Abrasive water jet cutting technology is widely applied in the materials processing today and attracts great attention from scholars, but many phenomena concerned are not well understood, especially in the internal je...Abrasive water jet cutting technology is widely applied in the materials processing today and attracts great attention from scholars, but many phenomena concerned are not well understood, especially in the internal jet flow of the cutting head at the condition of ultra-high pressure. The multiphase flow in the cutting head is numerically simulated to study the abrasive motion mechanism and wear inside the cutting head at the pressure beyond 300 MPa. Visible predictions of the particles trajectories and wear rate in the cutting head are presented. The influences of the abrasive physical properties, size of the jewel orifice and the operating pressure on the trajectories are discussed. Based on the simulation, a wear experiment is carried out under the corresponding pressures. The simulation and experimental results show that the flow in the mixing chamber is composed of the jet core zone and the disturbance zone, both affect the particles trajectories. The mixing efficiency drops with the increase of the abrasive granularity. The abrasive density determines the response of particles to the effects of different flow zones, the abrasive with medium density gives the best general performance. Increasing the operating pressure or using the jewel with a smaller orifice improves the coherency of p articles trajectories but increases the wear rate of the jewel holder at the same time. Walls of the jewel holder, the entrance of the mixing chamber and the convergence part of the mixing tube are subject to wear out. The computational and experimental results give a qualitative consistency which proves that this numerical method can provide a reliable and visible cognition of the flow characteristics of ultra-high pressure abrasive water jet. The investigation is benefit for improving the machining properties of water jet cutting systems and the optimization design of the cutting head.展开更多
In order to control cutting force and its direction i n milling operation, a new milling head was developed. The head has two milling cutters, which are connected by a pair of gears and rotate in opposite direction re...In order to control cutting force and its direction i n milling operation, a new milling head was developed. The head has two milling cutters, which are connected by a pair of gears and rotate in opposite direction respectively. Both up-cut and down-cut can be carried out simultaneously by t hese milling cutters. The each depth of cut, the ratio of up/down cutting depth , by these cutters can be also selected. The cutting force characteristics were experimentally discussed by changing the ratio. The cutting force and its locus can be also changed by the selection of the ratio of up/down cutting depth. For practical usage of the head the analytical prediction method of the cutting forc e characteristics under selected cutting condition was proposed based on the ene rgy approach method proposed, in which both of cutting force characteristics of a single milling cutter and the combined milling cutter under a selected up/dow n cutting depth ratio were analytically estimated based on the two dimensional c utting data. It was experimentally shown that in NC milling machine the cutting force locus was controlled in pre-determined direction under various tool paths .展开更多
There has existed a great deal of theory researches in term of chip production and chip breaking characteristics under conventional cutting and high speed cutting conditions,however,there isn't sufficient research on...There has existed a great deal of theory researches in term of chip production and chip breaking characteristics under conventional cutting and high speed cutting conditions,however,there isn't sufficient research on chip formation mechanism as well as its influence on cutting state regarding large workpieces under extreme load cutting.This paper presents a model of large saw-tooth chip through applying finite element simulation method,which gives a profound analysis about the characteristics of the extreme load cutting as well as morphology and removal of the large chip.In the meantime,a calculation formula that gives a quantitative description of the saw-tooth level regarding the large chip is established on the basis of cutting experiments on high temperature and high strength steel2.25Cr-lMo-0.25V.The cutting experiments are carried out by using the scanning electron microscope and super depth of field electron microscope to measure and calculate the large chip produced under different cutting parameters,which can verify the validity of the established model.The calculating results show that the large saw-toothed chip is produced under the squeezing action between workpiece and cutting tools.In the meanwhile,the chip develops a hardened layer where contacts the cutting tool and the saw-tooth of the chip tend to form in transverse direction.This research creates the theoretical model for large chip and performs the cutting experiments under the extreme load cutting condition,as well as analyzes the production mechanism of the large chip in the macro and micro conditions.Therefore,the proposed research could provide theoretical guidance and technical support in improving productivity and cutting technology research.展开更多
According to the characteristics of spiral mining head for deep seabed cobalt-rich crust, the kinematic model, cutting loads model, quantity of cutting picks model of mining head, granularity distribution model and en...According to the characteristics of spiral mining head for deep seabed cobalt-rich crust, the kinematic model, cutting loads model, quantity of cutting picks model of mining head, granularity distribution model and energy consumption model were constructed. Based on these models, computer simulation program of cutting loads was developed with VB software. The mechanical parameters of mining head were obtained in the cutting depth range of 5160 mm. Making use of the simulation results, the effect of cutting depth of spiral mining head on the mining process was studied. The results show that the maximum force of single pick is 4.7051kN, the maximum force and torque of spiral drum of mining head are respectively 34.1668kN and 3.8795kN·m at the cutting depth of 160mm.展开更多
As the existing residual film crushing device in Xinjiang cannot directly crush membrane-impurity mixed material,by analyzing the compressive and cutting force characteristics of residual film material layer and cotto...As the existing residual film crushing device in Xinjiang cannot directly crush membrane-impurity mixed material,by analyzing the compressive and cutting force characteristics of residual film material layer and cotton stalk,the cutting conditions of mixed materials were obtained,and the method of cutting was determined.A multi-edge toothed cutters was created,and a cutting device was built.It was preliminarily determined that the number of teeth in the cutters was 8,the clearance between the teeth and between the tooth and fixed blade was 3 mm,the speed of the high-speed cutter was 800 r/min,and the speed difference between the high-and low-speed cutters was-300 r/min.Test results show that the ratio of residual film to total residual film sampling mass was(2.22±0.30)%,(19.19±2.02)%,(58.94±3.19)% and(20.65±2.05)%,respectively,when the maximum outer profile size in the range of[0,20)mm,[20,100)mm,[100,500)mm and[500,~)mm.The mass of cotton stalks with lengths of[0,50)mm,[50,100)mm and[100,~)mm accounted for(32.57±1.5)%,(27.77±1.3)%and(39.66±1.75)%,respectively,and the cutting power consumption was(85.41±15.63)kJ.The test results can provide a basis for the subsequent membrane-impurity mixed material cutting technology,as well as some guidance for the separation of it.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50806031)
文摘Abrasive water jet cutting technology is widely applied in the materials processing today and attracts great attention from scholars, but many phenomena concerned are not well understood, especially in the internal jet flow of the cutting head at the condition of ultra-high pressure. The multiphase flow in the cutting head is numerically simulated to study the abrasive motion mechanism and wear inside the cutting head at the pressure beyond 300 MPa. Visible predictions of the particles trajectories and wear rate in the cutting head are presented. The influences of the abrasive physical properties, size of the jewel orifice and the operating pressure on the trajectories are discussed. Based on the simulation, a wear experiment is carried out under the corresponding pressures. The simulation and experimental results show that the flow in the mixing chamber is composed of the jet core zone and the disturbance zone, both affect the particles trajectories. The mixing efficiency drops with the increase of the abrasive granularity. The abrasive density determines the response of particles to the effects of different flow zones, the abrasive with medium density gives the best general performance. Increasing the operating pressure or using the jewel with a smaller orifice improves the coherency of p articles trajectories but increases the wear rate of the jewel holder at the same time. Walls of the jewel holder, the entrance of the mixing chamber and the convergence part of the mixing tube are subject to wear out. The computational and experimental results give a qualitative consistency which proves that this numerical method can provide a reliable and visible cognition of the flow characteristics of ultra-high pressure abrasive water jet. The investigation is benefit for improving the machining properties of water jet cutting systems and the optimization design of the cutting head.
文摘In order to control cutting force and its direction i n milling operation, a new milling head was developed. The head has two milling cutters, which are connected by a pair of gears and rotate in opposite direction respectively. Both up-cut and down-cut can be carried out simultaneously by t hese milling cutters. The each depth of cut, the ratio of up/down cutting depth , by these cutters can be also selected. The cutting force characteristics were experimentally discussed by changing the ratio. The cutting force and its locus can be also changed by the selection of the ratio of up/down cutting depth. For practical usage of the head the analytical prediction method of the cutting forc e characteristics under selected cutting condition was proposed based on the ene rgy approach method proposed, in which both of cutting force characteristics of a single milling cutter and the combined milling cutter under a selected up/dow n cutting depth ratio were analytically estimated based on the two dimensional c utting data. It was experimentally shown that in NC milling machine the cutting force locus was controlled in pre-determined direction under various tool paths .
基金Supported by National Natural Science Foundation of China(Grant No.51175131)
文摘There has existed a great deal of theory researches in term of chip production and chip breaking characteristics under conventional cutting and high speed cutting conditions,however,there isn't sufficient research on chip formation mechanism as well as its influence on cutting state regarding large workpieces under extreme load cutting.This paper presents a model of large saw-tooth chip through applying finite element simulation method,which gives a profound analysis about the characteristics of the extreme load cutting as well as morphology and removal of the large chip.In the meantime,a calculation formula that gives a quantitative description of the saw-tooth level regarding the large chip is established on the basis of cutting experiments on high temperature and high strength steel2.25Cr-lMo-0.25V.The cutting experiments are carried out by using the scanning electron microscope and super depth of field electron microscope to measure and calculate the large chip produced under different cutting parameters,which can verify the validity of the established model.The calculating results show that the large saw-toothed chip is produced under the squeezing action between workpiece and cutting tools.In the meanwhile,the chip develops a hardened layer where contacts the cutting tool and the saw-tooth of the chip tend to form in transverse direction.This research creates the theoretical model for large chip and performs the cutting experiments under the extreme load cutting condition,as well as analyzes the production mechanism of the large chip in the macro and micro conditions.Therefore,the proposed research could provide theoretical guidance and technical support in improving productivity and cutting technology research.
基金Project(DY105 03 02 1) supported by the Deep Ocean Technology Development Itemproject(50474052) supportedby the National Natural Science Foundation of China
文摘According to the characteristics of spiral mining head for deep seabed cobalt-rich crust, the kinematic model, cutting loads model, quantity of cutting picks model of mining head, granularity distribution model and energy consumption model were constructed. Based on these models, computer simulation program of cutting loads was developed with VB software. The mechanical parameters of mining head were obtained in the cutting depth range of 5160 mm. Making use of the simulation results, the effect of cutting depth of spiral mining head on the mining process was studied. The results show that the maximum force of single pick is 4.7051kN, the maximum force and torque of spiral drum of mining head are respectively 34.1668kN and 3.8795kN·m at the cutting depth of 160mm.
基金financially supported by the Fund for Less Developed Regions of the National Natural Science Foundation of China(Grant No.52065058)Graduate Education Innovation Project of Xinjiang Uygur Autonomous Region(Grant No.Xj2022G085)+2 种基金the Key Industry Innovation Development Support Plan of South Xinjiang(Grant No.2020DB008)the Open Fund of Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment(Grant No.XTCX2006)Scientific and technological innovation team of Xinjiang Production and Construction Corps(Grant No.2020CB013).
文摘As the existing residual film crushing device in Xinjiang cannot directly crush membrane-impurity mixed material,by analyzing the compressive and cutting force characteristics of residual film material layer and cotton stalk,the cutting conditions of mixed materials were obtained,and the method of cutting was determined.A multi-edge toothed cutters was created,and a cutting device was built.It was preliminarily determined that the number of teeth in the cutters was 8,the clearance between the teeth and between the tooth and fixed blade was 3 mm,the speed of the high-speed cutter was 800 r/min,and the speed difference between the high-and low-speed cutters was-300 r/min.Test results show that the ratio of residual film to total residual film sampling mass was(2.22±0.30)%,(19.19±2.02)%,(58.94±3.19)% and(20.65±2.05)%,respectively,when the maximum outer profile size in the range of[0,20)mm,[20,100)mm,[100,500)mm and[500,~)mm.The mass of cotton stalks with lengths of[0,50)mm,[50,100)mm and[100,~)mm accounted for(32.57±1.5)%,(27.77±1.3)%and(39.66±1.75)%,respectively,and the cutting power consumption was(85.41±15.63)kJ.The test results can provide a basis for the subsequent membrane-impurity mixed material cutting technology,as well as some guidance for the separation of it.