Electrodeposition of acid copper plating on mild steel substrate is tedious due to the galvanic displacement reaction ofcopper on mild steel.This can be avoided by using a proper complexing agent,because the complexin...Electrodeposition of acid copper plating on mild steel substrate is tedious due to the galvanic displacement reaction ofcopper on mild steel.This can be avoided by using a proper complexing agent,because the complexing agent tuned the potential ofnoble direction to less noble direction by complex formation.In this paper,environment friendly electrodeposition of copper fromnon-cyanide electrolyte using sodium gluconate as complexing agent was investigated in alkaline medium.The effects of additivessuch as1,2,3-benzotriazole,sodium lauryl sulphate,PEG8000and saccharin were studied.These additives are found to reduce thegrain size,grain boundaries and improve surface morphology of the copper deposits.Also they improve the throwing power of thedepositing electrolytes and hardness of deposits.The electrodeposited copper coatings were characterized by X-ray diffractiontechnique.XRD results indicate that the electrodeposited copper shows polycrystalline and face centered cubic structure.The crystalsize was calculated by XRD and AFM analysis.Among these additives studied,the mixture of benzotriazole and sodium laurylsulphate acts as the best additive.A uniform pore-free surface observed under SEM and AFM results reveal the grain refining broughtabout by the additives.展开更多
The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition rem...The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition remains a significant impediment to their practical integration.Herein,we developed an ingenious approach that centered around epitaxial electrocrystallization and meticulously controlled growth of magnesium crystals on a specialized MgMOF substrate.The chosen MgMOF substrate demonstrated a robust affinity for magnesium and showed minimal lattice misfit with Mg,establishing the crucial prerequisites for successful heteroepitaxial electrocrystallization.Moreover,the incorporation of periodic electric fields and successive nanochannels within the MgMOF structure created a spatially confined environment that considerably promoted uniform magnesium nucleation at the molecular scale.Taking inspiration from the“blockchain”concept prevalent in the realm of big data,we seamlessly integrated a conductive polypyrrole framework,acting as a connecting“chain,”to interlink the“blocks”comprising the MgMOF cavities.This innovative design significantly amplified charge‐transfer efficiency,thereby increasing overall electrochemical kinetics.The resulting architecture(MgMOF@PPy@CC)served as an exceptional host for heteroepitaxial Mg electrodeposition,showcasing remarkable electrostripping/plating kinetics and excellent cycling performance.Surprisingly,a symmetrical cell incorporating the MgMOF@PPy@CC electrode demonstrated impressive stability even under ultrahigh current density conditions(10mAcm^(–2)),maintaining operation for an extended 1200 h,surpassing previously reported benchmarks.Significantly,on coupling the MgMOF@PPy@CC anode with a Mo_(6)S_(8) cathode,the assembled battery showed an extended lifespan of 10,000 cycles at 70 C,with an outstanding capacity retention of 96.23%.This study provides a fresh perspective on the rational design of epitaxial electrocrystallization driven by metal–organic framework(MOF)substrates,paving the way toward the advancement of cuttingedge batteries.展开更多
Cyanide-free silver electroplating was conducted in thiosulfate baths containing AgNO3 and AgBr major salts, respectively. The effects of major salt content and current density on surface quality, deposition rate and ...Cyanide-free silver electroplating was conducted in thiosulfate baths containing AgNO3 and AgBr major salts, respectively. The effects of major salt content and current density on surface quality, deposition rate and microhardness of Ag coatings were investigated. The optimized electroplating parameters were established. The adhesion strength of Ag coating on Cu substrate was evaluated and the grain size of Ag coating was measured under optimized electroplating parameters. The optimized AgNO3 content is 40 g/L with current density of 0.25 A/dm2. The deposited bright, smooth, and well adhered Ag coating had nanocrystalline grains with mean size of 35 nm. The optimized AgBr content was 30 g/L with current density of 0.20 A/dm2. The resultant Ag coating had nanocrystalline grains with mean size of 55 nm. Compared with the bath containing AgBr main salt, the bath containing AgNO3 main salt had a wider current density range, and corresponding Ag coating had a higher microhardness and a smaller grain size.展开更多
Aluminum was electrodeposited with constant current on AZ31 magnesium alloy pretreated under optimized conditions from trimethyl-phenyl-ammonium chloride and anhydrous aluminum chloride (TMPAC-AlCl3) quaternary ammo...Aluminum was electrodeposited with constant current on AZ31 magnesium alloy pretreated under optimized conditions from trimethyl-phenyl-ammonium chloride and anhydrous aluminum chloride (TMPAC-AlCl3) quaternary ammonium room temperature ionic liquids with benzene as a co-solvent. The corrosion resistance of the as-deposited Al layers was evaluated in 3.5% NaCl solution by the electrochemical technologies. The Al depositions were characterized by scanning electron microscopy equipped with energy dispersion X-ray. The results show that the microstructures of the Al depositions have spherical equiaxed grains obtained at a high current density, and bulk grains at a low current density. The Al deposition obtained at 12.3 mA/cm2 has a smooth and compact surface. The electrochemical measurements indicate that the thicker Al deposition can more effectively protect the Mg substrate. The Al deposition with bulk grains hardly protects the AZ31 Mg substrate from corrosion owing to its porosity.展开更多
The influences of sodium silicate on manganese electrodeposition in sulfate solution were investigated. Manganese electrodeposition experiments indicate that a certain amount of sodium silicate can improve cathode cur...The influences of sodium silicate on manganese electrodeposition in sulfate solution were investigated. Manganese electrodeposition experiments indicate that a certain amount of sodium silicate can improve cathode current efficiency and initial pH 7.0?8.0 is the optimized pH for high cathode current efficiency. The analyses of scanning electron microscopy (SEM) and X-ray diffraction (XRD) indicate the compact morphology and nanocrystalline structure of electrodeposits. X-ray photoelectron spectrometry (XPS) analysis shows that the elements of Mn, Si and O exist in the deposit. The solution chemistry calculations of sulfate electrolyte and sodium silicate solution indicate that species of Mn2+, MnSO4, Mn(SO4)2?2 , Mn2+, MnSiO3, Mn(NH3)2+, SiO32?and HSiO3? are the main active species during the process of manganese electrodeposition. The reaction trend between Mn2+ and Si-containing ions is confirmed by the thermodynamic analysis. In addition, polarization curve tests confirm that sodium silicate can increase the overpotential of hydrogen evolution reaction, and then indirectly improve the cathode current efficiency.展开更多
The electrodeposition behaviors of nickel on glassy carbon(GC) and carbon steel(CS) electrodes were investigated in the14.3%-85.7%(mole fraction) betaine.HCl ethylene glycol(EG) ionic liquid using cyclic volta...The electrodeposition behaviors of nickel on glassy carbon(GC) and carbon steel(CS) electrodes were investigated in the14.3%-85.7%(mole fraction) betaine.HCl ethylene glycol(EG) ionic liquid using cyclic voltammetry and chronoamperometry.The results indicated that the reduction of Ni(Ⅱ) on CS electrode via a diffusion-controlled quasi-reversible process was much more facile and easier than that occurred on GC electrode,which followed a diffusion-controlled three-dimensional instantaneous nucleation and growth.Scanning electron microscopy was used to observe that the deposit was dense and contained fine crystallites with average size of(80±4) nm.Energy dispersive spectrometer analysis showed that the obtained deposit was metallic nickel.X-ray diffraction spectroscopy indicated that(111) plane was the most preferred crystal orientation.The nickel deposit was luminous and bright,and had good adhesion with the CS substrate.展开更多
In order to improve the corrosion resistance and microhardness of AZ91D magnesium alloy, TiN nanoparticles were addedto fabricate Ni-P-TiN composite coating by electrodeposition. The surface, cross-section morphology ...In order to improve the corrosion resistance and microhardness of AZ91D magnesium alloy, TiN nanoparticles were addedto fabricate Ni-P-TiN composite coating by electrodeposition. The surface, cross-section morphology and composition wereexamined using SEM, EDS and XRD, and the corrosion resistance was checked by electrochemical technology. The results indicatethat TiN nanoparticles were doped successfully in the Ni-P matrix after a series of complex pretreatments including activation, zincimmersion and pre-electroplating, which enhances the stability of magnesium alloy in electrolyte and the adhesion betweenmagnesium alloy and composite coating. The microhardness of the Ni-P coating increases dramatically by adding TiN nanoparticlesand subsequent heat treatment. The corrosion experimental results indicate that the corrosion resistance of Ni-P-TiN compositecoating is much higher than that of uncoated AZ91D magnesium alloy and similar with Ni-P coating in short immersion time.However, TiN nanoparticles play a significant role in long-term corrosion resistance of composite coatings.展开更多
The process parameters were optimized for the electrodeposition of cobalt from cobalt chloride solution in the membrane electrolytic reactor. Effects of parameters such as catholyte composition, current density and t...The process parameters were optimized for the electrodeposition of cobalt from cobalt chloride solution in the membrane electrolytic reactor. Effects of parameters such as catholyte composition, current density and temperature on the current efficiency, specific power consumption and quality of deposition were studied. The catholyte was a mixed solution of cobalt chloride, the initial middle electrolyte consisted of diluted hydrochloric acid, and the anolyte was sulfuric acid. An anion exchange membrane separated the catholyte from the middle electrolyte, and a cation exchange membrane separated the anolyte from the middle electrolyte. The results showed that a maximum current efficiency of 97.5% was attained under the optimum experimental condition of an catholyte composition of 80 g/L Co^2+, 20 g/L H3BO3, 3 g/L NaF and pH of 4, at a cathode current density of 250 A/m2 and a temperature of 50 ℃ HCl could be produced in the middle compartment electrochemically up to 0.45 mol/L.展开更多
As-Sb alloy was electrodeposited from high arsenic-containing solutions. The influences of current density, Sb(3+) concentration, reaction temperature and HCl concentration on the electrolyte composition, cell volt...As-Sb alloy was electrodeposited from high arsenic-containing solutions. The influences of current density, Sb(3+) concentration, reaction temperature and HCl concentration on the electrolyte composition, cell voltage and current efficiency were investigated. The surface morphology, composition and structure of the deposits were analyzed by scanning electron microscopy(SEM), inductively coupled plasma mass spectrometry(ICP-MS) and X-ray diffraction(XRD), respectively. The results show that the prepared As-Sb alloy shows an amorphous structure under all conditions. Under the optimized condition, i.e., 10 g/L As(3+), 2 g/L Sb(3+), 4 mol/L HCl, current density of 4 mA/cm2 and temperature of 20 °C, desired As-Sb alloy with a composition of 70.26% As and 29.74% Sb(mass fraction) is obtained. What is more, the current efficiency is as high as 94.74% and high arsenic removal rate is achieved under this condition.展开更多
The nanocomposite coating is obtained by electrochemical deposition of the zinc plating solution with ceria nanoparticles (mean diameter 30 nm). The effect of ceria nanoparticles on the electrodeposited zinc coating i...The nanocomposite coating is obtained by electrochemical deposition of the zinc plating solution with ceria nanoparticles (mean diameter 30 nm). The effect of ceria nanoparticles on the electrodeposited zinc coating is stu died by weight loss test, inductively copuled plasma quantometer (ICP), scanning electron microscopy (SEM) and X ray diffraction (XRD), respectively. It is found that under the same electrodeposition conditions, the corrosion resistance of the nanocomposite coating increases obviously while that of the micron composite coating only improves slightly; The ceria content of the nanocomposite coating is more than that of the micron composite coating. Ceria nanoparticles modify the surface morphology and crystal structure of the zinc matrix in correlation with the increase of corrosion resistance.展开更多
A new kind of laminar metal matrix nanocomposite(MMC) was fabricated by an electrodeposition process with copper and superaligned carbon nanotubes film(SACNT film).The SACNT film was put on a titanium plate and th...A new kind of laminar metal matrix nanocomposite(MMC) was fabricated by an electrodeposition process with copper and superaligned carbon nanotubes film(SACNT film).The SACNT film was put on a titanium plate and then a layer of copper was electrodeposited on it.By repeating the above process,the laminar Cu/SACNT composite which contains dozens or hundreds of layers of copper and SACNT films was obtained.The thickness of a single copper layer was controlled by adjusting the process parameter easily and the thinnest layer is less than 2 μm.The microscopic observation shows that the directional alignment structure of SACNT is retained in the composite perfectly.The mechanical and electrical properties testing results show that the tensile and yield strengths of composites are improved obviously compared with those of pure copper,and the high conductivity is retained.This technology is a potential method to make applicable MMC which characterizes high volume fraction and directional alignment of carbon nanotubes.展开更多
In the fabrication of Bi nanowire array thermoelectric materials,electrodeposition technology has been used to deposit bismuth into the nanopores of anodic alumina porous films.The experiments show that the temperatur...In the fabrication of Bi nanowire array thermoelectric materials,electrodeposition technology has been used to deposit bismuth into the nanopores of anodic alumina porous films.The experiments show that the temperature significantly affects the electrodepositing process,and the simple form of Bi 3+ in the solutions is helpful to the deposition of metal Bi.The pulse plating technique is necessary for the electrodeposition because of the diffusive difficulty of Bi 3+ into the nanopores of the films.The XRD analysis indicates that Bi nanowire arrays have been manufactured by this technology.展开更多
In order to study the electrodeposition process of iridium in composite ionic liquid, the effects of N, N-dimethylacetamide(DMAC) on the viscosity, conductivity and electrochemical stability of composite ionic liqui...In order to study the electrodeposition process of iridium in composite ionic liquid, the effects of N, N-dimethylacetamide(DMAC) on the viscosity, conductivity and electrochemical stability of composite ionic liquid BMIC-BMIBF4, as well as the electrochemical behavior of Ir Cl3 in this system were studied. Iridium(Ir) coatings were deposited at different constant potentials and characterized by SEM and XRD. The results show that the addition of DMAC can evidently decrease the viscosity of the composite system, increase conductivity and improve electrochemical stability of the composite system. Cyclic voltammograms of a Au electrode illustrate that the process controlled by diffusion rate is irreversible with the average charge transfer coefficient of 0.170 and average diffusion coefficient of 1.096×10-6 cm^2/s. In addition, SEM image shows that Ir film deposited at the reduction peak potential is dense and even, while XRD pattern shows that Ir deposit is polycrystalline structure.展开更多
An immobilized Cu2O/g-C3N4 heterojunction film was successfully made on an FTO substrate by electrophoretic deposition of g-C3N4 on a Cu2O thin film.The photoelectrochemical(PEC) performance for water splitting by t...An immobilized Cu2O/g-C3N4 heterojunction film was successfully made on an FTO substrate by electrophoretic deposition of g-C3N4 on a Cu2O thin film.The photoelectrochemical(PEC) performance for water splitting by the Cu2O/g-C3N4 film was better than pure g-C3N4 and pure Cu2O film.Under-0.4 V external bias and visible light irradiation,the photocurrent density and PEC hydrogen evolution efficiency of the optimized Cu2O/g-C3N4 film was-1.38 mA/cm^2 and 0.48 mL h^-1 cm^-2,respectively.The enhanced PEC performance of Cu2O/g-C3N4 was attributed to the synergistic effect of light coupling and a matching energy band structure between g-C3N4 and Cu2O as well as the external bias.展开更多
The electrodeposition and characterization of nano-structured black nickel coatings were presented. The influences of bath pH, electrodeposition time, stirring speed, temperature and current density on the color and m...The electrodeposition and characterization of nano-structured black nickel coatings were presented. The influences of bath pH, electrodeposition time, stirring speed, temperature and current density on the color and microstructure of the electrodeposited nickel film were investigated through naked eyes, scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. Meanwhile, the corrosion resistance of the optimized black nickel film was evaluated by the polarization measurement and electrochemical impedance spectroscopy (EIS) in the neutral 3.5% NaC1 solution. The results show that the color of the electrodeposited nickel film was highly dependent on the above technological parameters. The operating parameters were optimized mainly according to the color. The optimized black nickel film possesses nano-structure with an average grain diameter of about 50 nm. It also exhibits enhanced corrosion resistance when compared with white nickel coatings electrdodeposited under the same condition except the variation of the electroplating current density.展开更多
Nano-CeO2 (RE) particles were co-deposited into Ni-P binary composite coatings by applying pulse current (PC) under ultrasonic (U) field. Morphology, chemical content and crystal microstructure were characterize...Nano-CeO2 (RE) particles were co-deposited into Ni-P binary composite coatings by applying pulse current (PC) under ultrasonic (U) field. Morphology, chemical content and crystal microstructure were characterized by environmental scanning electron microscopy (E-SEM) with energy dispersive X-ray analysis (EDXA), XRD diffractometry and transmission electron microscopy (TEM). Experimental results show that Ni-P coating reinforced with 15g/L nano-CeO2, in amorphous state and with compact structure, can be improved in the microhardness from HV0.2580 to HV0.2780 by annealing at 600 °C for 2 h. The highest content of codeposited Ce and deposition rate can reach 2.3% and 68 μm/h, respectively. Furthermore, the effect of RE adsorption and pulse overpotential on depositional mechanism was investigated. n-CeO2 particles or Ce4+ ions with strong adsorption capacity acted as the catalytic nucleus to improve densification effectively. During annealing at 600 °C for 2 h, n-CeO2 particles will uniformly adsorb on crystal grain to preferentially pad and heal up gaps of cracking Ni boundaries, promoting dispersion strengthening with refiner-grained structure.展开更多
To improve the corrosion resistance, electrodeposition of Cu coating on Mg-3.0Nd-0.2Zn-0.4Zr (mass fraction, %NZ30K) magnesium alloy via an appropriate pretreatment was investigated. The surface morphologies, compos...To improve the corrosion resistance, electrodeposition of Cu coating on Mg-3.0Nd-0.2Zn-0.4Zr (mass fraction, %NZ30K) magnesium alloy via an appropriate pretreatment was investigated. The surface morphologies, compositions and microstructures of the pretreated films and Cu coating were characterized in detail. The results show that the activation film consists of fluoride and phosphates and Zn immersion film forms preferentially on the eutectic compound Mg12Nd phase region. A smooth, uniform and dense Cu coating is successfully obtained. Potentiodynamic polarization tests reveal that Cu coating can greatly improve the corrosion resistance of NZ30K magnesium alloy. Open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) tests during long-term immersion further demonstrate that Cu coating can provide an effective protection for NZ30K magnesium alloy from corrosion up to ~60 h, due to its dense structure and a stable passive film formed. In addition, Cu coating exhibits good adhesion to substrate as confirmed by thermal shock test.展开更多
The reduction mechanism of Ir in the NaCl-KCl-IrCl3 molten salt was investigated by cyclic voltammetry and chronopotentiometry, and Ir film was deposited effectively on platinum in potentiostatic mode. The morphology ...The reduction mechanism of Ir in the NaCl-KCl-IrCl3 molten salt was investigated by cyclic voltammetry and chronopotentiometry, and Ir film was deposited effectively on platinum in potentiostatic mode. The morphology and constitution of Ir film were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). It is found that the reduction mechanism of Ir(III) is a three-electron step and electro reaction is a reversible diffusion controlled process; the diffusion coefficients of Ir(III) at 1083, 1113, 1143 and 1183 K are 1.56×10-4, 2.23×10-4, 2.77×10-4 and 4.40×10-4 cm2/s, respectively, while the activation energy of the electrode reaction is 102.95 kJ/mol. The compacted Ir film reveals that the applied potential greatly affects the deposition of Ir, the thickness of Ir film deposited at the potential of reduction peak is the highest, the temperature of the molten salt also exerts an influence on deposition, the film formed at a lower temperature is thinner, but more micropores would occur on film when the temperature went too high.展开更多
The electrodeposition of lead in alkaline solutions containing xylitol (1, 2, 3, 4, 5-pentahydroxypentane) was studied. The lead electrodeposition and the chemical stability of xylitol in alkaline solutions were inv...The electrodeposition of lead in alkaline solutions containing xylitol (1, 2, 3, 4, 5-pentahydroxypentane) was studied. The lead electrodeposition and the chemical stability of xylitol in alkaline solutions were investigated by cyclic voltammetry. Apparent activation energy, apparent transfer coefficient and exchange current density were obtained by linear sweep voltammetry. Initial stages of lead electrocrystallization were determined by chronoamperometry. Voltammograms of a AISI 316 stainless steel electrode in xylitol solution exhibit no current in the potential range of-1.3 V to 0.75 V (vs Hg/HgO), implying that xylitol is stable to oxidation and reduction. The apparent activation energy, apparent transfer coefficient and exchange current density were calculated to be 35.15 kJ/mol, 1.56 and 9.65x10^-5 A/m^2. Analysis of the chronoamperometric responses implies three-dimensional growth of nuclei, with the type of nucleation depending on overpotential.展开更多
The electrodeposition of antimony in alkaline solutions containing xylitol was investigated using cyclic voltammetry,linear sweep voltammetry and chronoamperometry.The antimony electrodeposition and the chemical stabi...The electrodeposition of antimony in alkaline solutions containing xylitol was investigated using cyclic voltammetry,linear sweep voltammetry and chronoamperometry.The antimony electrodeposition and the chemical stability of xylitol in alkaline solutions were studied by cyclic voltammetric technique.Apparent activation energy,apparent transfer coefficient and exchange current density were obtained by linear sweep voltammetric technique.Initial stages of antimony electrocrystallization were determined by chronoamperometry.Xylitol in alkaline solutions exhibits high chemical stability and there is no redox in solutions when the potential ranges from-1.20 V to +0.60 V(vs Hg/HgO).There is no other redox reaction but hydrolysis occurring on stainless steel in the potential range of-1.75 V to 1.25 V(vs Hg/HgO) while the xylitol decomposition maybe take place on antimony electrode when potential is more negative than-1.70 V(vs Hg/HgO).Cyclic voltammograms with different scan rates indicate that the antimony electrodeposition process is an electrocrystallization which is a completely irreversible electrode process.The apparent activation energy,apparent transfer coefficient and exchange current density were calculated to be 46.33 kJ/mol,0.64 and 4.40×10-6 A/m2,respectively.The analyses of the chronoamperometric responses support the view of a three-dimensional growth under progressive nucleation.The average diffusion coefficient of antimony was calculated to be 1.53×10-6 cm2/s.展开更多
文摘Electrodeposition of acid copper plating on mild steel substrate is tedious due to the galvanic displacement reaction ofcopper on mild steel.This can be avoided by using a proper complexing agent,because the complexing agent tuned the potential ofnoble direction to less noble direction by complex formation.In this paper,environment friendly electrodeposition of copper fromnon-cyanide electrolyte using sodium gluconate as complexing agent was investigated in alkaline medium.The effects of additivessuch as1,2,3-benzotriazole,sodium lauryl sulphate,PEG8000and saccharin were studied.These additives are found to reduce thegrain size,grain boundaries and improve surface morphology of the copper deposits.Also they improve the throwing power of thedepositing electrolytes and hardness of deposits.The electrodeposited copper coatings were characterized by X-ray diffractiontechnique.XRD results indicate that the electrodeposited copper shows polycrystalline and face centered cubic structure.The crystalsize was calculated by XRD and AFM analysis.Among these additives studied,the mixture of benzotriazole and sodium laurylsulphate acts as the best additive.A uniform pore-free surface observed under SEM and AFM results reveal the grain refining broughtabout by the additives.
基金National Natural Science Foundation of China,Grant/Award Number:31770608Postgraduate Research&Practice Innovation Program of Jiangsu Province,Grant/Award Number:KYCX22_1081Jiangsu Specially‐appointed Professorship Program,Grant/Award Number:Sujiaoshi[2016]20。
文摘The emergence of Li–Mg hybrid batteries has been receiving attention,owing to their enhanced electrochemical kinetics and reduced overpotential.Nevertheless,the persistent challenge of uneven Mg electrodeposition remains a significant impediment to their practical integration.Herein,we developed an ingenious approach that centered around epitaxial electrocrystallization and meticulously controlled growth of magnesium crystals on a specialized MgMOF substrate.The chosen MgMOF substrate demonstrated a robust affinity for magnesium and showed minimal lattice misfit with Mg,establishing the crucial prerequisites for successful heteroepitaxial electrocrystallization.Moreover,the incorporation of periodic electric fields and successive nanochannels within the MgMOF structure created a spatially confined environment that considerably promoted uniform magnesium nucleation at the molecular scale.Taking inspiration from the“blockchain”concept prevalent in the realm of big data,we seamlessly integrated a conductive polypyrrole framework,acting as a connecting“chain,”to interlink the“blocks”comprising the MgMOF cavities.This innovative design significantly amplified charge‐transfer efficiency,thereby increasing overall electrochemical kinetics.The resulting architecture(MgMOF@PPy@CC)served as an exceptional host for heteroepitaxial Mg electrodeposition,showcasing remarkable electrostripping/plating kinetics and excellent cycling performance.Surprisingly,a symmetrical cell incorporating the MgMOF@PPy@CC electrode demonstrated impressive stability even under ultrahigh current density conditions(10mAcm^(–2)),maintaining operation for an extended 1200 h,surpassing previously reported benchmarks.Significantly,on coupling the MgMOF@PPy@CC anode with a Mo_(6)S_(8) cathode,the assembled battery showed an extended lifespan of 10,000 cycles at 70 C,with an outstanding capacity retention of 96.23%.This study provides a fresh perspective on the rational design of epitaxial electrocrystallization driven by metal–organic framework(MOF)substrates,paving the way toward the advancement of cuttingedge batteries.
基金Project (50771042) supported by the National Natural Science Foundation of ChinaProjects (1041005100052009HASTIT023) supported by the Program for Science and Technology Innovation Talents of Henan Province,China
文摘Cyanide-free silver electroplating was conducted in thiosulfate baths containing AgNO3 and AgBr major salts, respectively. The effects of major salt content and current density on surface quality, deposition rate and microhardness of Ag coatings were investigated. The optimized electroplating parameters were established. The adhesion strength of Ag coating on Cu substrate was evaluated and the grain size of Ag coating was measured under optimized electroplating parameters. The optimized AgNO3 content is 40 g/L with current density of 0.25 A/dm2. The deposited bright, smooth, and well adhered Ag coating had nanocrystalline grains with mean size of 35 nm. The optimized AgBr content was 30 g/L with current density of 0.20 A/dm2. The resultant Ag coating had nanocrystalline grains with mean size of 55 nm. Compared with the bath containing AgBr main salt, the bath containing AgNO3 main salt had a wider current density range, and corresponding Ag coating had a higher microhardness and a smaller grain size.
文摘Aluminum was electrodeposited with constant current on AZ31 magnesium alloy pretreated under optimized conditions from trimethyl-phenyl-ammonium chloride and anhydrous aluminum chloride (TMPAC-AlCl3) quaternary ammonium room temperature ionic liquids with benzene as a co-solvent. The corrosion resistance of the as-deposited Al layers was evaluated in 3.5% NaCl solution by the electrochemical technologies. The Al depositions were characterized by scanning electron microscopy equipped with energy dispersion X-ray. The results show that the microstructures of the Al depositions have spherical equiaxed grains obtained at a high current density, and bulk grains at a low current density. The Al deposition obtained at 12.3 mA/cm2 has a smooth and compact surface. The electrochemical measurements indicate that the thicker Al deposition can more effectively protect the Mg substrate. The Al deposition with bulk grains hardly protects the AZ31 Mg substrate from corrosion owing to its porosity.
基金Project(2015BAB17B01)supported by the National Science and Technology Support Program of ChinaProject(21376273)supported by the National Natural Science Foundation of China
文摘The influences of sodium silicate on manganese electrodeposition in sulfate solution were investigated. Manganese electrodeposition experiments indicate that a certain amount of sodium silicate can improve cathode current efficiency and initial pH 7.0?8.0 is the optimized pH for high cathode current efficiency. The analyses of scanning electron microscopy (SEM) and X-ray diffraction (XRD) indicate the compact morphology and nanocrystalline structure of electrodeposits. X-ray photoelectron spectrometry (XPS) analysis shows that the elements of Mn, Si and O exist in the deposit. The solution chemistry calculations of sulfate electrolyte and sodium silicate solution indicate that species of Mn2+, MnSO4, Mn(SO4)2?2 , Mn2+, MnSiO3, Mn(NH3)2+, SiO32?and HSiO3? are the main active species during the process of manganese electrodeposition. The reaction trend between Mn2+ and Si-containing ions is confirmed by the thermodynamic analysis. In addition, polarization curve tests confirm that sodium silicate can increase the overpotential of hydrogen evolution reaction, and then indirectly improve the cathode current efficiency.
基金Projects(51274108,21263007,51204080)supported by the National Natural Science Foundation of ChinaProject(2011FA009)supported by the Applied Research Foundation of Yunnan Province,ChinaProject(14118441)supported by the Talents Cultivation Foundation of Kunming University of Science and Technology,China
文摘The electrodeposition behaviors of nickel on glassy carbon(GC) and carbon steel(CS) electrodes were investigated in the14.3%-85.7%(mole fraction) betaine.HCl ethylene glycol(EG) ionic liquid using cyclic voltammetry and chronoamperometry.The results indicated that the reduction of Ni(Ⅱ) on CS electrode via a diffusion-controlled quasi-reversible process was much more facile and easier than that occurred on GC electrode,which followed a diffusion-controlled three-dimensional instantaneous nucleation and growth.Scanning electron microscopy was used to observe that the deposit was dense and contained fine crystallites with average size of(80±4) nm.Energy dispersive spectrometer analysis showed that the obtained deposit was metallic nickel.X-ray diffraction spectroscopy indicated that(111) plane was the most preferred crystal orientation.The nickel deposit was luminous and bright,and had good adhesion with the CS substrate.
基金Projects(51171172,51131005)supported by the National Natural Science Foundation of ChinaProject(R16E010001)supported by Zhejiang Provincial Natural Science Foundation of China+1 种基金Project(2015QNA3011)supported by Fundamental Research Funds for the Central Universities,ChinaProject(14DZ2261000)supported by Science and Technology Commission of Shanghai Municipality,China
文摘In order to improve the corrosion resistance and microhardness of AZ91D magnesium alloy, TiN nanoparticles were addedto fabricate Ni-P-TiN composite coating by electrodeposition. The surface, cross-section morphology and composition wereexamined using SEM, EDS and XRD, and the corrosion resistance was checked by electrochemical technology. The results indicatethat TiN nanoparticles were doped successfully in the Ni-P matrix after a series of complex pretreatments including activation, zincimmersion and pre-electroplating, which enhances the stability of magnesium alloy in electrolyte and the adhesion betweenmagnesium alloy and composite coating. The microhardness of the Ni-P coating increases dramatically by adding TiN nanoparticlesand subsequent heat treatment. The corrosion experimental results indicate that the corrosion resistance of Ni-P-TiN compositecoating is much higher than that of uncoated AZ91D magnesium alloy and similar with Ni-P coating in short immersion time.However, TiN nanoparticles play a significant role in long-term corrosion resistance of composite coatings.
基金Project(2015016)supported by the Young Scholars Science Foundation of Lanzhou Jiaotong University,ChinaProject(2015BAE04B01)supported by the National Science-technology Support Program of ChinaProject(21466019)supported by the National Natural Science Foundation of China
文摘The process parameters were optimized for the electrodeposition of cobalt from cobalt chloride solution in the membrane electrolytic reactor. Effects of parameters such as catholyte composition, current density and temperature on the current efficiency, specific power consumption and quality of deposition were studied. The catholyte was a mixed solution of cobalt chloride, the initial middle electrolyte consisted of diluted hydrochloric acid, and the anolyte was sulfuric acid. An anion exchange membrane separated the catholyte from the middle electrolyte, and a cation exchange membrane separated the anolyte from the middle electrolyte. The results showed that a maximum current efficiency of 97.5% was attained under the optimum experimental condition of an catholyte composition of 80 g/L Co^2+, 20 g/L H3BO3, 3 g/L NaF and pH of 4, at a cathode current density of 250 A/m2 and a temperature of 50 ℃ HCl could be produced in the middle compartment electrochemically up to 0.45 mol/L.
基金Project(51374185) supported by the National Natural Science Foundation of China
文摘As-Sb alloy was electrodeposited from high arsenic-containing solutions. The influences of current density, Sb(3+) concentration, reaction temperature and HCl concentration on the electrolyte composition, cell voltage and current efficiency were investigated. The surface morphology, composition and structure of the deposits were analyzed by scanning electron microscopy(SEM), inductively coupled plasma mass spectrometry(ICP-MS) and X-ray diffraction(XRD), respectively. The results show that the prepared As-Sb alloy shows an amorphous structure under all conditions. Under the optimized condition, i.e., 10 g/L As(3+), 2 g/L Sb(3+), 4 mol/L HCl, current density of 4 mA/cm2 and temperature of 20 °C, desired As-Sb alloy with a composition of 70.26% As and 29.74% Sb(mass fraction) is obtained. What is more, the current efficiency is as high as 94.74% and high arsenic removal rate is achieved under this condition.
文摘The nanocomposite coating is obtained by electrochemical deposition of the zinc plating solution with ceria nanoparticles (mean diameter 30 nm). The effect of ceria nanoparticles on the electrodeposited zinc coating is stu died by weight loss test, inductively copuled plasma quantometer (ICP), scanning electron microscopy (SEM) and X ray diffraction (XRD), respectively. It is found that under the same electrodeposition conditions, the corrosion resistance of the nanocomposite coating increases obviously while that of the micron composite coating only improves slightly; The ceria content of the nanocomposite coating is more than that of the micron composite coating. Ceria nanoparticles modify the surface morphology and crystal structure of the zinc matrix in correlation with the increase of corrosion resistance.
基金Project(20111080980)supported by the Initiative Scientific Research Program,Tsinghua University,China
文摘A new kind of laminar metal matrix nanocomposite(MMC) was fabricated by an electrodeposition process with copper and superaligned carbon nanotubes film(SACNT film).The SACNT film was put on a titanium plate and then a layer of copper was electrodeposited on it.By repeating the above process,the laminar Cu/SACNT composite which contains dozens or hundreds of layers of copper and SACNT films was obtained.The thickness of a single copper layer was controlled by adjusting the process parameter easily and the thinnest layer is less than 2 μm.The microscopic observation shows that the directional alignment structure of SACNT is retained in the composite perfectly.The mechanical and electrical properties testing results show that the tensile and yield strengths of composites are improved obviously compared with those of pure copper,and the high conductivity is retained.This technology is a potential method to make applicable MMC which characterizes high volume fraction and directional alignment of carbon nanotubes.
基金the National Natural Science Foundation of China(No.50 0 71 0 4 0 )
文摘In the fabrication of Bi nanowire array thermoelectric materials,electrodeposition technology has been used to deposit bismuth into the nanopores of anodic alumina porous films.The experiments show that the temperature significantly affects the electrodepositing process,and the simple form of Bi 3+ in the solutions is helpful to the deposition of metal Bi.The pulse plating technique is necessary for the electrodeposition because of the diffusive difficulty of Bi 3+ into the nanopores of the films.The XRD analysis indicates that Bi nanowire arrays have been manufactured by this technology.
基金Project(51071014)supported by the National Natural Science Foundation of ChinaProject(2010ZE51055)supported by the Aviation Science Foundation of China
文摘In order to study the electrodeposition process of iridium in composite ionic liquid, the effects of N, N-dimethylacetamide(DMAC) on the viscosity, conductivity and electrochemical stability of composite ionic liquid BMIC-BMIBF4, as well as the electrochemical behavior of Ir Cl3 in this system were studied. Iridium(Ir) coatings were deposited at different constant potentials and characterized by SEM and XRD. The results show that the addition of DMAC can evidently decrease the viscosity of the composite system, increase conductivity and improve electrochemical stability of the composite system. Cyclic voltammograms of a Au electrode illustrate that the process controlled by diffusion rate is irreversible with the average charge transfer coefficient of 0.170 and average diffusion coefficient of 1.096×10-6 cm^2/s. In addition, SEM image shows that Ir film deposited at the reduction peak potential is dense and even, while XRD pattern shows that Ir deposit is polycrystalline structure.
基金supported by the National Natural Science Foundation of China (21173088)the Science and Technology Project of Guangdong Province (2014A030312007, 2015A050502012, 2016A010104013)+1 种基金the China Postdoctoral Science Foundation (2016M592493)the Open Research Fund of Hunan Key Laboratory of Applied Environmental Photocatalysis (CCSU-XT-06),Changsha University~~
文摘An immobilized Cu2O/g-C3N4 heterojunction film was successfully made on an FTO substrate by electrophoretic deposition of g-C3N4 on a Cu2O thin film.The photoelectrochemical(PEC) performance for water splitting by the Cu2O/g-C3N4 film was better than pure g-C3N4 and pure Cu2O film.Under-0.4 V external bias and visible light irradiation,the photocurrent density and PEC hydrogen evolution efficiency of the optimized Cu2O/g-C3N4 film was-1.38 mA/cm^2 and 0.48 mL h^-1 cm^-2,respectively.The enhanced PEC performance of Cu2O/g-C3N4 was attributed to the synergistic effect of light coupling and a matching energy band structure between g-C3N4 and Cu2O as well as the external bias.
基金Projects(50771092,21363018) supported by the National Natural Science Foundation of China
文摘The electrodeposition and characterization of nano-structured black nickel coatings were presented. The influences of bath pH, electrodeposition time, stirring speed, temperature and current density on the color and microstructure of the electrodeposited nickel film were investigated through naked eyes, scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. Meanwhile, the corrosion resistance of the optimized black nickel film was evaluated by the polarization measurement and electrochemical impedance spectroscopy (EIS) in the neutral 3.5% NaC1 solution. The results show that the color of the electrodeposited nickel film was highly dependent on the above technological parameters. The operating parameters were optimized mainly according to the color. The optimized black nickel film possesses nano-structure with an average grain diameter of about 50 nm. It also exhibits enhanced corrosion resistance when compared with white nickel coatings electrdodeposited under the same condition except the variation of the electroplating current density.
基金Project (CXLX12_0151) supported by Jiangsu Innovation program for Graduate Education and Fundamental Research Funds for Central Unibersities, China
文摘Nano-CeO2 (RE) particles were co-deposited into Ni-P binary composite coatings by applying pulse current (PC) under ultrasonic (U) field. Morphology, chemical content and crystal microstructure were characterized by environmental scanning electron microscopy (E-SEM) with energy dispersive X-ray analysis (EDXA), XRD diffractometry and transmission electron microscopy (TEM). Experimental results show that Ni-P coating reinforced with 15g/L nano-CeO2, in amorphous state and with compact structure, can be improved in the microhardness from HV0.2580 to HV0.2780 by annealing at 600 °C for 2 h. The highest content of codeposited Ce and deposition rate can reach 2.3% and 68 μm/h, respectively. Furthermore, the effect of RE adsorption and pulse overpotential on depositional mechanism was investigated. n-CeO2 particles or Ce4+ ions with strong adsorption capacity acted as the catalytic nucleus to improve densification effectively. During annealing at 600 °C for 2 h, n-CeO2 particles will uniformly adsorb on crystal grain to preferentially pad and heal up gaps of cracking Ni boundaries, promoting dispersion strengthening with refiner-grained structure.
基金Project(51371116)supported by the National Natural Science Foundation of ChinaProject supported by the Foundation of Open Research Topic in State Key Laboratory of Metal Matrix Composite,China
文摘To improve the corrosion resistance, electrodeposition of Cu coating on Mg-3.0Nd-0.2Zn-0.4Zr (mass fraction, %NZ30K) magnesium alloy via an appropriate pretreatment was investigated. The surface morphologies, compositions and microstructures of the pretreated films and Cu coating were characterized in detail. The results show that the activation film consists of fluoride and phosphates and Zn immersion film forms preferentially on the eutectic compound Mg12Nd phase region. A smooth, uniform and dense Cu coating is successfully obtained. Potentiodynamic polarization tests reveal that Cu coating can greatly improve the corrosion resistance of NZ30K magnesium alloy. Open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) tests during long-term immersion further demonstrate that Cu coating can provide an effective protection for NZ30K magnesium alloy from corrosion up to ~60 h, due to its dense structure and a stable passive film formed. In addition, Cu coating exhibits good adhesion to substrate as confirmed by thermal shock test.
文摘The reduction mechanism of Ir in the NaCl-KCl-IrCl3 molten salt was investigated by cyclic voltammetry and chronopotentiometry, and Ir film was deposited effectively on platinum in potentiostatic mode. The morphology and constitution of Ir film were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). It is found that the reduction mechanism of Ir(III) is a three-electron step and electro reaction is a reversible diffusion controlled process; the diffusion coefficients of Ir(III) at 1083, 1113, 1143 and 1183 K are 1.56×10-4, 2.23×10-4, 2.77×10-4 and 4.40×10-4 cm2/s, respectively, while the activation energy of the electrode reaction is 102.95 kJ/mol. The compacted Ir film reveals that the applied potential greatly affects the deposition of Ir, the thickness of Ir film deposited at the potential of reduction peak is the highest, the temperature of the molten salt also exerts an influence on deposition, the film formed at a lower temperature is thinner, but more micropores would occur on film when the temperature went too high.
基金Project(2007CB613604)supported by the National Basic Research Program of China
文摘The electrodeposition of lead in alkaline solutions containing xylitol (1, 2, 3, 4, 5-pentahydroxypentane) was studied. The lead electrodeposition and the chemical stability of xylitol in alkaline solutions were investigated by cyclic voltammetry. Apparent activation energy, apparent transfer coefficient and exchange current density were obtained by linear sweep voltammetry. Initial stages of lead electrocrystallization were determined by chronoamperometry. Voltammograms of a AISI 316 stainless steel electrode in xylitol solution exhibit no current in the potential range of-1.3 V to 0.75 V (vs Hg/HgO), implying that xylitol is stable to oxidation and reduction. The apparent activation energy, apparent transfer coefficient and exchange current density were calculated to be 35.15 kJ/mol, 1.56 and 9.65x10^-5 A/m^2. Analysis of the chronoamperometric responses implies three-dimensional growth of nuclei, with the type of nucleation depending on overpotential.
文摘The electrodeposition of antimony in alkaline solutions containing xylitol was investigated using cyclic voltammetry,linear sweep voltammetry and chronoamperometry.The antimony electrodeposition and the chemical stability of xylitol in alkaline solutions were studied by cyclic voltammetric technique.Apparent activation energy,apparent transfer coefficient and exchange current density were obtained by linear sweep voltammetric technique.Initial stages of antimony electrocrystallization were determined by chronoamperometry.Xylitol in alkaline solutions exhibits high chemical stability and there is no redox in solutions when the potential ranges from-1.20 V to +0.60 V(vs Hg/HgO).There is no other redox reaction but hydrolysis occurring on stainless steel in the potential range of-1.75 V to 1.25 V(vs Hg/HgO) while the xylitol decomposition maybe take place on antimony electrode when potential is more negative than-1.70 V(vs Hg/HgO).Cyclic voltammograms with different scan rates indicate that the antimony electrodeposition process is an electrocrystallization which is a completely irreversible electrode process.The apparent activation energy,apparent transfer coefficient and exchange current density were calculated to be 46.33 kJ/mol,0.64 and 4.40×10-6 A/m2,respectively.The analyses of the chronoamperometric responses support the view of a three-dimensional growth under progressive nucleation.The average diffusion coefficient of antimony was calculated to be 1.53×10-6 cm2/s.