by selecting a spindle speed well beyond the resonant frequency of machining system.展开更多
To investigate the vibration principle in machining thin-walled components, a dynamic model for end milling of flexible structures is built based on considering the variations in the dynamic chip thickness and the dif...To investigate the vibration principle in machining thin-walled components, a dynamic model for end milling of flexible structures is built based on considering the variations in the dynamic chip thickness and the differences between up-milling and down-milling. Two milling experiments verify the model. Experimental results show that the model can predict the milling force and displacements simultaneously in the dynamic milling process.展开更多
Grooving method can restrain the deformation and destruction of surrounding rock by transferring the maximum stress to deep rock,bringing about the effective control for floor heave in soft rock roadway. Based on this...Grooving method can restrain the deformation and destruction of surrounding rock by transferring the maximum stress to deep rock,bringing about the effective control for floor heave in soft rock roadway. Based on this important effect,and to discuss the relationship between cutting parameters and pressurerelief effect,this paper carried out a numerical simulation of grooving along bottom slab and two sides of gateway with finite difference software FLAC^(2D).The results show that the control effect on floor heave in soft rock tunnel can be improved by selecting appropriate cutting parameters.Appropriately increasing the crevice depth in the middle of the floor can improve the stress state of bottom slab by stress transfer. So the floor heave can be more effectively controlled.To lengthen the crevice in the corners of roadway can simultaneously transfer the maximum stresses of bottom slab and two sides to deep rock,and promote the pressure-relief effect.Extending the crevice length and crevice width on both sides within a certain range can decrease the stress concentration in the corners of roadway,and reduce the deformation of two sides.The cutting position beneficial to restrain the floor heave is close to the bottom slab.展开更多
The advancement in technologies made the entire manufacturing system,to be operated with more efficient,flexible,user friendly,more productive and cost effective.One such a system to be focused for advancement is plas...The advancement in technologies made the entire manufacturing system,to be operated with more efficient,flexible,user friendly,more productive and cost effective.One such a system to be focused for advancement is plasma cutting system,which has wider industrial applications.There are many researches pursuing at various area of plasma cutting technology,still the automated and optimized parameters value selection is challenging.The work is aimed to eliminate the manual mode of feeding the input parameters for cutting operation.At present,cutting parameters are fed by referring the past cut data information or with the assistance of experienced employers.The cutting process parameters selections will have direct impact on the quality of the material being cut,and life of the consumables.This paper is intended to automate the process parameters selection by developing the mathematical model with existing cutting process parameters database.In this,three different approaches,multiple regression,multiple polynomial regression and AI technique,are selected and analyzed with the mathematical relations developed between the different cutting process parameters.The accuracy and reliability of those methods are detailed.The advantage and disadvantage of those methods for optimal setting conditions are discussed.The appropriate method that can be preferred for automated and optimal settings are elucidated.Finally,the selected technique is checked for accuracy and reliability for the existing cut data.展开更多
It is difficult to construct the prediction model for titanium alloy through analyzing the formation mechanism of surface roughness due to the complicated relation between influential factors and surface roughness.A n...It is difficult to construct the prediction model for titanium alloy through analyzing the formation mechanism of surface roughness due to the complicated relation between influential factors and surface roughness.A novel algorithm based on the modified particle swarm optimization ( PSO ) least square support vector machine ( LSSVM ) is proposed to predict the roughness of the end milling titanium alloys.According to Taguchi method and features in milling titanium alloys , the influences of cutting speed , feed rate and axial depth of cut on surface roughness are investigated with the analysis of variance ( ANOVA ) of the experimental data.The research results show that the construction speed of the modified PSO LS-SVM model is two orders of magnitude faster than that of back propagation ( BP ) model.Moreover , the prediction accuracy is about one order of magnitude higher than that of BP model.The modified PSO LS-SVM prediction model can explain the influences of cutting speed , feed rate and axial depth of cut on the surface roughness of titanium alloys.Either a higher cutting speed , a lower feed rate or a smaller axial depth of cut can lead to the decrease of surface roughness.展开更多
Drill machines used in surface mines, particularly in coal, is characterized by a very poor utilization (around 40%) and low availability (around 60%). The main purpose of this study is to develop a drill selec- t...Drill machines used in surface mines, particularly in coal, is characterized by a very poor utilization (around 40%) and low availability (around 60%). The main purpose of this study is to develop a drill selec- tion methodology and simultaneously a performance evaluation technique based on drill cuttings produced and drilling rate achieved. In all 28 blast drilled through were investigated. The drilling was accomplished by 5 different drill machines of Ingersoll-Rand and Revathi working in coal mines of Sonepur Bazari (SECL) and Block-II (BCCL). The drills are Rotary and Rotary Percussive type using tri- cone rock roller bits. Drill cuttings were collected and sieve analysis was done in the laboratory. Using Rosin Ramler Diagram, coarseness index (CI), mean chip size (d), specific-st trace area (SSA) and charac- teristic particle size distribution curves for all the holes drilled were plotted. The predictor equation for drill penetration rate established through multiple regressions was found to have a very good correlation with an index of determination of 0.85. A comparative analysis of particle size distribution curves was used to evaluate the drill efficiency. The suggested approach utilises the area under the curve, after the point of trend reversal and brittleness ratio of the respective bench to arrive at drill energy utilization index (DEUI), for mapping of drill machine to bench, The developed DEU1 can aid in selecting or mapping a right machine to right bench for achieving higher penetration rate and utilizations.展开更多
The influence of surface conditions on the corrosion behavior of engineering structures has been paid more attention.However,there is still a lack of systematic research on the effect of cutting parameters on material...The influence of surface conditions on the corrosion behavior of engineering structures has been paid more attention.However,there is still a lack of systematic research on the effect of cutting parameters on material’s microstructure and performance in service.In this paper,the effect of cutting parameters on microstructure and corrosion behaviors of 304 stainless steel in simulated primary water is well investigated.The results show that different cutting parameters can cause the superficial layer a gradient microstructure with nanocrystalized layer on top and deformation band structures underneath.With the similar surface roughness,the deformation microstructure can be very different due to the different cutting parameters.The effect degree on the depth of deformation zone is feed rate>cutting depth>cutting speed.The larger feed rate,lower cutting depth,lower cutting rate may induce a deeper deformation zone.With the increasing depth away from the machined surface,the localized corrosion rate is decreased,and at the same depth the localized corrosion rate along the deformation bands is higher than that along the grain boundaries(GBs).The nanocrystalized surface has a smallest general corrosion rate due to the quick formation of Cr rich oxide film.However,once the corrosion penetrates through this nanocrystalized layer,subsequent preferential corrosion at deformation bands and GBs will dominate and may lead to the significant increase of corrosion rate of the component in high temperature pressurized water.展开更多
Mechanical manufacturing industry consumes substantial energy with low energy efficiency. Increasing pressures from energy price and environmental directive force mechanical manufacturing industries to implement energ...Mechanical manufacturing industry consumes substantial energy with low energy efficiency. Increasing pressures from energy price and environmental directive force mechanical manufacturing industries to implement energy efficient technologies for reducing energy consumption and improving energy efficiency of their machining processes. In a practical machining process, cutting parameters are vital variables set by manufacturers in accordance with machining requirements of workpiece and machining condition. Proper selection of cutting parameters with energy consideration can effectively reduce energy consumption and improve energy efficiency of the machining process. Over the past 10 years, many researchers have been engaged in energy efficient cutting parameter optimization, and a large amount of literature have been published. This paper conducts a comprehensive literature review of current studies on energy efficient cutting parameter optimization to fully understand the recent advances in this research area. The energy consumption characteristics of machining process are analyzed by decomposing total energy consumption into electrical energy consumption of machine tool and embodied energy of cutting tool and cutting fluid. Current studies on energy efficient cutting parameter optimization by using experimental design method and energy models are reviewed in a comprehensive manner. Combined with the current status, future research directions of energy efficient cutting parameter optimization are presented.展开更多
Residual stresses generated in cutting process have important influences on workpiece performance. The paper presents a method of theoretical analysis in order to explicate the formation mechanism of residual stresses...Residual stresses generated in cutting process have important influences on workpiece performance. The paper presents a method of theoretical analysis in order to explicate the formation mechanism of residual stresses in cutting. An important conclusion is drawn that the accumulated plastic strain is the main factor which determines the nature and the magnitude of surface residual stresses in the workpiece. On the basis of the analytical model for residual stress, a series of simulations for residual stress prediction during cutting AISI 1045 steel are implemented in order to obtain the influences of cutting speed, depth of cut and tool edge radius on surface residual stress in the workpiece. And these influences are explained from the perspective of formation mechanism of residual stress in cutting. The conclusions have good applicability and can be used to guide the parameters selection in actual production.展开更多
文摘The work done in this work deals with the efficacy of cutting parameters on surface of EN-8 alloy steel.For knowing the optimal effects of cutting parameters response surface methodology was practiced subjected to central composite design matrix.The motive was to introduce an interaction among input parameters,i.e.,cutting speed,feed and depth of cut and output parameter,surface roughness.For this,second order response surface model was modeled.The foreseen values obtained were found to be fairly close to observed values,showed that the model could be practiced to forecast the surface roughness on EN-8 within the range of parameter studied.Contours and 3-D plots are generated to forecast the value of surface roughness.It was revealed that surface roughness decreases with increases in cutting speed and it increases with feed.However,there were found negligible or almost no implication of depth of cut on surface roughness whereas feed rate affected the surface roughness most.For lower surface roughness,the optimum values of each one were also evaluated.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2013CB035802)National Natural Science Foundation of China(Grant No.51575453)+1 种基金Fundamental Research Funds for the Central Universities(Grant No.3102015JCS05002)the 111 Project,China(Grant No.B13044)
文摘Titanium alloy is a kind of typical hard-to-cut material due to its low thermal conductivity and high strength at elevated temperatures, this contributes to the fast tool wear in the milling of titanium alloys. The influence of cutting conditions on tool wear has been focused on the turning process, and their influence on tool wear in milling process as well as the influence of tool wear on cutting force coefficients has not been investigated comprehensively. To fully understand the tool wear behavior in milling process with inserts, the influence of cutting parameters on tool wear in the milling of titanium alloys Ti6A14V by using indexable cutters is investigated. The tool wear rate and trends under different feed per tooth, cutting speed, axial depth of cut and radial depth of cut are analyzed. The results show that the feed rate per tooth and the radial depth of cut have a large influence on tool wear in milling Ti6A14V with coated insert. To reduce tool wear, cutting parameters for coated inserts under experimental cutting conditions are set as: feed rate per tooth less than 0.07 mm, radial depth of cut less than 1.0 mm, and cutting speed sets between 60 and 150 m/min. Investigation on the relationship between tool wear and cutting force coefficients shows that tangential edge constant increases with tool wear and cutter edge chipping can lead to a great variety of tangential cutting force coefficient. The proposed research provides the basic data for evaluating the machinability of milling Ti6A14V alloy with coated inserts, and the recommend cutting parameters can be immediately applied in practical production.
文摘To solve the problem of difficulty in selecting NC cutting parameters by the redundancy technique, a method is put forward to optimize cutting parameters based on a revolutionary mathematical model and a revolutionary cutting parameters database. By use of fuzzy inference rules, it can not only make the method itself evolved and updated, but also ensure data to be correct and feasible from the two optimization routes. Practical running and testing proved that this method can facilitate for the user to select parameters and greatly improve the processing efficiency.
基金National Natural Science Foundation of China(Grant No.51505143)Hunan Provincial Natural Science Foundation of China(Grant nos.14JJ3111)+1 种基金L.L.appreciates the financial supports from the China Postdoctoral Science Foundation(Grant No.2014M562128)Scientific Research Fund of Hunan Provincial Education Department(Grant no.14C0455).
文摘Using LBR-370 numerical control lathe,high speed cutting was applied to AZ31 magnesium alloy.The influence of cutting parameters on microstructure,surface roughness and machining hardening were investigated by using the methods of single factor and orthogonal experiment.The results show that the cutting parameters have an important effect on microstructure,surface roughness and machine hardening.The depth of stress layer,roughness and hardening present a declining tendency with the increase of the cutting speed and also increase with the augment of the cutting depth and feed rate.Moreover,we established a prediction model of the roughness,which has an important guidance on actual machining process of magnesium alloy.
文摘By the use of ANSYS/LS-DYNA FEA software,numerical simulation on the cutting process of cutting plates with a reamer was carried out in the paper. The logical improvement was brought forward and the phenomenon of stress concentration was deceased by weighted analysis. The effects of different cut velocities and cutting thickness on life-spans of reamers were investigated, and the cutting parameters were optimized to satisfy the cutting precision and cutting efficiency. The study will provide a guide for the practical production.
文摘The intelligent optimizing method of cutting parameters and the cutting stable districts searching method are set up. The cutting parameters of each cutting pass could be optimized automatically, the cutting chatter is predicted through setting up the dynamic cutting force AR(2) model on line, the spindle rotation speed is adjusted according to the predicting results so as to ensure the cutting system work in stable district.
基金Projects(2016YFC0600706,2016YFC0600802) supported by the National Key Research and Development Program of ChinaProject(2017zzts186) supported by Cultivating Excellent Doctors of Central South University,China
文摘The outcome of the cutting blasting in a one-step shaft excavation is heavily related to the cutting parameters used for parallel cutting method. In this study, the relationships between the cutting parameters(such as the hole spacing L and the empty hole diameter D) and damage zones were investigated by numerical simulation. A damage state index γ was introduced and used to characterize the crushing and crack damage zones through a user-defined subroutine. Two indices, i.e., η1 and η2 that can reflect the cutting performance, were also introduced. The simulation results indicate that an optimal value of L can be obtained so that the η1 and η2 can reach their optimal states for the best cutting performance. A larger D results in better cutting performance when the L value maintains its best. In addition, the influences of the loading rate and the in-situ stress on the cutting performance were investigated. It is found that an explosive with a high loading rate is suit for cutting blasting. The propagation direction and the length of the tensile cracks are affected by the direction and the magnitude of the maximum principal stress.
基金National Defense Foundation Pre-Research Science Challenge Project(Grant No.JCKY2016212A506-0107)Development Funds of China Academy of Engineering Physics(Grant No.2015B0203029).
文摘Pure iron is one of the difficult-to-machine materials due to its large chip deformation,adhesion,work-hardening,and built-up edges formation during machining.This leads to a large workpiece deformation and challenge to meet the required technical indicators.Therefore,under varying the grain size of pure iron,the influence of cutting speed,feed,and depth of cut on the cutting force,heat generation,and machining residual stresses were explored in the turning process to improve the machinability without compromising the mechanical properties of the material.The experimental findings have depicted that the influence of grain size on cutting force in the precision turning process is not apparent.However,the cutting temperature and residual stress of machining fine-grain iron were much smaller than the coarse grain at all levels of cutting parameters.
文摘AIM: To investigate the effects and safety of neodymium: yttrium-aluminium-garnet(Nd:YAG) laser posterior capsulotomy with vitreous strand cuttingMETHODS: A total of 40 eyes of 37 patients with symptomatic posterior capsular opacity(PCO) were included in this prospective randomized study and were randomly subjected to either cruciate pattern or round pattern Nd:YAG posterior capsulotomy with vitreous strand cutting(modified round pattern). The best corrected visual acuity(BCVA), intraocular pressure(IOP), refractive error, endothelial cell count(ECC), anterior segment parameters, including anterior chamber depth(ACD) and anterior chamber angle(ACA) were measured before and 1 mo after the laser posterior capsulotomy. RESULTS: In both groups, the BCVA improved significantly(P〈0.001 for the modified round pattern group, P=0.001 for the cruciate pattern group); the IOP and ECC did not significantly change. The ACD significantly decreased(P〈0.001 for both) and the ACA significantly increased(P=0.001 for the modified round pattern group and P=0.034 for the cruciate group). The extent of changes in these parameters was not significantly different between the groups.CONCLUSION: Modified round pattern Nd:YAG laser posterior capsulotomy is an effective and safe method for the treatment of PCO. This method significantly changes the ACD and ACA, but the change in refraction is not significant. Modified round pattern Nd:YAG laser posterior capsulotomy can be considered a good alternative procedure in patients with symptomatic PCO.
基金Shanxi Province Scientific and Technological Research Program(No.20140321008-03)
文摘This paper studies the influence of cutting parameters on deformation and residual stress of the workpiece with small-aperture deep holes in the process of drilling for the purpose of obtaining the variation law of the cutting force and residual stress with different cutting parameters.Based on the analysis of cutting technology,using finite element simulation software ABAQUS,selecting appropriate material model and failure criterion and setting multiple groups of cutting parameters,the 3D drilling model is established for the simulation of drilling process.The results show that the suitable cutting parameters can be selected according to the simulation results and the cutting force can be predicted,which provides a theoretical basis for actual drilling technology..
基金National Key Technologies R&D Program (2006BA103A16)Fundamental Research Project of COSTIND (K1203020507, B2120061326)
文摘In this paper, the instantaneous undeformed chip thickness is modeled to include the dynamic modulation caused by the tool vibration while the dynamic regenerative effects are taken into account. The numerical method is used to solve the differential equations goveming the dynamics of the milling system. Several chatter detection criteria are applied synthetically to the simulated signals and the stability diagram is obtained in time-domain. The simulation results in time-domain show a good agreement with the analytical prediction, which is validated by the cutting experiments. By simulating the chatter stability lobes in the time-domain and analyzing the influences of different spindle speeds on the vibration amplitudes of the tool under a Fixed chip-load condition, conclusions could be drawn as follows: In rough milling, higher machining efficiency can be achieved by selecting a spindle speed corresponding to the axial depth of cut in accordance with the simulated chatter stability lobes, and in Fmish milling, lower surface roughness can be achieved by selecting a spindle speed well beyond the resonant frequency of machining system.
文摘To investigate the vibration principle in machining thin-walled components, a dynamic model for end milling of flexible structures is built based on considering the variations in the dynamic chip thickness and the differences between up-milling and down-milling. Two milling experiments verify the model. Experimental results show that the model can predict the milling force and displacements simultaneously in the dynamic milling process.
文摘Grooving method can restrain the deformation and destruction of surrounding rock by transferring the maximum stress to deep rock,bringing about the effective control for floor heave in soft rock roadway. Based on this important effect,and to discuss the relationship between cutting parameters and pressurerelief effect,this paper carried out a numerical simulation of grooving along bottom slab and two sides of gateway with finite difference software FLAC^(2D).The results show that the control effect on floor heave in soft rock tunnel can be improved by selecting appropriate cutting parameters.Appropriately increasing the crevice depth in the middle of the floor can improve the stress state of bottom slab by stress transfer. So the floor heave can be more effectively controlled.To lengthen the crevice in the corners of roadway can simultaneously transfer the maximum stresses of bottom slab and two sides to deep rock,and promote the pressure-relief effect.Extending the crevice length and crevice width on both sides within a certain range can decrease the stress concentration in the corners of roadway,and reduce the deformation of two sides.The cutting position beneficial to restrain the floor heave is close to the bottom slab.
文摘The advancement in technologies made the entire manufacturing system,to be operated with more efficient,flexible,user friendly,more productive and cost effective.One such a system to be focused for advancement is plasma cutting system,which has wider industrial applications.There are many researches pursuing at various area of plasma cutting technology,still the automated and optimized parameters value selection is challenging.The work is aimed to eliminate the manual mode of feeding the input parameters for cutting operation.At present,cutting parameters are fed by referring the past cut data information or with the assistance of experienced employers.The cutting process parameters selections will have direct impact on the quality of the material being cut,and life of the consumables.This paper is intended to automate the process parameters selection by developing the mathematical model with existing cutting process parameters database.In this,three different approaches,multiple regression,multiple polynomial regression and AI technique,are selected and analyzed with the mathematical relations developed between the different cutting process parameters.The accuracy and reliability of those methods are detailed.The advantage and disadvantage of those methods for optimal setting conditions are discussed.The appropriate method that can be preferred for automated and optimal settings are elucidated.Finally,the selected technique is checked for accuracy and reliability for the existing cut data.
基金Supported by the National Natural Science Foundation of China(51175262)the Trans-century Training Programme Foundation for the Talents of Humanities and Social Science by the State Education Commission(NCET-08)+3 种基金the Excellent Youth Foundation of Anhui Provincial Colleges and Universities(2010SQRL117)Anhui Provincia lNatural Science Foundation(1308085ME65)Jiangsu Province Science Foundation for Excellent Youths(BK201210111)Jiangsu Province Industry-Academy-Research Grant(BY201220116)
文摘It is difficult to construct the prediction model for titanium alloy through analyzing the formation mechanism of surface roughness due to the complicated relation between influential factors and surface roughness.A novel algorithm based on the modified particle swarm optimization ( PSO ) least square support vector machine ( LSSVM ) is proposed to predict the roughness of the end milling titanium alloys.According to Taguchi method and features in milling titanium alloys , the influences of cutting speed , feed rate and axial depth of cut on surface roughness are investigated with the analysis of variance ( ANOVA ) of the experimental data.The research results show that the construction speed of the modified PSO LS-SVM model is two orders of magnitude faster than that of back propagation ( BP ) model.Moreover , the prediction accuracy is about one order of magnitude higher than that of BP model.The modified PSO LS-SVM prediction model can explain the influences of cutting speed , feed rate and axial depth of cut on the surface roughness of titanium alloys.Either a higher cutting speed , a lower feed rate or a smaller axial depth of cut can lead to the decrease of surface roughness.
文摘Drill machines used in surface mines, particularly in coal, is characterized by a very poor utilization (around 40%) and low availability (around 60%). The main purpose of this study is to develop a drill selec- tion methodology and simultaneously a performance evaluation technique based on drill cuttings produced and drilling rate achieved. In all 28 blast drilled through were investigated. The drilling was accomplished by 5 different drill machines of Ingersoll-Rand and Revathi working in coal mines of Sonepur Bazari (SECL) and Block-II (BCCL). The drills are Rotary and Rotary Percussive type using tri- cone rock roller bits. Drill cuttings were collected and sieve analysis was done in the laboratory. Using Rosin Ramler Diagram, coarseness index (CI), mean chip size (d), specific-st trace area (SSA) and charac- teristic particle size distribution curves for all the holes drilled were plotted. The predictor equation for drill penetration rate established through multiple regressions was found to have a very good correlation with an index of determination of 0.85. A comparative analysis of particle size distribution curves was used to evaluate the drill efficiency. The suggested approach utilises the area under the curve, after the point of trend reversal and brittleness ratio of the respective bench to arrive at drill energy utilization index (DEUI), for mapping of drill machine to bench, The developed DEU1 can aid in selecting or mapping a right machine to right bench for achieving higher penetration rate and utilizations.
基金supported by National Natural Science Foundation of China(No.51771211)the National Key Research and Development Program of China(No.2017YFB0702100)Key Research Program of Frontier Sciences,Chinese Academy of Sciences(No.QYZDY-SSWJSC012)。
文摘The influence of surface conditions on the corrosion behavior of engineering structures has been paid more attention.However,there is still a lack of systematic research on the effect of cutting parameters on material’s microstructure and performance in service.In this paper,the effect of cutting parameters on microstructure and corrosion behaviors of 304 stainless steel in simulated primary water is well investigated.The results show that different cutting parameters can cause the superficial layer a gradient microstructure with nanocrystalized layer on top and deformation band structures underneath.With the similar surface roughness,the deformation microstructure can be very different due to the different cutting parameters.The effect degree on the depth of deformation zone is feed rate>cutting depth>cutting speed.The larger feed rate,lower cutting depth,lower cutting rate may induce a deeper deformation zone.With the increasing depth away from the machined surface,the localized corrosion rate is decreased,and at the same depth the localized corrosion rate along the deformation bands is higher than that along the grain boundaries(GBs).The nanocrystalized surface has a smallest general corrosion rate due to the quick formation of Cr rich oxide film.However,once the corrosion penetrates through this nanocrystalized layer,subsequent preferential corrosion at deformation bands and GBs will dominate and may lead to the significant increase of corrosion rate of the component in high temperature pressurized water.
基金This work was supported in part by the National Natural Science Foundation of China(Grant No.51905448)the Fundamental Research Funds for the Central Universities of China(Grant No.SWU119060)+1 种基金the Natural Science Foundation of Chongqing,China(Grant No.cstc2018jcyjAX0579)the Technological Innovation and Application Development of Chongqing,China(Grant No.cstc2019jscx-mbdx0118).
文摘Mechanical manufacturing industry consumes substantial energy with low energy efficiency. Increasing pressures from energy price and environmental directive force mechanical manufacturing industries to implement energy efficient technologies for reducing energy consumption and improving energy efficiency of their machining processes. In a practical machining process, cutting parameters are vital variables set by manufacturers in accordance with machining requirements of workpiece and machining condition. Proper selection of cutting parameters with energy consideration can effectively reduce energy consumption and improve energy efficiency of the machining process. Over the past 10 years, many researchers have been engaged in energy efficient cutting parameter optimization, and a large amount of literature have been published. This paper conducts a comprehensive literature review of current studies on energy efficient cutting parameter optimization to fully understand the recent advances in this research area. The energy consumption characteristics of machining process are analyzed by decomposing total energy consumption into electrical energy consumption of machine tool and embodied energy of cutting tool and cutting fluid. Current studies on energy efficient cutting parameter optimization by using experimental design method and energy models are reviewed in a comprehensive manner. Combined with the current status, future research directions of energy efficient cutting parameter optimization are presented.
文摘Residual stresses generated in cutting process have important influences on workpiece performance. The paper presents a method of theoretical analysis in order to explicate the formation mechanism of residual stresses in cutting. An important conclusion is drawn that the accumulated plastic strain is the main factor which determines the nature and the magnitude of surface residual stresses in the workpiece. On the basis of the analytical model for residual stress, a series of simulations for residual stress prediction during cutting AISI 1045 steel are implemented in order to obtain the influences of cutting speed, depth of cut and tool edge radius on surface residual stress in the workpiece. And these influences are explained from the perspective of formation mechanism of residual stress in cutting. The conclusions have good applicability and can be used to guide the parameters selection in actual production.