Background:Caffeic acid(CA)is considered a promising phytochemical that has inhibited numerous cancer cell proliferation.Therefore,it is gaining increasing attention due to its safe and pharmacological applications.In...Background:Caffeic acid(CA)is considered a promising phytochemical that has inhibited numerous cancer cell proliferation.Therefore,it is gaining increasing attention due to its safe and pharmacological applications.In this study,we investigated the role of CA in inhibiting the Interleukin-6(IL-6)/Janus kinase(JAK)/Signal transducer and activator of transcription-3(STAT-3)mediated suppression of the proliferation signaling in human prostate cancer cells.Materials and Methods:The role of CA in proliferation and colony formation abilities was studied using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide(MTT)assay and colony formation assays.Tumour cell death and cell cycle arrest were identified usingflow cytometry techniques.CA treatment-associated protein expression of mitogen-activated protein kinase(MAPK)families,IL-6/JAK/STAT-3,proliferation,and apoptosis protein expressions in PC-3 and LNCaP cell lines were measured using Western blot investigation.Results:We have obtained that treatment with CA inhibits prostate cancer cells(PC-3 and LNCaP)proliferation and induces reactive oxygen species(ROS),cell cycle arrest,and apoptosis cell death in a concentration-dependent manner.Moreover,CA treatment alleviates the expression phosphorylated form of MAPK families,i.e.,extracellular signal-regulated kinase 1(ERK1),c-Jun N-terminal kinase(JNK),and p38 in PC-3 cells.IL-6 mediated JAK/STAT3 expressions regulate the proliferation and antiapoptosis that leads to prostate cancer metastasis and migration.Therefore,to mitigate the expression of IL-6/JAK/STAT-3 is considered an important target for the treatment of prostate cancer.In this study,we have observed that CA inhibits the expression of IL-6,JAK1,and phosphorylated STAT-3 in both PC-3 and LNCaP cells.Due to the inhibitory effect of IL-6/JAK/STAT-3,it resulted in decreased expression of cyclin-D1,cyclin-D2,and CDK1 in both PC-3 cells.In addition,CA induces apoptosis by enhancing the expression of Bax and caspase-3;and decreased expression of Bcl-2 in prostate cancer cells.Conclusions:Thus,CA might act as a therapeutical application against prostate cancer by targeting the IL-6/JAK/STAT3 signaling axis.展开更多
This study is a contribution to improving rice productivity on acidic plateau soils of the tropical rainforest zone. It is based on taking into account the cationic balances of the soil in order to optimize the phosph...This study is a contribution to improving rice productivity on acidic plateau soils of the tropical rainforest zone. It is based on taking into account the cationic balances of the soil in order to optimize the phosphorus (P) nutrition of rice on these acidic soils, where this nutrient constitutes a limiting factor for agricultural production. Three (3) pot trials were conducted in Adiopodoumé in the forested south of Côte d’Ivoire. The interactive effects of calcium carbonate (0, 25, 50 and 75 kg Ca ha<sup>−1</sup>) and magnesium sulfate (0, 25, 50 and 75 kg Mg ha<sup>−1</sup>) were evaluated on the response of NERICA 5 rice at doses 0, 25, 50 and 75 kg P ha<sup>−1</sup> of natural phosphate from Togo, applied only once at the start of the experiment. Additional fertilizers of nitrogen (N) (100 kg N ha<sup>−1</sup>) and potassium (K) (50 kg KCl ha<sup>−1</sup>) were added to each of the tests in a split-plot device. The test results revealed a paddy production potential of approximately 3 to 5 t⋅ha<sup>−1</sup> for NERICA 5 on an acidic soil, under the effect of the interaction of P, Ca and Mg. The quadratic response of rice yield to the doses of these fertilizers would be more dependent on their balance, itself influenced by Ca nutrition. For the sustainability and maintenance of rice production in agro-ecology studied, it was recommended doses of 38 kg Ca ha<sup>−1</sup>, 34 kg Mg ha<sup>−1</sup> in a Ca/Mg ratio (1/1) with intakes of 41 kg P ha<sup>−1</sup>, overall in a ratio 1/1/1 (P/Ca/Mg) more favorable to the availability of free iron considered a guiding element of mineral nutrition. Thus, these promising results should be confirmed in a real environment for better management of the fertilization of rice cultivated on acidic plateau soils in Côte d’Ivoire.展开更多
[Objective] This experiment aimed to evaluate the effects of calcium and Jasmonic acid(JA) on the expression of CBF in spinach. [Methods] The seedlings of spinach were treated with low temperature (4 ℃), JA or A2...[Objective] This experiment aimed to evaluate the effects of calcium and Jasmonic acid(JA) on the expression of CBF in spinach. [Methods] The seedlings of spinach were treated with low temperature (4 ℃), JA or A23187, then used for detecting the expression of CBF by northern blotting. [Results] The results showed that the CBF expression was regulated by low temperature and JA positively. [Conclusions] Low temperature may increase the JA content of the cell firstly, then JA induced the increase of cytosolic calcium concentration ([Ca2+]cyt), and the JA induced Ca2+ transmitted the low temperature signal through CaM or CaM related proteins, regulating the CBF expression.展开更多
[Objective] This study was to investigate the role of IP3 sensitive calcium channel in the JA-induced calcium mobilization pathway.[Method] Arabidopsis thaliana leaves were labeled by Fluorescent probe Fluo-3/AM under...[Objective] This study was to investigate the role of IP3 sensitive calcium channel in the JA-induced calcium mobilization pathway.[Method] Arabidopsis thaliana leaves were labeled by Fluorescent probe Fluo-3/AM under low temperature at 4 ℃ to measure the fluorescent intensity of intracellular Ca2+ which was pretreated with heparin on jasmonic acid(JA)-induced.[Results] When A.thaliana leaf cells were pretreated with 10,50 or 100 ng/ml heparin,intercellular free Ca2+ fluorescence intensity was reduced in comparison with negative control.Once the heparin-pretreated A.thaliana leaf cells were stimulated with 100 μmol/L JA,intercellular Ca2+ fluorescence intensity increased gradually and tended to be stable at a degree equivalent with that in negative control.[Conclusion] The experiment showed that the pretreatment with heparin could inhibit the increase of the intracellular Ca2+ concentration significantly which JA-induced in leaves of Arabidopsis thaliana.展开更多
Electroacupuncture(EA)has been shown to reduce blood lipid level and improve cerebral ischemia in rats with hyperlipemia complicated by cerebral ischemia.However,there are few studies on the results and mechanism of t...Electroacupuncture(EA)has been shown to reduce blood lipid level and improve cerebral ischemia in rats with hyperlipemia complicated by cerebral ischemia.However,there are few studies on the results and mechanism of the effect of EA in reducing blood lipid level or promoting neural repair after stroke in hyperlipidemic subjects.In this study,EA was applied to a rat model of hyperlipidemia and middle cerebral artery thrombosis and the condition of neurons and astrocytes after hippocampal injury was assessed.Except for the normal group,rats in other groups were fed a high-fat diet throughout the whole experiment.Hyperlipidemia models were established in rats fed a high-fat diet for 6 weeks.Middle cerebral artery thrombus models were induced by pasting 50%FeCl3 filter paper on the left middle cerebral artery for 20 minutes on day 50 as the model group.EA1 group rats received EA at bilateral ST40(Fenglong)for 7 days before the thrombosis.Rats in the EA1 and EA2 groups received EA at GV20(Baihui)and bilateral ST40 for 14 days after model establishment.Neuronal health was assessed by hematoxylin-eosin staining in the brain.Hyperlipidemia was assessed by biochemical methods that measured total cholesterol,triglyceride,low-density lipoprotein and high-density lipoprotein in blood sera.Behavioral analysis was used to confirm the establishment of the model.Immunohistochemical methods were used to detect the expression of glial fibrillary acidic protein and nerve growth factor in the hippocampal CA1 region.The results demonstrated that,compared with the model group,blood lipid levels significantly decreased,glial fibrillary acidic protein immunoreactivity was significantly weakened and nerve growth factor immunoreactivity was significantly enhanced in the EA1 and EA2 groups.The repair effect was superior in the EA1 group than in the EA2 group.These findings confirm that EA can reduce blood lipid,inhibit glial fibrillary acidic protein expression and promote nerve growth factor expression in the hippocampal CA1 region after hyperlipidemia and middle cerebral artery thrombosis.All experimental procedures and protocols were approved by the Animal Use and Management Committee of Beijing University of Chinese Medicine,China(approval No.BUCM-3-2018022802-1002)on April 12,2018.展开更多
Objective:To study the effects of 18β-glycyrrhetinic acid (GA) on proliferation inhibition, apop totic induction, and the relationship between GA-induced apoptosis and intracellular Ca2+ concentration in human breast...Objective:To study the effects of 18β-glycyrrhetinic acid (GA) on proliferation inhibition, apop totic induction, and the relationship between GA-induced apoptosis and intracellular Ca2+ concentration in human breast carcinoma (MCF-7) cells. Methods: After MCF-7 cells were treated with GA at the concentrations from 50 μmol/L to 250 μmol/L for 24 h, cell viability of proliferation was assessed by MTT assay. After the cells were treated with 100 μmol/L, 150 μmol/L, and 200 μmol/L GA for 24 h, the rates of cell apoptosis were examined by terminal deoxynucleotide transferase mediated dUTP nick-end-labeling method and flow cytometry with Annexin V/propidium iodide fluorescent stain. After the cells treated with 150 μmol/L GA for 24 h, intracellular Ca2+ concentration was measured by Fure-2 fluorescein load method. Results: After the cells were treated with GA at the concentrations from 100 μmol/L to 250 μmol/L, the rates of proliferative inhibition were increased significantly (P<0.05 and P<0.01) in a dose dependent fashion. IC50 of the proliferation inhibition was 234.33 μmol/L. Treated with 100 μmol/L, 150 μmol/L, and 200 μmol/L, the rates of cell apoptosis were increased significantly (P<0.01). Intracellular Ca2+ concentration after treatment with GA was higher evidently than that of control (P<0.05). Conclusion: 18β-glycyrrhetinic acid has the effects of the proliferation inhibition and the apoptotic induction on MCF-7 cells. The rise of intracellular Ca2+ level may be depended on apoptosis induced by GA in MCF-7 cells.展开更多
High grain protein content(GPC) reduces rice eating and cooking quality(ECQ). We generated OsAAP6 and OsAAP10 knockout mutants in three high-yielding japonica varieties and one japonica line using the CRISPR/Cas9 syst...High grain protein content(GPC) reduces rice eating and cooking quality(ECQ). We generated OsAAP6 and OsAAP10 knockout mutants in three high-yielding japonica varieties and one japonica line using the CRISPR/Cas9 system. Mutation efficiency varied with genetic background in the T_0 generation, and GPC in the T_1 generation decreased significantly,owing mainly to a reduction in glutelin content. Amylose content was down-regulated significantly in some Osaap6 and all Osaap10 mutants. The increased taste value of these mutants was supported by Rapid Visco Analysis(RVA) profiles, which showed higher peak viscosity and breakdown viscosity and lower setback viscosity than the wild type. There were no significant deficiencies in agronomic traits of the mutants. Targeted mutagenesis of OsAAP6 and OsAAP10, especially OsAAP10, using the CRISPR/Cas9 system can rapidly reduce GPC and improve ECQ of rice, providing a new strategy for the breeding cultivars with desired ECQ.展开更多
AIM: To investigate the usefulness of chromoendoscopy, using an acetic acid indigocarmine mixture (AIM), for gastric adenoma diagnosed by forceps biopsy.
Methacrylic acid,an important organic chemical,is commercially manufactured starting from fossil feedstock.The decarboxylation of itaconic acid derived for biomass is a green route to the synthesis of methacrylic acid...Methacrylic acid,an important organic chemical,is commercially manufactured starting from fossil feedstock.The decarboxylation of itaconic acid derived for biomass is a green route to the synthesis of methacrylic acid.In view of the problems existing in the researches on this route such as use of noble metal catalyst,harsh reaction conditions and low desired-product yield,we prepared a series of hydroxyapatite catalysts with different Ca/P molar ratios and evaluated their catalytic performance.The results showed that the hydroxyapatite catalyst with a Ca/P molar ratio of 1.58 had the best catalytic activity.The highest yield of MAA up to 61.2%was achieved with basically complete conversion of itaconic acid under the suitable reaction conditions of 1 equivalent of NaOH,2 MPa of N_(2),250℃,and 2 h.On this basis,a reaction network for the decarboxylation of itaconic acid to methacrylic acid catalyzed by hydroxyapatite was established.With the aid of catalyst characterization using X-ray powder diffraction,NH3/CO2 temperature-programmed desorption,N_(2)physisorption,inductively coupled plasma optical emission spectrometry,and scanning electron microscopy,we found that the distribution of surface acid sites and basic sites,crystal growth orientation,texture properties and morphology of hydroxyapatite varied with the Ca/P molar ratio.Furthermore,the change of the crystal growth orientation and its influence on the surface acidity and alkalinity were clarified.展开更多
Cotton(Gossypium spp.) yield is reduced by stress. In this study, high temperature(HT) suppressed the expression of the jasmonic acid(JA) biosynthesis gene allene oxide cyclase 2(GhAOC2), reducing JA content and causi...Cotton(Gossypium spp.) yield is reduced by stress. In this study, high temperature(HT) suppressed the expression of the jasmonic acid(JA) biosynthesis gene allene oxide cyclase 2(GhAOC2), reducing JA content and causing male sterility in the cotton HT-sensitive line H05. Anther sterility was reversed by exogenous application of methyl jasmonate(MeJA) to early buds. To elucidate the role of GhAOC2 in JA biosynthesis and identify its putative contribution to the anther response to HT, we created gene knockout cotton plants using the CRISPR/Cas9 system. Ghaoc2 mutant lines showed male-sterile flowers with reduced JA content in the anthers at the tetrad stage(TS), tapetum degradation stage(TDS), and anther dehiscence stage(ADS). Exogenous application of MeJA to early mutant buds(containing TS or TDS anthers) rescued the sterile pollen and indehiscent anther phenotypes, while ROS signals were reduced in ADS anthers. We propose that HT downregulates the expression of GhAOC2 in anthers, reducing JA biosynthesis and causing excessive ROS accumulation in anthers, leading to male sterility. These findings suggest exogenous JA application as a strategy for increasing male fertility in cotton under HT.展开更多
The effects of acetylsalicylic acid (ASA), CaCl2, and ASA + CaCl2 on the photosynthetic apparatus and antioxidant enzyme activities were investigated in chrysanthemum Jinba (a cut flower cultivar) under low tempe...The effects of acetylsalicylic acid (ASA), CaCl2, and ASA + CaCl2 on the photosynthetic apparatus and antioxidant enzyme activities were investigated in chrysanthemum Jinba (a cut flower cultivar) under low temperature stress with low light (TL stress) (16/12℃, day/night, PFD 100 μmol m^-2 s-1). The results showed that under TL stress, the net photosynthesis rate (Pn), carboxylation efficiency (CE), apparent quantum yield (AQY), maximal photochemical efficiency (Fv/Fm) of PSII, quantum yield of PSII electron transport (ФPSII), and photochemical quenching (qP) of the chrysanthemum leaves in all treatments were significantly decreased, but the decreases were alleviated by ASA, CaCl2, and ASA + CaCl2 treatments compared with the controls. The alleviating effect of ASA + CaCI2 was better than either ASA or CaCl2 single treatment. Moreover, the ASA + CaCl2 treatment highly improved the chlorophyll content, relatively improved the number and size of chloroplast and starch grain in the leaves of chrysanthemum plants compared with ASA and CaCl2 treatments. It was indicated that ASA and/or CaCI2 could regulate the photosynthetic functions in the leaves of chrysanthemum plants to enhance the resistance against TL stress. On the other hand, reduction in relative conductance rate implied that ASA and/ or CaCl2 could protect from membrane injury in leaves of chrysanthemum plants. The activities of SOD, POD, and CAT in the treated leaves of chrysanthemum were increased as compared with the controls. It was suggested that ASA and/or CaCl2 had positive regulation effects on the defence enzyme activities in chrysanthemum leaves which could protect the photosynthetic apparatus to a certain degree under the TL stress. In brief, the treatment of ASA together with CaCl2 was better for chrysanthemum plants to adapt TL stress than single ASA or CaCl2 treatments.展开更多
The present study is part of our ongoing investigation to study the role of trace elements on soybean seed composition (protein, oil, and fatty acids). This study was conducted to study the effects of five trace eleme...The present study is part of our ongoing investigation to study the role of trace elements on soybean seed composition (protein, oil, and fatty acids). This study was conducted to study the effects of five trace elements (Mn, Cu, Zn, Mo, B). The treatments of Mn, Cu, Zn, Mo, and B were chlorides, except Mo as oxide, and B as boric acid. The treatments were Mn, Cu, Zn, Mo, and B alone and in combination with the chelating agent citric acid (CA), for example Mn + CA, Cu + CA, and Zn + CA. Soybean cultivar (Bolivar with maturity group V) was grown in a repeated greenhouse experiment in a randomized complete block design. The compounds were applied to three-week-old soybean plants at V3 (vegetative) and at R3 (beginning of seed-pod initiation) stages. The plants were allowed to grow until maturity under greenhouse conditions. The harvested seeds were analyzed for mineral, protein, and fatty acid contents. Results showed that Mn, Cu, and B treatments increased seed protein, while Zn, Mo, Cu + CA, and B + CA decreased the protein. Treatments of Zn, Mo, CA, Cu + CA, Zn + CA, Mo + CA, and B + CA increased the oil. Treatments of Mn and Cu decreased the oil. The Cu and B treatments increased oleic acid by 8.0% and 7.4%, respectively for Cu and B. Treatments of Mn, Mo, CA, and Mn + CA, Cu + CA, Zn + CA, Mo + CA, and B + CA decreased oleic acid by 0.6% to 14.4%. Treatments of Cu, Zn, Mo, B, CA, Mn and their combination with CA increased linoleic acid by 1.3% to 6.5%. Our goal was to identify the trace elements that would make desirable alteration in the seed composition qualities.展开更多
The objective of this experiment is to evaluate the role of intracellular and extracellular Ca2+ and calmodulin (CAM) in jasmonic acid (JA) signaling. The laser scanning microscopy was used to detect the changes ...The objective of this experiment is to evaluate the role of intracellular and extracellular Ca2+ and calmodulin (CAM) in jasmonic acid (JA) signaling. The laser scanning microscopy was used to detect the changes of [Ca2+]cyt of Arabidopsis thaliana leaf cells which pretreated with different types of calcium channel blocker. Moreover, the expression of VSP, one of JA response genes, was also investigated after pretreated with the above blocker and antagonist of CaM. The results showed that extracellular and intracellular calcium both involved in the JA-induced Ca2+ mobilization, and then Ca2+ exerted its functions through activating the CaM or CaM related proteins. The apoplast calcium influx and the calcium release from the calcium stores are both involved in the JA-induced calcium mobilization, then the JA-induced Ca2+ transmited the JA signal through CaM or CaM related proteins, and regulated the JA responsive genes.展开更多
OBJECTIVE Ascorbic acid(AA),commonly known as vitamin C,is a small molecular widely distributed in in food and traditional herbs.Recently,there are some literatures reported that high concentration AA could selectivel...OBJECTIVE Ascorbic acid(AA),commonly known as vitamin C,is a small molecular widely distributed in in food and traditional herbs.Recently,there are some literatures reported that high concentration AA could selectively kill the cancer cells but not the normal cells.This study was designed to explore the underlying mechanisms.METHODS Colorectal cancer line cells were cultured and treated with AA.The cytotoxic,intracellular ATP level,reactive oxygen species,calcium,were determined with commercial kits and fluorescent probes.RESULTS High concentration of AA induced cell death in HCT116 and HT29 colorectal cancer cells in concentration-and time-dependent manner.AA treat⁃ment induced ATP decrease,LDH release,cell swollen and loss of plasma membrane integrity.Pharmacological inhibi⁃tors for apoptosis,necroptosis,autophagy,pyroptosis and oncosis showed no effect on AA-induced cell death.Further⁃more,ROS level increase and intracellular calcium(Ca2+)accumulation were observed after AA treatment.ROS scavenger N-acetyl cysteine(NAC),intracellular calcium chelator BAPTA-AM and intracellular calcium inhibitor 2-aminoethoxy⁃diphenyl borate(2-APB)could attenuate the cell death induced by AA.NAC could attenuate both ROS increase and intracellular Ca2+accumulation induced by AA,while BAPTA-AM could only attenuate intracellular Ca2+accumulation.In addition,high concentration AA induced mitochondrial damage and mitochondrial ROS generation.CONCLUSION AA induces Ca2+-dependent programed necrosis mediated by ROS.Our study provided new insights into high concentration AA induced cell death in human colon cancer cells.展开更多
The study aims to confirm the neuroregenerative effects of bacterial melanin (BM) on central nervous system injury using a special staining method based on the detection of Ca^2+-dependent acid phosphatase activity...The study aims to confirm the neuroregenerative effects of bacterial melanin (BM) on central nervous system injury using a special staining method based on the detection of Ca^2+-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I; n = 12) or unilateral rubrospinal tract transection at the cervical level (C3-4) (group II; n = 12). In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup) and the remaining six rats were intramuscularly in)ected with saline (saline subgroup). Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca^2+-dependent acid phosphatase activity detection in combination with Chilingarian's calcium adenoside triphosphate method revealed that BM stimulated the sprouting of fibers and dilated the capillaries in the brain and spinal cord. These results suggest that BM can promote the recovery of motor function of rats with central nervous system injury; and detection of Ca^2+-dependent acid phosphatase activity is a fast and easy method used to study the regeneration-promoting effects of BM on the injured central nervous system.展开更多
文摘Background:Caffeic acid(CA)is considered a promising phytochemical that has inhibited numerous cancer cell proliferation.Therefore,it is gaining increasing attention due to its safe and pharmacological applications.In this study,we investigated the role of CA in inhibiting the Interleukin-6(IL-6)/Janus kinase(JAK)/Signal transducer and activator of transcription-3(STAT-3)mediated suppression of the proliferation signaling in human prostate cancer cells.Materials and Methods:The role of CA in proliferation and colony formation abilities was studied using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide(MTT)assay and colony formation assays.Tumour cell death and cell cycle arrest were identified usingflow cytometry techniques.CA treatment-associated protein expression of mitogen-activated protein kinase(MAPK)families,IL-6/JAK/STAT-3,proliferation,and apoptosis protein expressions in PC-3 and LNCaP cell lines were measured using Western blot investigation.Results:We have obtained that treatment with CA inhibits prostate cancer cells(PC-3 and LNCaP)proliferation and induces reactive oxygen species(ROS),cell cycle arrest,and apoptosis cell death in a concentration-dependent manner.Moreover,CA treatment alleviates the expression phosphorylated form of MAPK families,i.e.,extracellular signal-regulated kinase 1(ERK1),c-Jun N-terminal kinase(JNK),and p38 in PC-3 cells.IL-6 mediated JAK/STAT3 expressions regulate the proliferation and antiapoptosis that leads to prostate cancer metastasis and migration.Therefore,to mitigate the expression of IL-6/JAK/STAT-3 is considered an important target for the treatment of prostate cancer.In this study,we have observed that CA inhibits the expression of IL-6,JAK1,and phosphorylated STAT-3 in both PC-3 and LNCaP cells.Due to the inhibitory effect of IL-6/JAK/STAT-3,it resulted in decreased expression of cyclin-D1,cyclin-D2,and CDK1 in both PC-3 cells.In addition,CA induces apoptosis by enhancing the expression of Bax and caspase-3;and decreased expression of Bcl-2 in prostate cancer cells.Conclusions:Thus,CA might act as a therapeutical application against prostate cancer by targeting the IL-6/JAK/STAT3 signaling axis.
文摘This study is a contribution to improving rice productivity on acidic plateau soils of the tropical rainforest zone. It is based on taking into account the cationic balances of the soil in order to optimize the phosphorus (P) nutrition of rice on these acidic soils, where this nutrient constitutes a limiting factor for agricultural production. Three (3) pot trials were conducted in Adiopodoumé in the forested south of Côte d’Ivoire. The interactive effects of calcium carbonate (0, 25, 50 and 75 kg Ca ha<sup>−1</sup>) and magnesium sulfate (0, 25, 50 and 75 kg Mg ha<sup>−1</sup>) were evaluated on the response of NERICA 5 rice at doses 0, 25, 50 and 75 kg P ha<sup>−1</sup> of natural phosphate from Togo, applied only once at the start of the experiment. Additional fertilizers of nitrogen (N) (100 kg N ha<sup>−1</sup>) and potassium (K) (50 kg KCl ha<sup>−1</sup>) were added to each of the tests in a split-plot device. The test results revealed a paddy production potential of approximately 3 to 5 t⋅ha<sup>−1</sup> for NERICA 5 on an acidic soil, under the effect of the interaction of P, Ca and Mg. The quadratic response of rice yield to the doses of these fertilizers would be more dependent on their balance, itself influenced by Ca nutrition. For the sustainability and maintenance of rice production in agro-ecology studied, it was recommended doses of 38 kg Ca ha<sup>−1</sup>, 34 kg Mg ha<sup>−1</sup> in a Ca/Mg ratio (1/1) with intakes of 41 kg P ha<sup>−1</sup>, overall in a ratio 1/1/1 (P/Ca/Mg) more favorable to the availability of free iron considered a guiding element of mineral nutrition. Thus, these promising results should be confirmed in a real environment for better management of the fertilization of rice cultivated on acidic plateau soils in Côte d’Ivoire.
基金Supported by Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality(PXM2006-014207-021798)Project of Organization Department of Beijing Municipal Party(20042D0502108)~~
文摘[Objective] This experiment aimed to evaluate the effects of calcium and Jasmonic acid(JA) on the expression of CBF in spinach. [Methods] The seedlings of spinach were treated with low temperature (4 ℃), JA or A23187, then used for detecting the expression of CBF by northern blotting. [Results] The results showed that the CBF expression was regulated by low temperature and JA positively. [Conclusions] Low temperature may increase the JA content of the cell firstly, then JA induced the increase of cytosolic calcium concentration ([Ca2+]cyt), and the JA induced Ca2+ transmitted the low temperature signal through CaM or CaM related proteins, regulating the CBF expression.
基金Supported by National Natural Science Foundation of China(30700428,30911130166)Natural Science Foundation of Beijing Municipality(5072009)The New Star Plan of Science and Technology in Beijing Municipality(2006B26)~~
文摘[Objective] This study was to investigate the role of IP3 sensitive calcium channel in the JA-induced calcium mobilization pathway.[Method] Arabidopsis thaliana leaves were labeled by Fluorescent probe Fluo-3/AM under low temperature at 4 ℃ to measure the fluorescent intensity of intracellular Ca2+ which was pretreated with heparin on jasmonic acid(JA)-induced.[Results] When A.thaliana leaf cells were pretreated with 10,50 or 100 ng/ml heparin,intercellular free Ca2+ fluorescence intensity was reduced in comparison with negative control.Once the heparin-pretreated A.thaliana leaf cells were stimulated with 100 μmol/L JA,intercellular Ca2+ fluorescence intensity increased gradually and tended to be stable at a degree equivalent with that in negative control.[Conclusion] The experiment showed that the pretreatment with heparin could inhibit the increase of the intracellular Ca2+ concentration significantly which JA-induced in leaves of Arabidopsis thaliana.
基金This study was funded by the National Natural Science Foundation of China,No.81470200(to XJR).
文摘Electroacupuncture(EA)has been shown to reduce blood lipid level and improve cerebral ischemia in rats with hyperlipemia complicated by cerebral ischemia.However,there are few studies on the results and mechanism of the effect of EA in reducing blood lipid level or promoting neural repair after stroke in hyperlipidemic subjects.In this study,EA was applied to a rat model of hyperlipidemia and middle cerebral artery thrombosis and the condition of neurons and astrocytes after hippocampal injury was assessed.Except for the normal group,rats in other groups were fed a high-fat diet throughout the whole experiment.Hyperlipidemia models were established in rats fed a high-fat diet for 6 weeks.Middle cerebral artery thrombus models were induced by pasting 50%FeCl3 filter paper on the left middle cerebral artery for 20 minutes on day 50 as the model group.EA1 group rats received EA at bilateral ST40(Fenglong)for 7 days before the thrombosis.Rats in the EA1 and EA2 groups received EA at GV20(Baihui)and bilateral ST40 for 14 days after model establishment.Neuronal health was assessed by hematoxylin-eosin staining in the brain.Hyperlipidemia was assessed by biochemical methods that measured total cholesterol,triglyceride,low-density lipoprotein and high-density lipoprotein in blood sera.Behavioral analysis was used to confirm the establishment of the model.Immunohistochemical methods were used to detect the expression of glial fibrillary acidic protein and nerve growth factor in the hippocampal CA1 region.The results demonstrated that,compared with the model group,blood lipid levels significantly decreased,glial fibrillary acidic protein immunoreactivity was significantly weakened and nerve growth factor immunoreactivity was significantly enhanced in the EA1 and EA2 groups.The repair effect was superior in the EA1 group than in the EA2 group.These findings confirm that EA can reduce blood lipid,inhibit glial fibrillary acidic protein expression and promote nerve growth factor expression in the hippocampal CA1 region after hyperlipidemia and middle cerebral artery thrombosis.All experimental procedures and protocols were approved by the Animal Use and Management Committee of Beijing University of Chinese Medicine,China(approval No.BUCM-3-2018022802-1002)on April 12,2018.
文摘Objective:To study the effects of 18β-glycyrrhetinic acid (GA) on proliferation inhibition, apop totic induction, and the relationship between GA-induced apoptosis and intracellular Ca2+ concentration in human breast carcinoma (MCF-7) cells. Methods: After MCF-7 cells were treated with GA at the concentrations from 50 μmol/L to 250 μmol/L for 24 h, cell viability of proliferation was assessed by MTT assay. After the cells were treated with 100 μmol/L, 150 μmol/L, and 200 μmol/L GA for 24 h, the rates of cell apoptosis were examined by terminal deoxynucleotide transferase mediated dUTP nick-end-labeling method and flow cytometry with Annexin V/propidium iodide fluorescent stain. After the cells treated with 150 μmol/L GA for 24 h, intracellular Ca2+ concentration was measured by Fure-2 fluorescein load method. Results: After the cells were treated with GA at the concentrations from 100 μmol/L to 250 μmol/L, the rates of proliferative inhibition were increased significantly (P<0.05 and P<0.01) in a dose dependent fashion. IC50 of the proliferation inhibition was 234.33 μmol/L. Treated with 100 μmol/L, 150 μmol/L, and 200 μmol/L, the rates of cell apoptosis were increased significantly (P<0.01). Intracellular Ca2+ concentration after treatment with GA was higher evidently than that of control (P<0.05). Conclusion: 18β-glycyrrhetinic acid has the effects of the proliferation inhibition and the apoptotic induction on MCF-7 cells. The rise of intracellular Ca2+ level may be depended on apoptosis induced by GA in MCF-7 cells.
基金financially supported by National Key Research and Development Program of China(2016YFD0100501)the National Natural Science Foundation of China(31871241,31371233)+3 种基金the Natural Science Foundation of Jiangsu Province(BE2017345,PZCZ201702,BE2018351)the Research and Innovation Program of Postgraduate in Jiangsu Province(KYCX17_1886)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Yangzhou University International Academic Exchange Fund。
文摘High grain protein content(GPC) reduces rice eating and cooking quality(ECQ). We generated OsAAP6 and OsAAP10 knockout mutants in three high-yielding japonica varieties and one japonica line using the CRISPR/Cas9 system. Mutation efficiency varied with genetic background in the T_0 generation, and GPC in the T_1 generation decreased significantly,owing mainly to a reduction in glutelin content. Amylose content was down-regulated significantly in some Osaap6 and all Osaap10 mutants. The increased taste value of these mutants was supported by Rapid Visco Analysis(RVA) profiles, which showed higher peak viscosity and breakdown viscosity and lower setback viscosity than the wild type. There were no significant deficiencies in agronomic traits of the mutants. Targeted mutagenesis of OsAAP6 and OsAAP10, especially OsAAP10, using the CRISPR/Cas9 system can rapidly reduce GPC and improve ECQ of rice, providing a new strategy for the breeding cultivars with desired ECQ.
文摘AIM: To investigate the usefulness of chromoendoscopy, using an acetic acid indigocarmine mixture (AIM), for gastric adenoma diagnosed by forceps biopsy.
基金supported by the National Natural Science Foundation of China(Grant No.21978066)Basic Research Program of Hebei Province for Natural Science Foundation and Key Basic Research Project(Grant No.18964308D)the Key Program of Natural Science Foundation of Hebei Province(Grant No.B2020202048).
文摘Methacrylic acid,an important organic chemical,is commercially manufactured starting from fossil feedstock.The decarboxylation of itaconic acid derived for biomass is a green route to the synthesis of methacrylic acid.In view of the problems existing in the researches on this route such as use of noble metal catalyst,harsh reaction conditions and low desired-product yield,we prepared a series of hydroxyapatite catalysts with different Ca/P molar ratios and evaluated their catalytic performance.The results showed that the hydroxyapatite catalyst with a Ca/P molar ratio of 1.58 had the best catalytic activity.The highest yield of MAA up to 61.2%was achieved with basically complete conversion of itaconic acid under the suitable reaction conditions of 1 equivalent of NaOH,2 MPa of N_(2),250℃,and 2 h.On this basis,a reaction network for the decarboxylation of itaconic acid to methacrylic acid catalyzed by hydroxyapatite was established.With the aid of catalyst characterization using X-ray powder diffraction,NH3/CO2 temperature-programmed desorption,N_(2)physisorption,inductively coupled plasma optical emission spectrometry,and scanning electron microscopy,we found that the distribution of surface acid sites and basic sites,crystal growth orientation,texture properties and morphology of hydroxyapatite varied with the Ca/P molar ratio.Furthermore,the change of the crystal growth orientation and its influence on the surface acidity and alkalinity were clarified.
基金funding support from the National Natural Science Foundation of China (32072024)the Fundamental Research Funds for the Central Universities (2021ZKPY019)the National Key Research and Development Program of China (2018YFD0100403, 2016YFD0101402)。
文摘Cotton(Gossypium spp.) yield is reduced by stress. In this study, high temperature(HT) suppressed the expression of the jasmonic acid(JA) biosynthesis gene allene oxide cyclase 2(GhAOC2), reducing JA content and causing male sterility in the cotton HT-sensitive line H05. Anther sterility was reversed by exogenous application of methyl jasmonate(MeJA) to early buds. To elucidate the role of GhAOC2 in JA biosynthesis and identify its putative contribution to the anther response to HT, we created gene knockout cotton plants using the CRISPR/Cas9 system. Ghaoc2 mutant lines showed male-sterile flowers with reduced JA content in the anthers at the tetrad stage(TS), tapetum degradation stage(TDS), and anther dehiscence stage(ADS). Exogenous application of MeJA to early mutant buds(containing TS or TDS anthers) rescued the sterile pollen and indehiscent anther phenotypes, while ROS signals were reduced in ADS anthers. We propose that HT downregulates the expression of GhAOC2 in anthers, reducing JA biosynthesis and causing excessive ROS accumulation in anthers, leading to male sterility. These findings suggest exogenous JA application as a strategy for increasing male fertility in cotton under HT.
基金supported by the National Key Tech-nologies R&D Program of China during the 11th Five-Year-Plan period (2006BAD10B07)the Project for Returned Overseas Atudents to Start Research from Ministry of Education,China (33206)
文摘The effects of acetylsalicylic acid (ASA), CaCl2, and ASA + CaCl2 on the photosynthetic apparatus and antioxidant enzyme activities were investigated in chrysanthemum Jinba (a cut flower cultivar) under low temperature stress with low light (TL stress) (16/12℃, day/night, PFD 100 μmol m^-2 s-1). The results showed that under TL stress, the net photosynthesis rate (Pn), carboxylation efficiency (CE), apparent quantum yield (AQY), maximal photochemical efficiency (Fv/Fm) of PSII, quantum yield of PSII electron transport (ФPSII), and photochemical quenching (qP) of the chrysanthemum leaves in all treatments were significantly decreased, but the decreases were alleviated by ASA, CaCl2, and ASA + CaCl2 treatments compared with the controls. The alleviating effect of ASA + CaCI2 was better than either ASA or CaCl2 single treatment. Moreover, the ASA + CaCl2 treatment highly improved the chlorophyll content, relatively improved the number and size of chloroplast and starch grain in the leaves of chrysanthemum plants compared with ASA and CaCl2 treatments. It was indicated that ASA and/or CaCI2 could regulate the photosynthetic functions in the leaves of chrysanthemum plants to enhance the resistance against TL stress. On the other hand, reduction in relative conductance rate implied that ASA and/ or CaCl2 could protect from membrane injury in leaves of chrysanthemum plants. The activities of SOD, POD, and CAT in the treated leaves of chrysanthemum were increased as compared with the controls. It was suggested that ASA and/or CaCl2 had positive regulation effects on the defence enzyme activities in chrysanthemum leaves which could protect the photosynthetic apparatus to a certain degree under the TL stress. In brief, the treatment of ASA together with CaCl2 was better for chrysanthemum plants to adapt TL stress than single ASA or CaCl2 treatments.
文摘The present study is part of our ongoing investigation to study the role of trace elements on soybean seed composition (protein, oil, and fatty acids). This study was conducted to study the effects of five trace elements (Mn, Cu, Zn, Mo, B). The treatments of Mn, Cu, Zn, Mo, and B were chlorides, except Mo as oxide, and B as boric acid. The treatments were Mn, Cu, Zn, Mo, and B alone and in combination with the chelating agent citric acid (CA), for example Mn + CA, Cu + CA, and Zn + CA. Soybean cultivar (Bolivar with maturity group V) was grown in a repeated greenhouse experiment in a randomized complete block design. The compounds were applied to three-week-old soybean plants at V3 (vegetative) and at R3 (beginning of seed-pod initiation) stages. The plants were allowed to grow until maturity under greenhouse conditions. The harvested seeds were analyzed for mineral, protein, and fatty acid contents. Results showed that Mn, Cu, and B treatments increased seed protein, while Zn, Mo, Cu + CA, and B + CA decreased the protein. Treatments of Zn, Mo, CA, Cu + CA, Zn + CA, Mo + CA, and B + CA increased the oil. Treatments of Mn and Cu decreased the oil. The Cu and B treatments increased oleic acid by 8.0% and 7.4%, respectively for Cu and B. Treatments of Mn, Mo, CA, and Mn + CA, Cu + CA, Zn + CA, Mo + CA, and B + CA decreased oleic acid by 0.6% to 14.4%. Treatments of Cu, Zn, Mo, B, CA, Mn and their combination with CA increased linoleic acid by 1.3% to 6.5%. Our goal was to identify the trace elements that would make desirable alteration in the seed composition qualities.
基金supported by the National Natural Science Foundation of China (30700428, 30911130166)Beijing Natural Science Foundation, China (5072009)the New Star Plan of Science and Technology Item of Beijing, China (2006B26)
文摘The objective of this experiment is to evaluate the role of intracellular and extracellular Ca2+ and calmodulin (CAM) in jasmonic acid (JA) signaling. The laser scanning microscopy was used to detect the changes of [Ca2+]cyt of Arabidopsis thaliana leaf cells which pretreated with different types of calcium channel blocker. Moreover, the expression of VSP, one of JA response genes, was also investigated after pretreated with the above blocker and antagonist of CaM. The results showed that extracellular and intracellular calcium both involved in the JA-induced Ca2+ mobilization, and then Ca2+ exerted its functions through activating the CaM or CaM related proteins. The apoplast calcium influx and the calcium release from the calcium stores are both involved in the JA-induced calcium mobilization, then the JA-induced Ca2+ transmited the JA signal through CaM or CaM related proteins, and regulated the JA responsive genes.
基金Science and Technology Development Fund,Macao SAR(078/2016/A2)Research Fund of University of Macao(MYRG2016-00043-ICMS-QRCM)
文摘OBJECTIVE Ascorbic acid(AA),commonly known as vitamin C,is a small molecular widely distributed in in food and traditional herbs.Recently,there are some literatures reported that high concentration AA could selectively kill the cancer cells but not the normal cells.This study was designed to explore the underlying mechanisms.METHODS Colorectal cancer line cells were cultured and treated with AA.The cytotoxic,intracellular ATP level,reactive oxygen species,calcium,were determined with commercial kits and fluorescent probes.RESULTS High concentration of AA induced cell death in HCT116 and HT29 colorectal cancer cells in concentration-and time-dependent manner.AA treat⁃ment induced ATP decrease,LDH release,cell swollen and loss of plasma membrane integrity.Pharmacological inhibi⁃tors for apoptosis,necroptosis,autophagy,pyroptosis and oncosis showed no effect on AA-induced cell death.Further⁃more,ROS level increase and intracellular calcium(Ca2+)accumulation were observed after AA treatment.ROS scavenger N-acetyl cysteine(NAC),intracellular calcium chelator BAPTA-AM and intracellular calcium inhibitor 2-aminoethoxy⁃diphenyl borate(2-APB)could attenuate the cell death induced by AA.NAC could attenuate both ROS increase and intracellular Ca2+accumulation induced by AA,while BAPTA-AM could only attenuate intracellular Ca2+accumulation.In addition,high concentration AA induced mitochondrial damage and mitochondrial ROS generation.CONCLUSION AA induces Ca2+-dependent programed necrosis mediated by ROS.Our study provided new insights into high concentration AA induced cell death in human colon cancer cells.
基金supported by the Armenian National Science and Education Fund for Project in New York,USA(No.ANSEF biotech-4241)
文摘The study aims to confirm the neuroregenerative effects of bacterial melanin (BM) on central nervous system injury using a special staining method based on the detection of Ca^2+-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I; n = 12) or unilateral rubrospinal tract transection at the cervical level (C3-4) (group II; n = 12). In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup) and the remaining six rats were intramuscularly in)ected with saline (saline subgroup). Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca^2+-dependent acid phosphatase activity detection in combination with Chilingarian's calcium adenoside triphosphate method revealed that BM stimulated the sprouting of fibers and dilated the capillaries in the brain and spinal cord. These results suggest that BM can promote the recovery of motor function of rats with central nervous system injury; and detection of Ca^2+-dependent acid phosphatase activity is a fast and easy method used to study the regeneration-promoting effects of BM on the injured central nervous system.