Cyanide-free silver electroplating was conducted in thiosulfate baths containing AgNO3 and AgBr major salts, respectively. The effects of major salt content and current density on surface quality, deposition rate and ...Cyanide-free silver electroplating was conducted in thiosulfate baths containing AgNO3 and AgBr major salts, respectively. The effects of major salt content and current density on surface quality, deposition rate and microhardness of Ag coatings were investigated. The optimized electroplating parameters were established. The adhesion strength of Ag coating on Cu substrate was evaluated and the grain size of Ag coating was measured under optimized electroplating parameters. The optimized AgNO3 content is 40 g/L with current density of 0.25 A/dm2. The deposited bright, smooth, and well adhered Ag coating had nanocrystalline grains with mean size of 35 nm. The optimized AgBr content was 30 g/L with current density of 0.20 A/dm2. The resultant Ag coating had nanocrystalline grains with mean size of 55 nm. Compared with the bath containing AgBr main salt, the bath containing AgNO3 main salt had a wider current density range, and corresponding Ag coating had a higher microhardness and a smaller grain size.展开更多
Ni–Cr enrichment on stainless steel SS316 L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was deposited in situ to prepare a thi...Ni–Cr enrichment on stainless steel SS316 L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was deposited in situ to prepare a thin continuous Ag-doped carbon film on a porous carbon-coated SS316 L substrate. The corrosion resistance of this film in 0.5 mol·L^(-1) H_2SO_4 solution containing 5 ppm F- at 80°C was investigated using polarization tests. The results showed that the surface treatment of the SS316 L strongly affected the adhesion of the carbon coating to the stainless steel. Compared to the bare SS316 L, the Ag-doped carbon-coated SS316 L bipolar plate was remarkably more stable in both the anode and cathode environments of proton exchange membrane fuel cell(PEMFC) and the interface contact resistance between the specimen and Toray 060 carbon paper was reduced from 333.0 m?·cm^2 to 21.6 m?·cm^2 at a compaction pressure of 1.2 MPa.展开更多
A facile and large-scale synthesis method to fabricate silver hollow microspheres with controllable morphologies and shell thickness is described using low-cost glass microspheres as templates. The method mainly invol...A facile and large-scale synthesis method to fabricate silver hollow microspheres with controllable morphologies and shell thickness is described using low-cost glass microspheres as templates. The method mainly involves two steps of the preparation of silver-coated glass microsphere core–shell particles by a controllable liquid reduced reaction of Ag[(NH3)2]+ solution, which only produces silver nanoparticles anchored on the surface of the thiolated glass microsphere templates, and the removal of glass microspheres by wet chemical etching with HF solution. The products are well characterized by field emitted scanning electron microscopy (SEM), transmitted electron microscopy (TEM), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) etc. The as-prepared core-shell particles and hollow particles have even and compact silver shells. The electromagnetic shielding coatings based on the silver hollow microspheres are demonstrated to have high conductivity, excellent shielding effectiveness and long durability, suggesting that the silver hollow microspheres obtained here are a novel light-weight electromagnetic shielding filler and will have extensive applications in the electromagnetic compatibility fields.展开更多
基金Project (50771042) supported by the National Natural Science Foundation of ChinaProjects (1041005100052009HASTIT023) supported by the Program for Science and Technology Innovation Talents of Henan Province,China
文摘Cyanide-free silver electroplating was conducted in thiosulfate baths containing AgNO3 and AgBr major salts, respectively. The effects of major salt content and current density on surface quality, deposition rate and microhardness of Ag coatings were investigated. The optimized electroplating parameters were established. The adhesion strength of Ag coating on Cu substrate was evaluated and the grain size of Ag coating was measured under optimized electroplating parameters. The optimized AgNO3 content is 40 g/L with current density of 0.25 A/dm2. The deposited bright, smooth, and well adhered Ag coating had nanocrystalline grains with mean size of 35 nm. The optimized AgBr content was 30 g/L with current density of 0.20 A/dm2. The resultant Ag coating had nanocrystalline grains with mean size of 55 nm. Compared with the bath containing AgBr main salt, the bath containing AgNO3 main salt had a wider current density range, and corresponding Ag coating had a higher microhardness and a smaller grain size.
基金financially supported by the National Natural Science Foundation of China(No.21106012)the Educational Department Foundation of Liaoning Province of China(NO.L2014180)
文摘Ni–Cr enrichment on stainless steel SS316 L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was deposited in situ to prepare a thin continuous Ag-doped carbon film on a porous carbon-coated SS316 L substrate. The corrosion resistance of this film in 0.5 mol·L^(-1) H_2SO_4 solution containing 5 ppm F- at 80°C was investigated using polarization tests. The results showed that the surface treatment of the SS316 L strongly affected the adhesion of the carbon coating to the stainless steel. Compared to the bare SS316 L, the Ag-doped carbon-coated SS316 L bipolar plate was remarkably more stable in both the anode and cathode environments of proton exchange membrane fuel cell(PEMFC) and the interface contact resistance between the specimen and Toray 060 carbon paper was reduced from 333.0 m?·cm^2 to 21.6 m?·cm^2 at a compaction pressure of 1.2 MPa.
基金Supported by the National High Technology Research and Development Program of China (No. 2006AA03Z461)the National Defense Fundamental Scientific Research Program (No. A1420080185)
文摘A facile and large-scale synthesis method to fabricate silver hollow microspheres with controllable morphologies and shell thickness is described using low-cost glass microspheres as templates. The method mainly involves two steps of the preparation of silver-coated glass microsphere core–shell particles by a controllable liquid reduced reaction of Ag[(NH3)2]+ solution, which only produces silver nanoparticles anchored on the surface of the thiolated glass microsphere templates, and the removal of glass microspheres by wet chemical etching with HF solution. The products are well characterized by field emitted scanning electron microscopy (SEM), transmitted electron microscopy (TEM), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) etc. The as-prepared core-shell particles and hollow particles have even and compact silver shells. The electromagnetic shielding coatings based on the silver hollow microspheres are demonstrated to have high conductivity, excellent shielding effectiveness and long durability, suggesting that the silver hollow microspheres obtained here are a novel light-weight electromagnetic shielding filler and will have extensive applications in the electromagnetic compatibility fields.