Both Cu60Ni38Co2 and Cu60Ni40 alloy were naturally cooled after rapid solidification from the liquid phase.The transformation law of the microstructure characteristics of the rapidly solidified alloy with the change o...Both Cu60Ni38Co2 and Cu60Ni40 alloy were naturally cooled after rapid solidification from the liquid phase.The transformation law of the microstructure characteristics of the rapidly solidified alloy with the change of undercooling(ΔT)was systematically studied.It is found that the two alloys experience the same transformation process.The refinement structures under different undercoolings were characterized by electron backscatter diffraction(EBSD).The results show that the characteristics of the refinement structure of the two alloys with low undercooling are the same,but the characteristics of the refinement structure with high undercooling are opposite.The transmission electron microscopy(TEM)results of Cu60Ni38Co2 alloy show that the dislocation network density of low undercooled microstructure is lower than that of high undercooled microstructure.By combining EBSD and TEM,it could be confirmed that the dendrite remelting fracture is the reason for the refinement of the low undercooled structure,while the high undercooled structure is refined due to recrystallization.On this basis,in the processing of copper base alloys,there will be serious work hardening phenomenon and machining hard problem of consciousness problems caused by excessive cutting force.A twodimensional orthogonal turning finite element model was established using ABAQUS software to analyze the changes in cutting speed and tool trajectory in copper based alloy ultrasonic elliptical vibration turning.The results show that in copper based alloy ultrasonic elliptical vibration turning,cutting process parameters have a significant impact on cutting force.Choosing reasonable process parameters can effectively reduce cutting force and improve machining quality.展开更多
Energy consumption of block-cutting machines represents a major cost item in the processing of travertines and other natural stones. Therefore, determining the optimum sawing conditions for a particular stone is of ma...Energy consumption of block-cutting machines represents a major cost item in the processing of travertines and other natural stones. Therefore, determining the optimum sawing conditions for a particular stone is of major importance in the natural stone-processing industry. An experimental study was carried out utilizing a fully instrumented block-cutter to investigate the sawing performances of five different types of travertine blocks during cutting with a circular diamond saw. The sawing tests were performed in the down-cutting mode. Performance measurements were determined by measuring the cutting speed and energy consumption. Then, specific energy was determined. The one main cutting parameter, cutting speed, was varied in the investigation of optimum cutting performance. Furthermore, some physico-mechanical properties of file travertine blocks were determined in the laboratory. As a result, it is found that the energy consumption (specific energy) of block cutting machines is highly affected by cutting speed. It is determined that specific energy value usually decreases when cutting speed increases. When the cutting speed is higher than the determined value, the diamond saw can become stuck in the travertine block; this situation can be a problem for the block-cutting machine. As a result, the optimum cutting speed obtained for the travertine mines examined is approximately 1.5-2.0 m/min.展开更多
To look for the optimum cutting speed, the tungsten carbide tipped saw was used asan example in this paper. And then, on the basis of the experimental results and theoretical calculation,the equations of tool life was...To look for the optimum cutting speed, the tungsten carbide tipped saw was used asan example in this paper. And then, on the basis of the experimental results and theoretical calculation,the equations of tool life was introduced, and as an example, the minimum cost and maximum production cutting speed When the particleboards were cut by circulax saw, were obtained.展开更多
Using LBR-370 numerical control lathe,high speed cutting was applied to AZ31 magnesium alloy.The influence of cutting parameters on microstructure,surface roughness and machining hardening were investigated by using t...Using LBR-370 numerical control lathe,high speed cutting was applied to AZ31 magnesium alloy.The influence of cutting parameters on microstructure,surface roughness and machining hardening were investigated by using the methods of single factor and orthogonal experiment.The results show that the cutting parameters have an important effect on microstructure,surface roughness and machine hardening.The depth of stress layer,roughness and hardening present a declining tendency with the increase of the cutting speed and also increase with the augment of the cutting depth and feed rate.Moreover,we established a prediction model of the roughness,which has an important guidance on actual machining process of magnesium alloy.展开更多
The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characte...The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid.展开更多
High speed machining (HSM) technology is one of important aspects of advanced manufacturing technology. Nickel-based superalloys have been widely used in the aircraft and nuclear industry due to their exceptional ther...High speed machining (HSM) technology is one of important aspects of advanced manufacturing technology. Nickel-based superalloys have been widely used in the aircraft and nuclear industry due to their exceptional thermal resistance and the ability to retain mechanical properties at elevated temperatures of service environment over 700 ℃. However, they are classified as difficult-to-cut materials due to their high shear strength, work hardening tendency, highly abrasive carbide particles in the microstructure, strong tendency to weld and form built-up edge and low thermal conductivity. They have a tendency to maintain their strength at high temperature that is generated during machining. The Inconel 718 workpiece material used in the experiment was in the hot forged and annealed condition. The commercially available inserts (all inserts were made by Kennametal Inc.) were selected for the tests, a PVD TiAlN coated carbide, a CVD/PVD TiN/TiCN/TiN coated carbide and a CVD Al 2O 3/TiC/TiCN coated carbide were used at the cutting speed range about 50~100 m/min. Three kinds Sialon grade inserts with various geometry and cutting angles were used at the cutting speed range from 100 m/min to 300 m/min. For evaluating the inserts machinability when high speed cutting Inconel 718, Taylor Formula within certain cutting speeds, an high speed cutting experiment of tool life was carried out to establish the models of tool life by means of rapid facing turning test. The conclusions drawn from the turning of Inconel 718 with silicon nitride based ceramic; PVD and CVD coated carbide inserts are as follows: Studies on tool wear in high speed machining. The thorough investigations and studies were made on the tool wear form, wear process and wear mechanism in high speed cutting of difficult-to-machine materials with ceramic tools and with coated carbides. The major wear mechanisms of nickel-based alloys are interactions of abrasive wear, adhesion wear, micro-breakout and chipping. Optimization analysis on the application of high speed machining. Based on the experimental results, the optimal cutting parameters were determined for machining of Inconel 718 at high speed. The recommendation of tool inserts for high speed cutting inconel 718 were ceramic inserts of KY2000 with negative rake angle and KY2100 with round type, the PVD coated carbide insert KC7310 was recommended for its lower price.展开更多
When machining D60 steel by high speed turn-milling under the different cooling and lubricating conditions, the cutting performance and the wear mechanism of the cermet cutter are researched. With water soluble coolin...When machining D60 steel by high speed turn-milling under the different cooling and lubricating conditions, the cutting performance and the wear mechanism of the cermet cutter are researched. With water soluble cooling fluid, the wear performance of the cermet cutter is bad, and does not adapt to the requirements of machining. However, when machining D60 by high speed turn-milling is under dry conditions, the wearing performance of the cermet cutter is very good and the cutting time lasts almost 3 hours. The wear mechanism of the cermet cutter under the water soluble cooling fluid is different from the dry condition. With the water soluble cooling fluid, a great deal of little chap units are formed since high frequency alternates heat stress. The crash and desquamate of these chap units is the main cause of the cutter wearing. Under dry cutting conditions, it is the main cause of cermet cutter wear in the felting phase intenerating causing rigid phase grains to fall.展开更多
This study deals with Nd:YAG laser cutting nonmetallic materials, which is one of the most important and popular industrial applications of laser. The main theme is to evaluate the effects of Nd:YAG laser beam power...This study deals with Nd:YAG laser cutting nonmetallic materials, which is one of the most important and popular industrial applications of laser. The main theme is to evaluate the effects of Nd:YAG laser beam power besides work piece scanning speed. For approximate cutting depth, a theoretical study is conducted in terms of material property and cutting speed. Results show a nonlinear relation between the cutting depth and input energy. There is no significant effect of speed on cutting depth with the speed being larger than 30 mm/s. An extra energy is utilized in the deep cutting. It is inferred that as the laser power increases, cutting depth increases. The experimental outcomes are in good agreement with theoretical results. This analysis will provide a guideline for laser-based industry to select a suitable laser for cutting, scribing, trimming, engraving, and marking nonmetallic materials.展开更多
7A52 aluminum alloy was cut with an integrated equipment for welding and cutting using water vapor plasma arc. Various cutting mediums were tested. The arc force, electron density and cutting speed in each medium were...7A52 aluminum alloy was cut with an integrated equipment for welding and cutting using water vapor plasma arc. Various cutting mediums were tested. The arc force, electron density and cutting speed in each medium were tested and calculated. The fractography and microstructure of the cuts were also analyzed. Results show that the arc force, electron density and cutting speed #wreased with increasing acetone concentration. However, above a certain value (40%), higher acetone concentrations contribute little to the arc force and cutting speed. The microstrueture of material near the cut was greatly influenced by the water vapor plasma arc. While the microstructure of the material beyond 10 mm from the cut was hardly influenced by the cutting heat. It was demonstrated that the water vapor plasma arc can be used for cutting of aluminum alloys in open field or emergency situations.展开更多
The performance of engineered wood products is highly associated with proper bonding and an efficient cutting method.This paper investigates the influence of CO_(2) laser cutting on the wetting properties,the modified ch...The performance of engineered wood products is highly associated with proper bonding and an efficient cutting method.This paper investigates the influence of CO_(2) laser cutting on the wetting properties,the modified che-mical component of the laser-cut surface,and the strength and adhesive penetration near the bondline.Beech-wood is cut by the laser with varying processing parameters,cutting speeds,gas pressures,and focal point positions.The laser-cut samples were divided into two groups,sanded and non-sanded samples.Polyvinyl acetate adhesive(PVAc)was used to bond the groups of laser-cut samples.After assembly with cold pressing,the tensile shear test was carried out.Numerical modelling was carried out to determine the partial elongation and shear strain of the glue line.Based on this,the shear modulus and linear elasticity of the glue line were estimated.Scan-ning electron microscopy was used to assess the adhesive penetration into the porosity structure of the laser-cut samples,and the depth of the heat-affected zone.The laser-cut surface was analysed by Fourier transform infrared spectroscopy.The wetting properties of the laser-cut surface were investigated by using a contact angle goni-ometer.The numerical model of the strain-stress curve confirmed the experimental model.The highest modulus of the linear elasticity of the glue in the numerical calculation belongs to the joint containing laser-cut samples at a gas pressure of 21(bar).The penetration depth of PVAc adhesive into the porosity structure of the laser-cut sam-ples was similar to that of sawn samples.The deepest heat-affected zone in the laser-cut samples was 150µm.A PVAc drop disappeared immediately on the laser-cut surface without sanding,but gradually on the sanded surface.In contrast,the drop on the sawn surface remained with an angle of 32°–48°.The degradation of hemi-cellulose and lignin was proven by the lower intensity of the C=O and C-O Bonds,compared to the sawn surface.展开更多
The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors ...The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production plarming and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed small- and large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.展开更多
Metal framework composites have higher mechanical properties in examination to metals over an extensive variety of working conditions. This makes them an alluring alternative in swapping metals for different building ...Metal framework composites have higher mechanical properties in examination to metals over an extensive variety of working conditions. This makes them an alluring alternative in swapping metals for different building applications. The present review is a study on the influence of composite titanium on the cutting parameters, mechanical behavior, reinforcements, structure and nanostructure. This review will provide an understanding into selecting the optimum machining parameters for machining titanium composites. It’s also an attempt to give brief explanation by suitably machining the titanium composite which can be made reasonable.展开更多
To avoid suffering gouge and transient overshooting in high speed cutting machining, a novel parametefized curve interpolator model with velocity look-ahead algorithm is proposed. Based on a prearrangement step interp...To avoid suffering gouge and transient overshooting in high speed cutting machining, a novel parametefized curve interpolator model with velocity look-ahead algorithm is proposed. Based on a prearrangement step interpolation algorithm for parameterized curves and considering high curvature points, parameterized curve tool path is divided into acceleration segments and deceleration segments by look-ahead algorithm. Under condition of characteristics of acceleration and deceleration stored in control system, deceleration before high curvature points and acceleration after high curvature points are realized in real-time in high speed cutting machining. Based on new parameterized curve interpolator model with velocity look-ahead algorithm, a real cubic spline is machined simulativly. The simulation results show that velocity look-ahead algorithm improves velocity changing more smoothly.展开更多
The experimental determination of stability lobediagrams (SLDs) in milling can be realized by eithercontinuously varying the spindle speed or by varying thedepth of cut. In this paper, a method for combining boththe...The experimental determination of stability lobediagrams (SLDs) in milling can be realized by eithercontinuously varying the spindle speed or by varying thedepth of cut. In this paper, a method for combining boththese methods along with an online chatter detectionalgorithm is proposed for efficient determination of SLDs.To accomplish this, communication between the machinecontrol and chatter detection algorithm is established, andthe machine axes are controlled to change the spindle speedor depth of cut. The efficiency of the proposed method isanalyzed in this paper.展开更多
Mechanisms for removal of materials during the grinding process of monocrystalline silicon have been extensively studied in the past several decades.However,debates over whether the cutting speed significantly affects...Mechanisms for removal of materials during the grinding process of monocrystalline silicon have been extensively studied in the past several decades.However,debates over whether the cutting speed significantly affects the surface integrity are ongoing.To address this debate,this study comprehensively investigates the effects of cutting speed on surface roughness,subsurface damage,residual stress,and grinding force for a constant grain depth-of-cut.The results illustrate that the changes in the surface roughness and subsurface damage relative to the grinding speed are less obvious when the material is removed in ductile-mode as opposed to in the brittle-ductile mixed mode.A notable finding is that there is no positive correlation between grinding force and surface integrity.The results of this study could be useful for further investigations on fundamental and technical analysis of the precision grinding of brittle materials.展开更多
Chipping, adhesive wear, abrasive wear and crater wear are prevalent for both the polycrystalline diamond (PCD) and the carbide tools during high speed turning of TiCp/TiBw hybrid reinforced Ti-6Al-4V (TC4) matrix...Chipping, adhesive wear, abrasive wear and crater wear are prevalent for both the polycrystalline diamond (PCD) and the carbide tools during high speed turning of TiCp/TiBw hybrid reinforced Ti-6Al-4V (TC4) matrix composite (TMCs). The combined effects of abrasive wear and diffusion wear caused the big crater on PCD and carbide tool rake face. Compared to the PCD, bigger size of crater was found on the carbide tool due to much higher cutting temperature and the violent chemical reaction between the Ti element in the workpiece and the WC in the tool. However, the marks of the abrasive wear looked much slighter or even could not be observed on the carbide tool especially when low levels of cutting parameters were used, which attributes to much lower hardness and smaller size of WC combined with more significant chemical degradation of carbide. When cutting TC4 using PCD tool, notch wear was the most significant wear pattern which was not found when cutting the TMCs. However, chipping, adhesive wear and crater wear were much milder when compared to the cutting of titanium matrix composite. Due to the absence of abrasive wear when cutting TC4, the generated titanium carbide on the PCD protected the tool from fast wear, which caused that the tool life for TC4 was 6-10 times longer than that for TMCs.展开更多
Ultra-precision machining causes materials to undergo a greatly strained deformation process in a short period of time.The effect of shear strain rates on machining quality, in particular on surface anisotropy, is a t...Ultra-precision machining causes materials to undergo a greatly strained deformation process in a short period of time.The effect of shear strain rates on machining quality, in particular on surface anisotropy, is a topic deserving of research that has thus far been overlooked.This study analyzes the impact of the strain rate during the ultra-precision turning of single-crystal silicon on the anisotropy of surface roughness.Focusing on the establishment of cutting models considering the tool rake angle and the edge radius, this is the first research that takes into account the strain rate dislocation emission criteria in studying the effects of the edge radius, the cutting speed, and the cutting thickness on the plastic deformation of single-crystal silicon.The results of this study show that the uses of a smaller edge radius, faster cutting speeds, and a reduced cutting thickness can result in optimally uniform surface roughness, while the use of a very sharp cutting tool is essential when operating with smaller cutting thicknesses.A further finding is that insufficient plastic deformation is the major cause of increased surface roughness in the ultra-precision turning of brittle materials.On this basis, we propose that the capacity of single-crystal silicon to emit dislocations be improved as much as possible before brittle fracture occurs, thereby promoting plastic deformation and minimizing the anisotropy of surface roughness in the machined workpiece.展开更多
In this work,an attempt has been made for optimization of process parameters in Wire Electric Discharge Machining(WEDM)of Ti–6Al–4V while producing square and cir-cular profiles.The input parameters,namely pulse on ...In this work,an attempt has been made for optimization of process parameters in Wire Electric Discharge Machining(WEDM)of Ti–6Al–4V while producing square and cir-cular profiles.The input parameters,namely pulse on time,pulse off time,peak current and servo voltage,were considered to study the responses cutting speed(CS)and sur-face roughness(SR).Each input parameter was set at three levels.Experiments were conducted as per central composite face(CCF)centered design.Based upon the exper-imental data,Gray relational analysis(GRA),a multi-objective optimization technique has been employed to find the best level of process parameters to optimize the machining profiles.Analysis of variance(ANOVA)has been conducted for investigating the effect of process parameters on overall machining performance.Finally,it was identified that the process parameters such as pulse on time,current and voltage have more impact on the square and circular profiles.展开更多
基金Funded by the Basic Research Projects in Shanxi Province(202103021224183)。
文摘Both Cu60Ni38Co2 and Cu60Ni40 alloy were naturally cooled after rapid solidification from the liquid phase.The transformation law of the microstructure characteristics of the rapidly solidified alloy with the change of undercooling(ΔT)was systematically studied.It is found that the two alloys experience the same transformation process.The refinement structures under different undercoolings were characterized by electron backscatter diffraction(EBSD).The results show that the characteristics of the refinement structure of the two alloys with low undercooling are the same,but the characteristics of the refinement structure with high undercooling are opposite.The transmission electron microscopy(TEM)results of Cu60Ni38Co2 alloy show that the dislocation network density of low undercooled microstructure is lower than that of high undercooled microstructure.By combining EBSD and TEM,it could be confirmed that the dendrite remelting fracture is the reason for the refinement of the low undercooled structure,while the high undercooled structure is refined due to recrystallization.On this basis,in the processing of copper base alloys,there will be serious work hardening phenomenon and machining hard problem of consciousness problems caused by excessive cutting force.A twodimensional orthogonal turning finite element model was established using ABAQUS software to analyze the changes in cutting speed and tool trajectory in copper based alloy ultrasonic elliptical vibration turning.The results show that in copper based alloy ultrasonic elliptical vibration turning,cutting process parameters have a significant impact on cutting force.Choosing reasonable process parameters can effectively reduce cutting force and improve machining quality.
文摘Energy consumption of block-cutting machines represents a major cost item in the processing of travertines and other natural stones. Therefore, determining the optimum sawing conditions for a particular stone is of major importance in the natural stone-processing industry. An experimental study was carried out utilizing a fully instrumented block-cutter to investigate the sawing performances of five different types of travertine blocks during cutting with a circular diamond saw. The sawing tests were performed in the down-cutting mode. Performance measurements were determined by measuring the cutting speed and energy consumption. Then, specific energy was determined. The one main cutting parameter, cutting speed, was varied in the investigation of optimum cutting performance. Furthermore, some physico-mechanical properties of file travertine blocks were determined in the laboratory. As a result, it is found that the energy consumption (specific energy) of block cutting machines is highly affected by cutting speed. It is determined that specific energy value usually decreases when cutting speed increases. When the cutting speed is higher than the determined value, the diamond saw can become stuck in the travertine block; this situation can be a problem for the block-cutting machine. As a result, the optimum cutting speed obtained for the travertine mines examined is approximately 1.5-2.0 m/min.
文摘To look for the optimum cutting speed, the tungsten carbide tipped saw was used asan example in this paper. And then, on the basis of the experimental results and theoretical calculation,the equations of tool life was introduced, and as an example, the minimum cost and maximum production cutting speed When the particleboards were cut by circulax saw, were obtained.
基金National Natural Science Foundation of China(Grant No.51505143)Hunan Provincial Natural Science Foundation of China(Grant nos.14JJ3111)+1 种基金L.L.appreciates the financial supports from the China Postdoctoral Science Foundation(Grant No.2014M562128)Scientific Research Fund of Hunan Provincial Education Department(Grant no.14C0455).
文摘Using LBR-370 numerical control lathe,high speed cutting was applied to AZ31 magnesium alloy.The influence of cutting parameters on microstructure,surface roughness and machining hardening were investigated by using the methods of single factor and orthogonal experiment.The results show that the cutting parameters have an important effect on microstructure,surface roughness and machine hardening.The depth of stress layer,roughness and hardening present a declining tendency with the increase of the cutting speed and also increase with the augment of the cutting depth and feed rate.Moreover,we established a prediction model of the roughness,which has an important guidance on actual machining process of magnesium alloy.
基金Provincial Key Laboratory of Precision and Micro-Manufacturing Technology of Jiangsu,China(No.Z0601-052-02).
文摘The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid.
文摘High speed machining (HSM) technology is one of important aspects of advanced manufacturing technology. Nickel-based superalloys have been widely used in the aircraft and nuclear industry due to their exceptional thermal resistance and the ability to retain mechanical properties at elevated temperatures of service environment over 700 ℃. However, they are classified as difficult-to-cut materials due to their high shear strength, work hardening tendency, highly abrasive carbide particles in the microstructure, strong tendency to weld and form built-up edge and low thermal conductivity. They have a tendency to maintain their strength at high temperature that is generated during machining. The Inconel 718 workpiece material used in the experiment was in the hot forged and annealed condition. The commercially available inserts (all inserts were made by Kennametal Inc.) were selected for the tests, a PVD TiAlN coated carbide, a CVD/PVD TiN/TiCN/TiN coated carbide and a CVD Al 2O 3/TiC/TiCN coated carbide were used at the cutting speed range about 50~100 m/min. Three kinds Sialon grade inserts with various geometry and cutting angles were used at the cutting speed range from 100 m/min to 300 m/min. For evaluating the inserts machinability when high speed cutting Inconel 718, Taylor Formula within certain cutting speeds, an high speed cutting experiment of tool life was carried out to establish the models of tool life by means of rapid facing turning test. The conclusions drawn from the turning of Inconel 718 with silicon nitride based ceramic; PVD and CVD coated carbide inserts are as follows: Studies on tool wear in high speed machining. The thorough investigations and studies were made on the tool wear form, wear process and wear mechanism in high speed cutting of difficult-to-machine materials with ceramic tools and with coated carbides. The major wear mechanisms of nickel-based alloys are interactions of abrasive wear, adhesion wear, micro-breakout and chipping. Optimization analysis on the application of high speed machining. Based on the experimental results, the optimal cutting parameters were determined for machining of Inconel 718 at high speed. The recommendation of tool inserts for high speed cutting inconel 718 were ceramic inserts of KY2000 with negative rake angle and KY2100 with round type, the PVD coated carbide insert KC7310 was recommended for its lower price.
文摘When machining D60 steel by high speed turn-milling under the different cooling and lubricating conditions, the cutting performance and the wear mechanism of the cermet cutter are researched. With water soluble cooling fluid, the wear performance of the cermet cutter is bad, and does not adapt to the requirements of machining. However, when machining D60 by high speed turn-milling is under dry conditions, the wearing performance of the cermet cutter is very good and the cutting time lasts almost 3 hours. The wear mechanism of the cermet cutter under the water soluble cooling fluid is different from the dry condition. With the water soluble cooling fluid, a great deal of little chap units are formed since high frequency alternates heat stress. The crash and desquamate of these chap units is the main cause of the cutter wearing. Under dry cutting conditions, it is the main cause of cermet cutter wear in the felting phase intenerating causing rigid phase grains to fall.
基金supported by the Science Foundation of the Ministry of Science and Technology Malaysiathe Islamic Development Bank Jeddahsupport of the Universiti Teknologi Malaysia for this research work
文摘This study deals with Nd:YAG laser cutting nonmetallic materials, which is one of the most important and popular industrial applications of laser. The main theme is to evaluate the effects of Nd:YAG laser beam power besides work piece scanning speed. For approximate cutting depth, a theoretical study is conducted in terms of material property and cutting speed. Results show a nonlinear relation between the cutting depth and input energy. There is no significant effect of speed on cutting depth with the speed being larger than 30 mm/s. An extra energy is utilized in the deep cutting. It is inferred that as the laser power increases, cutting depth increases. The experimental outcomes are in good agreement with theoretical results. This analysis will provide a guideline for laser-based industry to select a suitable laser for cutting, scribing, trimming, engraving, and marking nonmetallic materials.
文摘7A52 aluminum alloy was cut with an integrated equipment for welding and cutting using water vapor plasma arc. Various cutting mediums were tested. The arc force, electron density and cutting speed in each medium were tested and calculated. The fractography and microstructure of the cuts were also analyzed. Results show that the arc force, electron density and cutting speed #wreased with increasing acetone concentration. However, above a certain value (40%), higher acetone concentrations contribute little to the arc force and cutting speed. The microstrueture of material near the cut was greatly influenced by the water vapor plasma arc. While the microstructure of the material beyond 10 mm from the cut was hardly influenced by the cutting heat. It was demonstrated that the water vapor plasma arc can be used for cutting of aluminum alloys in open field or emergency situations.
文摘The performance of engineered wood products is highly associated with proper bonding and an efficient cutting method.This paper investigates the influence of CO_(2) laser cutting on the wetting properties,the modified che-mical component of the laser-cut surface,and the strength and adhesive penetration near the bondline.Beech-wood is cut by the laser with varying processing parameters,cutting speeds,gas pressures,and focal point positions.The laser-cut samples were divided into two groups,sanded and non-sanded samples.Polyvinyl acetate adhesive(PVAc)was used to bond the groups of laser-cut samples.After assembly with cold pressing,the tensile shear test was carried out.Numerical modelling was carried out to determine the partial elongation and shear strain of the glue line.Based on this,the shear modulus and linear elasticity of the glue line were estimated.Scan-ning electron microscopy was used to assess the adhesive penetration into the porosity structure of the laser-cut samples,and the depth of the heat-affected zone.The laser-cut surface was analysed by Fourier transform infrared spectroscopy.The wetting properties of the laser-cut surface were investigated by using a contact angle goni-ometer.The numerical model of the strain-stress curve confirmed the experimental model.The highest modulus of the linear elasticity of the glue in the numerical calculation belongs to the joint containing laser-cut samples at a gas pressure of 21(bar).The penetration depth of PVAc adhesive into the porosity structure of the laser-cut sam-ples was similar to that of sawn samples.The deepest heat-affected zone in the laser-cut samples was 150µm.A PVAc drop disappeared immediately on the laser-cut surface without sanding,but gradually on the sanded surface.In contrast,the drop on the sawn surface remained with an angle of 32°–48°.The degradation of hemi-cellulose and lignin was proven by the lower intensity of the C=O and C-O Bonds,compared to the sawn surface.
基金Supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Program(Grant No.294931)National Science Foundation of China(Grant No.51175262)+1 种基金Jiangsu Provincial Science Foundation for Excellent Youths of China(Grant No.BK2012032)Jiangsu Provincial Industry-Academy-Research Grant of China(Grant No.BY201220116)
文摘The traditional production planning and scheduling problems consider performance indicators like time, cost and quality as optimization objectives in manufacturing processes. However, environmentally-friendly factors like energy consumption of production have not been completely taken into consideration. Against this background, this paper addresses an approach to modify a given schedule generated by a production plarming and scheduling system in a job shop floor, where machine tools can work at different cutting speeds. It can adjust the cutting speeds of the operations while keeping the original assignment and processing sequence of operations of each job fixed in order to obtain energy savings. First, the proposed approach, based on a mixed integer programming mathematical model, changes the total idle time of the given schedule to minimize energy consumption in the job shop floor while accepting the optimal solution of the scheduling objective, makespan. Then, a genetic-simulated annealing algorithm is used to explore the optimal solution due to the fact that the problem is strongly NP-hard. Finally, the effectiveness of the approach is performed small- and large-size instances, respectively. The experimental results show that the approach can save 5%-10% of the average energy consumption while accepting the optimal solution of the makespan in small-size instances. In addition, the average maximum energy saving ratio can reach to 13%. And it can save approximately 1%-4% of the average energy consumption and approximately 2.4% of the average maximum energy while accepting the near-optimal solution of the makespan in large-size instances. The proposed research provides an interesting point to explore an energy-aware schedule optimization for a traditional production planning and scheduling problem.
文摘Metal framework composites have higher mechanical properties in examination to metals over an extensive variety of working conditions. This makes them an alluring alternative in swapping metals for different building applications. The present review is a study on the influence of composite titanium on the cutting parameters, mechanical behavior, reinforcements, structure and nanostructure. This review will provide an understanding into selecting the optimum machining parameters for machining titanium composites. It’s also an attempt to give brief explanation by suitably machining the titanium composite which can be made reasonable.
基金Special Project for Key Mechatronic Equipment of Zhejiang Province,China (No.2006Cl1067)Science & Technology Project of Zhejiang Province,China (No. 2005E10049)
文摘To avoid suffering gouge and transient overshooting in high speed cutting machining, a novel parametefized curve interpolator model with velocity look-ahead algorithm is proposed. Based on a prearrangement step interpolation algorithm for parameterized curves and considering high curvature points, parameterized curve tool path is divided into acceleration segments and deceleration segments by look-ahead algorithm. Under condition of characteristics of acceleration and deceleration stored in control system, deceleration before high curvature points and acceleration after high curvature points are realized in real-time in high speed cutting machining. Based on new parameterized curve interpolator model with velocity look-ahead algorithm, a real cubic spline is machined simulativly. The simulation results show that velocity look-ahead algorithm improves velocity changing more smoothly.
文摘The experimental determination of stability lobediagrams (SLDs) in milling can be realized by eithercontinuously varying the spindle speed or by varying thedepth of cut. In this paper, a method for combining boththese methods along with an online chatter detectionalgorithm is proposed for efficient determination of SLDs.To accomplish this, communication between the machinecontrol and chatter detection algorithm is established, andthe machine axes are controlled to change the spindle speedor depth of cut. The efficiency of the proposed method isanalyzed in this paper.
基金The authors appreciate the financial support from the National Natural Science Foundation of China(Grant Nos.51875078,51991372)National Key Research and Development Program of China(Grant No.2016YFB1102205)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51621064).
文摘Mechanisms for removal of materials during the grinding process of monocrystalline silicon have been extensively studied in the past several decades.However,debates over whether the cutting speed significantly affects the surface integrity are ongoing.To address this debate,this study comprehensively investigates the effects of cutting speed on surface roughness,subsurface damage,residual stress,and grinding force for a constant grain depth-of-cut.The results illustrate that the changes in the surface roughness and subsurface damage relative to the grinding speed are less obvious when the material is removed in ductile-mode as opposed to in the brittle-ductile mixed mode.A notable finding is that there is no positive correlation between grinding force and surface integrity.The results of this study could be useful for further investigations on fundamental and technical analysis of the precision grinding of brittle materials.
基金supported by the National Natural Science Foundation of China (No.51275227)Nanjing Science and Technology Development Plan (201306024) of Chinathe Qinglan Project of Jiangsu Province (2014) of China
文摘Chipping, adhesive wear, abrasive wear and crater wear are prevalent for both the polycrystalline diamond (PCD) and the carbide tools during high speed turning of TiCp/TiBw hybrid reinforced Ti-6Al-4V (TC4) matrix composite (TMCs). The combined effects of abrasive wear and diffusion wear caused the big crater on PCD and carbide tool rake face. Compared to the PCD, bigger size of crater was found on the carbide tool due to much higher cutting temperature and the violent chemical reaction between the Ti element in the workpiece and the WC in the tool. However, the marks of the abrasive wear looked much slighter or even could not be observed on the carbide tool especially when low levels of cutting parameters were used, which attributes to much lower hardness and smaller size of WC combined with more significant chemical degradation of carbide. When cutting TC4 using PCD tool, notch wear was the most significant wear pattern which was not found when cutting the TMCs. However, chipping, adhesive wear and crater wear were much milder when compared to the cutting of titanium matrix composite. Due to the absence of abrasive wear when cutting TC4, the generated titanium carbide on the PCD protected the tool from fast wear, which caused that the tool life for TC4 was 6-10 times longer than that for TMCs.
基金supported by the National Defence Scientific Research of China (A3520133004)
文摘Ultra-precision machining causes materials to undergo a greatly strained deformation process in a short period of time.The effect of shear strain rates on machining quality, in particular on surface anisotropy, is a topic deserving of research that has thus far been overlooked.This study analyzes the impact of the strain rate during the ultra-precision turning of single-crystal silicon on the anisotropy of surface roughness.Focusing on the establishment of cutting models considering the tool rake angle and the edge radius, this is the first research that takes into account the strain rate dislocation emission criteria in studying the effects of the edge radius, the cutting speed, and the cutting thickness on the plastic deformation of single-crystal silicon.The results of this study show that the uses of a smaller edge radius, faster cutting speeds, and a reduced cutting thickness can result in optimally uniform surface roughness, while the use of a very sharp cutting tool is essential when operating with smaller cutting thicknesses.A further finding is that insufficient plastic deformation is the major cause of increased surface roughness in the ultra-precision turning of brittle materials.On this basis, we propose that the capacity of single-crystal silicon to emit dislocations be improved as much as possible before brittle fracture occurs, thereby promoting plastic deformation and minimizing the anisotropy of surface roughness in the machined workpiece.
文摘In this work,an attempt has been made for optimization of process parameters in Wire Electric Discharge Machining(WEDM)of Ti–6Al–4V while producing square and cir-cular profiles.The input parameters,namely pulse on time,pulse off time,peak current and servo voltage,were considered to study the responses cutting speed(CS)and sur-face roughness(SR).Each input parameter was set at three levels.Experiments were conducted as per central composite face(CCF)centered design.Based upon the exper-imental data,Gray relational analysis(GRA),a multi-objective optimization technique has been employed to find the best level of process parameters to optimize the machining profiles.Analysis of variance(ANOVA)has been conducted for investigating the effect of process parameters on overall machining performance.Finally,it was identified that the process parameters such as pulse on time,current and voltage have more impact on the square and circular profiles.