Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat t...Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat to the safety and reliability of CPPS,and there is an acute need to reduce the probability of these failures.Towards this end,this paper first proposes a cascading failure index to identify and quantify the importance of different information in the same class of communication services.On this basis,a joint improved risk-balanced service function chain routing strategy(SFC-RS)is proposed,which is modeled as a robust optimization problem and solved by column-and-constraint generation(C-CG)algorithm.Compared with the traditional shortest-path routing algorithm,the superiority of SFC-RS is verified in the IEEE 30-bus system.The results demonstrate that SFC-RS effectively mitigates the risk associated with information transmission in the network,enhances information transmission accessibility,and effectively limits communication disruption from becoming the cause of cross-space cascading failures.展开更多
Dear Editor,To tackle the global challenges of climate change and energy secu-r ity, building low carbon energy systems has become a research hotspot. Cyber-physical power systems(CPPSs) is an important infrastructure...Dear Editor,To tackle the global challenges of climate change and energy secu-r ity, building low carbon energy systems has become a research hotspot. Cyber-physical power systems(CPPSs) is an important infrastructure to link both energy and transport systems, two major sectors that are difficult to decarbonize, and it is necessary to establish CPPSs model to consider the integration of both renewable energy and electric vehicle(EV).展开更多
This study considers the performance impacts of false data injection attacks on the cascading failures of a power cyber-physical system,and identifies vulnerable nodes.First,considering the monitoring and control func...This study considers the performance impacts of false data injection attacks on the cascading failures of a power cyber-physical system,and identifies vulnerable nodes.First,considering the monitoring and control functions of a cyber network and power flow characteristics of a power network,a power cyber-physical system model is established.Then,the influences of a false data attack on the decision-making and control processes of the cyber network communication processes are studied,and a cascading failure analysis process is proposed for the cyber-attack environment.In addition,a vulnerability evaluation index is defined from two perspectives,i.e.,the topology integrity and power network operation characteristics.Moreover,the effectiveness of a power flow betweenness assessment for vulnerable nodes in the cyberphysical environment is verified based on comparing the node power flow betweenness and vulnerability assessment index.Finally,an IEEE14-bus power network is selected for constructing a power cyber-physical system.Simulations show that both the uplink communication channel and downlink communication channel suffer from false data attacks,which affect the ability of the cyber network to suppress the propagation of cascading failures,and expand the scale of the cascading failures.The vulnerability evaluation index is calculated for each node,so as to verify the effectiveness of identifying vulnerable nodes based on the power flow betweenness.展开更多
Various distributed cooperative control schemes have been widely utilized for cyber-physical power system(CPPS),which only require local communications among geographic neighbors to fulfill certain goals.However,the p...Various distributed cooperative control schemes have been widely utilized for cyber-physical power system(CPPS),which only require local communications among geographic neighbors to fulfill certain goals.However,the process of evaluating the performance of an algorithm for a CPPS can be affected by the physical target characteristics and real communication conditions.To address this potential problem,a testbed with controller hardware-in-the-loop(CHIL)is proposed in this paper.On the basis of a power grid simulation conducted using the real-time simulator RT-LAB developed by the company OPAL-RT,along with a communication network simulation developed with OPNET,multiple distributed controllers were developed with hardware devices to directly collect the real-time operating data of the power system model in RT-LAB and provide local control.Furthermore,the communication between neighboring controllers was realized using the cyber system modelin OPNET with an Ethernet interface.The hardware controllers produced a real-world control behavior instead of a digital simulation,and precisely simulated the dynamic features of a CPPS with high speed.A classic cooperative control case for active power output was studied to explain the integrated simulation process and validate the effectiveness of the co-simulation testbed.展开更多
This paper designs a decentralized resilient H_(∞)load frequency control(LFC)scheme for multi-area cyber-physical power systems(CPPSs).Under the network-based control framework,the sampled measurements are transmitte...This paper designs a decentralized resilient H_(∞)load frequency control(LFC)scheme for multi-area cyber-physical power systems(CPPSs).Under the network-based control framework,the sampled measurements are transmitted through the communication networks,which may be attacked by energylimited denial-of-service(DoS)attacks with a characterization of the maximum count of continuous data losses(resilience index).Each area is controlled in a decentralized mode,and the impacts on one area from other areas via their interconnections are regarded as the additional load disturbance of this area.Then,the closed-loop LFC system of each area under DoS attacks is modeled as an aperiodic sampled-data control system with external disturbances.Under this modeling,a decentralized resilient H_(∞)scheme is presented to design the state-feedback controllers with guaranteed H∞performance and resilience index based on a novel transmission interval-dependent loop functional method.When given the controllers,the proposed scheme can obtain a less conservative H_(∞)performance and resilience index that the LFC system can tolerate.The effectiveness of the proposed LFC scheme is evaluated on a one-area CPPS and two three-area CPPSs under DoS attacks.展开更多
Electric power grids are evolving into complex cyber-physical power systems(CPPSs)that integrate advanced information and communication technologies(ICTs)but face increasing cyberspace threats and attacks.This study c...Electric power grids are evolving into complex cyber-physical power systems(CPPSs)that integrate advanced information and communication technologies(ICTs)but face increasing cyberspace threats and attacks.This study considers CPPS cyberspace security under distributed denial of service(DDoS)attacks and proposes a nonzero-sum game-theoretical model with incomplete information for appropriate allocation of defense resources based on the availability of limited resources.Task time delay is applied to quantify the expected utility as CPPSs have high time requirements and incur massive damage DDoS attacks.Different resource allocation strategies are adopted by attackers and defenders under the three cases of attack-free,failed attack,and successful attack,which lead to a corresponding consumption of resources.A multidimensional node value analysis is designed to introduce physical and cybersecurity indices.Simulation experiments and numerical results demonstrate the effectiveness of the proposed model for the appropriate allocation of defense resources in CPPSs under limited resource availability.展开更多
In order to improve the ability of power transmission system to cope with compound faults on the communication side and power side,a cyber-physical collaborative restoration strategy is proposed.First,according to the...In order to improve the ability of power transmission system to cope with compound faults on the communication side and power side,a cyber-physical collaborative restoration strategy is proposed.First,according to the information system’s role in fault diagnosis,remote control of equipment maintenance and automatic output adjustment of generator restoration,a cyber-physical coupling model is proposed.On this basis,a collaborative restoration model of power transmission system is established by studying interactions among maintenance schedule paths,information system operation,and power system operation.Based on power flow linearization and the large M-ε method,the above model is transformed into a mixed integer linear programming model,whose computational burden is reduced further by the clustering algorithm.According to the parameters of IEEE39 New England system,the geographic wiring diagram of the cyber-physical system is established.Simulation results show the proposed restoration strategy can consider the support function of the information system and space-time coordination of equipment maintenance at both sides comprehensively to speed up load recovery progress.展开更多
该文基于信息系统物理化的设想提出电力信息物理系统(cyber-physical power system,CPPS)中的信息流建模和计算分析方法。采用连续时间函数来刻画信息流的特征,并定义信息网络运行参数为流量累积函数、信息流速和时延。首先,基于遍历法...该文基于信息系统物理化的设想提出电力信息物理系统(cyber-physical power system,CPPS)中的信息流建模和计算分析方法。采用连续时间函数来刻画信息流的特征,并定义信息网络运行参数为流量累积函数、信息流速和时延。首先,基于遍历法搜索出信息流路径,建立信息流速矩阵的范式;然后利用改进的网络演算(network calculus,NC)特性赋值流速矩阵的元素;进一步采用流量累积函数表征信源数据发送规律,从而显式求解时延上界。最后将提出的信息流建模方法应用于智能变电站自动化系统的时延计算,通过与OPNET的仿真结果相比较,验证所提出模型的有效性,而且该方法可以提供定量分析指标以优化变电站组网方案设计中的信息流分布。展开更多
The Cyber-Physical Power System(CPPS)is one of the most critical infrastructure systems in a country because a stable and secure power supply is a key foundation for national and social development.In recent years,res...The Cyber-Physical Power System(CPPS)is one of the most critical infrastructure systems in a country because a stable and secure power supply is a key foundation for national and social development.In recent years,resilience has become a major topic in preventing and mitigating the risks caused by large-scale blackouts of CPPSs.Accordingly,the concept and significance of CPPS resilience are at first explained from the engineering perspective in this study.Then,a review of representative quantitative assessment measures of CPPS resilience applied in the existing literature is provided.On the basis of these assessment measures,the optimization methods of CPPS resilience are reviewed from three perspectives,which are mainly focused on the current research,namely,optimizing the recovery sequence of components,identifying and protecting critical nodes,and enhancing the coupling patterns between physical and cyber networks.The recent advances in modeling methods for cascading failures within the CPPS,which is the theoretical foundation for the resilience assessment and optimization research of CPPSs,are also presented.Lastly,the challenges and future research directions for resilience optimizing of CPPSs are discussed.展开更多
Potential malicious cyber-attacks to power systems which are connected to a wide range of stakeholders from the top to tail will impose significant societal risks and challenges.The timely detection and defense are of...Potential malicious cyber-attacks to power systems which are connected to a wide range of stakeholders from the top to tail will impose significant societal risks and challenges.The timely detection and defense are of crucial importance for safe and reliable operation of cyber-physical power systems(CPPSs).This paper presents a comprehensive review of some of the latest attack detection and defense strategies.Firstly,the vulnerabilities brought by some new information and communication technologies(ICTs)are analyzed,and their impacts on the security of CPPSs are discussed.Various malicious cyber-attacks on cyber and physical layers are then analyzed within CPPSs framework,and their features and negative impacts are discussed.Secondly,two current mainstream attack detection methods including state estimation based and machine learning based methods are analyzed,and their benefits and drawbacks are discussed.Moreover,two current mainstream attack defense methods including active defense and passive defense methods are comprehensively discussed.Finally,the trends and challenges in attack detection and defense strategies in CPPSs are provided.展开更多
随着电力系统的安全可靠运行越来越依赖于通信系统,时间延迟也成为影响电力信息物理系统同步的主要因素之一。针对具有双重时延的电力信息物理系统(cyber physical power system,CPPS)的同步问题,设计控制器解决时延对系统同步的影响。...随着电力系统的安全可靠运行越来越依赖于通信系统,时间延迟也成为影响电力信息物理系统同步的主要因素之一。针对具有双重时延的电力信息物理系统(cyber physical power system,CPPS)的同步问题,设计控制器解决时延对系统同步的影响。首先,搭建具有双重时延的电力信息物理系统模型,然后根据系统模型设计出控制器,并通过构造Lyapunov函数证明控制器的有效性。对于大规模的系统,提出自适应牵制同步控制器,即将控制器添加到按照结构熵筛选出的牵制节点集的节点。结构熵可以解决当节点度相同时牵制节点的选择问题。最后通过两个算例验证了所提方法的可行性。展开更多
The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy ...The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy internet. Progressive penetration of intermittent renewable energy sources into the energy system has led to unprecedented challenges to the currently wide use of coal-fired power generation technologies. Here, the applications and prospects of advanced coal-fired power generation technologies are analyzed. These technologies can be summarized into three categories:(1) large-scale and higher parameters coal-fired power generation technologies, including 620/650/700 oC ultra-supercritical thermal power and double reheat ultra-supercritical coal-fired power generation technologies;(2) system innovation and specific, highefficiency thermal cycles, which consist of renewable energy-aided coal-fired power generation technologies, a supercritical CO_2 Brayton cycle for coal-fired power plants, large-scale air-cooling coal-fired power plant technologies, and innovative layouts for waste heat utilization and enhanced energy cascade utilization;(3) coal-fired power generation combined with poly-generation technologies, which are represented by integrated gasification combined cycle(IGCC) and integrated gasification fuel cell(IGFC) technologies. Concerning the existing coal-fired power units, which are responsible for peak shaving, possible strategies for enhancing flexibility and operational stability are discussed. Furthermore, future trends for coal-fired power plants coupled with cyber-physical system(CPS) technologies are introduced. The development of advanced, coal-fired power generation technologies demonstrates the progress of science and is suitable for the sustainable development of human society.展开更多
Due to the tight coupling between the cyber and physical sides of a cyber-physical power system(CPPS),the safe and reliable operation of CPPSs is being increasingly impacted by cyber security.This situation poses a ch...Due to the tight coupling between the cyber and physical sides of a cyber-physical power system(CPPS),the safe and reliable operation of CPPSs is being increasingly impacted by cyber security.This situation poses a challenge to traditional security defense systems,which considers the threat from only one side,i.e.,cyber or physical.To cope with cyberattacks,this paper reaches beyond the traditional one-side security defense systems and proposes the concept of cyber-physical coordinated situation awareness and active defense to improve the ability of CPPSs.An example of a regional frequency control system is used to show the validness and potential of this concept.Then,the research framework is presented for studying and implementing this concept.Finally,key technologies for cyber-physical coordinated situation awareness and active defense against cyber-attacks are introduced.展开更多
The consensus protocol of cyber-physical power systems is proposed based on fractional-order multi-agent systems with communication constraints.It aims to enable each generator to reach a time-varying common rotor ang...The consensus protocol of cyber-physical power systems is proposed based on fractional-order multi-agent systems with communication constraints.It aims to enable each generator to reach a time-varying common rotor angle and rotor speed.Communication constraints including event-triggered sampling and partial information transmission are considered to render the consensus protocol more realistic.The Zeno behavior is excluded during the system sampling process.A sufficient condition is derived to solve the consensus problem.The effectiveness of the proposed consensus protocol is demonstrated by a numerical example.展开更多
To warn the cascading failures caused by cyberattacks(CFCAs)in real time and reduce their damage on cyber-physical power systems(CPPSs),a novel early warning method based on attack gains and cost principle(AGCP)is pro...To warn the cascading failures caused by cyberattacks(CFCAs)in real time and reduce their damage on cyber-physical power systems(CPPSs),a novel early warning method based on attack gains and cost principle(AGCP)is proposed.Firstly,according to the CFCA characteristics,the leading role of attackers in the whole evolutionary process is discussed.The breaking out of a CFCA is deduced based on the AGCP from the view of attackers,and the priority order of all CFCAs is then provided.Then,the method to calculate the probability of CFCAs is proposed,and an early warning model for CFCA is designed.Finally,to verify the effectiveness of this method,a variety of CFCAs are simulated in a local CPPS model based on the IEEE 39-bus system.The experimental results demonstrate that this method can be used as a reliable assistant analysis technology to facilitate early warning of CFCAs.展开更多
The extensive application of modern information and communication technology in the power system through the in-depth integration of the information system and the power system has led to the gradual development of th...The extensive application of modern information and communication technology in the power system through the in-depth integration of the information system and the power system has led to the gradual development of the cyberphysical power system(CPPS).While advanced information technology increases the safety and reliability of power system operations,it also increases the risks of fault propagation.To improve the reliability of CPPS from the perspective of power communication routing,it is proposed that the CPPS model and vulnerability assessment of power node reflect the correlation between information and energy flows with the service impact on power grid operation,which is an important index for evaluating communication services.According to the distribution of services at the different important levels on the links,the importance of the cross-layer link is established as the vulnerability evaluation index of the communication network.Then,the routing optimization model is proposed in combination with the service transmission risk under cyber-attack and the operating characteristics of the information system,which is solved through an improved fast-convergent genetic algorithm.The simulation results show that the proposed method allocates the alternate route to the low-risk link without significantly increasing the delay of the main route,which effectively improves the power supply reliability of CPPS in extreme cyber-attack scenarios.展开更多
Economic dispatch problem(EDP)is a fundamental optimization problem in power system operation,which aims at minimizing the total generation cost.In fact,the power grid is becoming a cyber-physical power system(CPPS).T...Economic dispatch problem(EDP)is a fundamental optimization problem in power system operation,which aims at minimizing the total generation cost.In fact,the power grid is becoming a cyber-physical power system(CPPS).Therefore,the quality of communication is a key point.In this paper,considering two important factors,i.e.,time delays and channel noises,a fully distributed consensus based algorithm is proposed for solving EDP.The critical maximum allowable upper bounds of heterogeneous communication delays and self-delays are obtained.It should be pointed out that the proposed algorithm can be robust against the time-varying delays and channel noises considering generator constraints.In addition,even with time-varying delays and channel noises,the power balance of supply and demand is not broken during the optimization.Several simulation studies are presented to validate the correctness and superiority of the developed results.展开更多
基金funded by the National Natural Science Foundation of China under Grant 52177074.
文摘Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat to the safety and reliability of CPPS,and there is an acute need to reduce the probability of these failures.Towards this end,this paper first proposes a cascading failure index to identify and quantify the importance of different information in the same class of communication services.On this basis,a joint improved risk-balanced service function chain routing strategy(SFC-RS)is proposed,which is modeled as a robust optimization problem and solved by column-and-constraint generation(C-CG)algorithm.Compared with the traditional shortest-path routing algorithm,the superiority of SFC-RS is verified in the IEEE 30-bus system.The results demonstrate that SFC-RS effectively mitigates the risk associated with information transmission in the network,enhances information transmission accessibility,and effectively limits communication disruption from becoming the cause of cross-space cascading failures.
基金supported by Project of Science and Technology Commission of Shanghai Municipality(19510750300,21190780300,20JC1414000)111 Project(D18003)the National Science Foundation of China(92067106)。
文摘Dear Editor,To tackle the global challenges of climate change and energy secu-r ity, building low carbon energy systems has become a research hotspot. Cyber-physical power systems(CPPSs) is an important infrastructure to link both energy and transport systems, two major sectors that are difficult to decarbonize, and it is necessary to establish CPPSs model to consider the integration of both renewable energy and electric vehicle(EV).
基金the National Natural Science Foundation of China(61873057)the Education Department of Jilin Province(JJKH20200118KJ).
文摘This study considers the performance impacts of false data injection attacks on the cascading failures of a power cyber-physical system,and identifies vulnerable nodes.First,considering the monitoring and control functions of a cyber network and power flow characteristics of a power network,a power cyber-physical system model is established.Then,the influences of a false data attack on the decision-making and control processes of the cyber network communication processes are studied,and a cascading failure analysis process is proposed for the cyber-attack environment.In addition,a vulnerability evaluation index is defined from two perspectives,i.e.,the topology integrity and power network operation characteristics.Moreover,the effectiveness of a power flow betweenness assessment for vulnerable nodes in the cyberphysical environment is verified based on comparing the node power flow betweenness and vulnerability assessment index.Finally,an IEEE14-bus power network is selected for constructing a power cyber-physical system.Simulations show that both the uplink communication channel and downlink communication channel suffer from false data attacks,which affect the ability of the cyber network to suppress the propagation of cascading failures,and expand the scale of the cascading failures.The vulnerability evaluation index is calculated for each node,so as to verify the effectiveness of identifying vulnerable nodes based on the power flow betweenness.
基金the National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201).
文摘Various distributed cooperative control schemes have been widely utilized for cyber-physical power system(CPPS),which only require local communications among geographic neighbors to fulfill certain goals.However,the process of evaluating the performance of an algorithm for a CPPS can be affected by the physical target characteristics and real communication conditions.To address this potential problem,a testbed with controller hardware-in-the-loop(CHIL)is proposed in this paper.On the basis of a power grid simulation conducted using the real-time simulator RT-LAB developed by the company OPAL-RT,along with a communication network simulation developed with OPNET,multiple distributed controllers were developed with hardware devices to directly collect the real-time operating data of the power system model in RT-LAB and provide local control.Furthermore,the communication between neighboring controllers was realized using the cyber system modelin OPNET with an Ethernet interface.The hardware controllers produced a real-world control behavior instead of a digital simulation,and precisely simulated the dynamic features of a CPPS with high speed.A classic cooperative control case for active power output was studied to explain the integrated simulation process and validate the effectiveness of the co-simulation testbed.
基金supported by the National Natural Science Foundation(NNSF)of China(62003037,61873303)。
文摘This paper designs a decentralized resilient H_(∞)load frequency control(LFC)scheme for multi-area cyber-physical power systems(CPPSs).Under the network-based control framework,the sampled measurements are transmitted through the communication networks,which may be attacked by energylimited denial-of-service(DoS)attacks with a characterization of the maximum count of continuous data losses(resilience index).Each area is controlled in a decentralized mode,and the impacts on one area from other areas via their interconnections are regarded as the additional load disturbance of this area.Then,the closed-loop LFC system of each area under DoS attacks is modeled as an aperiodic sampled-data control system with external disturbances.Under this modeling,a decentralized resilient H_(∞)scheme is presented to design the state-feedback controllers with guaranteed H∞performance and resilience index based on a novel transmission interval-dependent loop functional method.When given the controllers,the proposed scheme can obtain a less conservative H_(∞)performance and resilience index that the LFC system can tolerate.The effectiveness of the proposed LFC scheme is evaluated on a one-area CPPS and two three-area CPPSs under DoS attacks.
基金supported by the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(No.2022C01239)National Natural Science Foundation of China(No.52177119)Fundamental Research Funds for the Central Universities(Zhejiang University NGICS Platform).
文摘Electric power grids are evolving into complex cyber-physical power systems(CPPSs)that integrate advanced information and communication technologies(ICTs)but face increasing cyberspace threats and attacks.This study considers CPPS cyberspace security under distributed denial of service(DDoS)attacks and proposes a nonzero-sum game-theoretical model with incomplete information for appropriate allocation of defense resources based on the availability of limited resources.Task time delay is applied to quantify the expected utility as CPPSs have high time requirements and incur massive damage DDoS attacks.Different resource allocation strategies are adopted by attackers and defenders under the three cases of attack-free,failed attack,and successful attack,which lead to a corresponding consumption of resources.A multidimensional node value analysis is designed to introduce physical and cybersecurity indices.Simulation experiments and numerical results demonstrate the effectiveness of the proposed model for the appropriate allocation of defense resources in CPPSs under limited resource availability.
基金supported by the Science and Technology Program of North China Branch of SGCC under Grant SGTYHT/19-JS-218.
文摘In order to improve the ability of power transmission system to cope with compound faults on the communication side and power side,a cyber-physical collaborative restoration strategy is proposed.First,according to the information system’s role in fault diagnosis,remote control of equipment maintenance and automatic output adjustment of generator restoration,a cyber-physical coupling model is proposed.On this basis,a collaborative restoration model of power transmission system is established by studying interactions among maintenance schedule paths,information system operation,and power system operation.Based on power flow linearization and the large M-ε method,the above model is transformed into a mixed integer linear programming model,whose computational burden is reduced further by the clustering algorithm.According to the parameters of IEEE39 New England system,the geographic wiring diagram of the cyber-physical system is established.Simulation results show the proposed restoration strategy can consider the support function of the information system and space-time coordination of equipment maintenance at both sides comprehensively to speed up load recovery progress.
文摘该文基于信息系统物理化的设想提出电力信息物理系统(cyber-physical power system,CPPS)中的信息流建模和计算分析方法。采用连续时间函数来刻画信息流的特征,并定义信息网络运行参数为流量累积函数、信息流速和时延。首先,基于遍历法搜索出信息流路径,建立信息流速矩阵的范式;然后利用改进的网络演算(network calculus,NC)特性赋值流速矩阵的元素;进一步采用流量累积函数表征信源数据发送规律,从而显式求解时延上界。最后将提出的信息流建模方法应用于智能变电站自动化系统的时延计算,通过与OPNET的仿真结果相比较,验证所提出模型的有效性,而且该方法可以提供定量分析指标以优化变电站组网方案设计中的信息流分布。
基金This research is partially supported through the National Natural Science Foundation of China(Grant No.51537010).
文摘The Cyber-Physical Power System(CPPS)is one of the most critical infrastructure systems in a country because a stable and secure power supply is a key foundation for national and social development.In recent years,resilience has become a major topic in preventing and mitigating the risks caused by large-scale blackouts of CPPSs.Accordingly,the concept and significance of CPPS resilience are at first explained from the engineering perspective in this study.Then,a review of representative quantitative assessment measures of CPPS resilience applied in the existing literature is provided.On the basis of these assessment measures,the optimization methods of CPPS resilience are reviewed from three perspectives,which are mainly focused on the current research,namely,optimizing the recovery sequence of components,identifying and protecting critical nodes,and enhancing the coupling patterns between physical and cyber networks.The recent advances in modeling methods for cascading failures within the CPPS,which is the theoretical foundation for the resilience assessment and optimization research of CPPSs,are also presented.Lastly,the challenges and future research directions for resilience optimizing of CPPSs are discussed.
基金supported in part by the National Science Foundation of China(No.92067106)111 Project(No.D18003)。
文摘Potential malicious cyber-attacks to power systems which are connected to a wide range of stakeholders from the top to tail will impose significant societal risks and challenges.The timely detection and defense are of crucial importance for safe and reliable operation of cyber-physical power systems(CPPSs).This paper presents a comprehensive review of some of the latest attack detection and defense strategies.Firstly,the vulnerabilities brought by some new information and communication technologies(ICTs)are analyzed,and their impacts on the security of CPPSs are discussed.Various malicious cyber-attacks on cyber and physical layers are then analyzed within CPPSs framework,and their features and negative impacts are discussed.Secondly,two current mainstream attack detection methods including state estimation based and machine learning based methods are analyzed,and their benefits and drawbacks are discussed.Moreover,two current mainstream attack defense methods including active defense and passive defense methods are comprehensively discussed.Finally,the trends and challenges in attack detection and defense strategies in CPPSs are provided.
文摘随着电力系统的安全可靠运行越来越依赖于通信系统,时间延迟也成为影响电力信息物理系统同步的主要因素之一。针对具有双重时延的电力信息物理系统(cyber physical power system,CPPS)的同步问题,设计控制器解决时延对系统同步的影响。首先,搭建具有双重时延的电力信息物理系统模型,然后根据系统模型设计出控制器,并通过构造Lyapunov函数证明控制器的有效性。对于大规模的系统,提出自适应牵制同步控制器,即将控制器添加到按照结构熵筛选出的牵制节点集的节点。结构熵可以解决当节点度相同时牵制节点的选择问题。最后通过两个算例验证了所提方法的可行性。
基金supported by the National Nature Science Foundation of China(Grant No.51821004)supported by National Soft Science Projects:"Frontier tracking research on science and technology in the field of energy" program
文摘The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy internet. Progressive penetration of intermittent renewable energy sources into the energy system has led to unprecedented challenges to the currently wide use of coal-fired power generation technologies. Here, the applications and prospects of advanced coal-fired power generation technologies are analyzed. These technologies can be summarized into three categories:(1) large-scale and higher parameters coal-fired power generation technologies, including 620/650/700 oC ultra-supercritical thermal power and double reheat ultra-supercritical coal-fired power generation technologies;(2) system innovation and specific, highefficiency thermal cycles, which consist of renewable energy-aided coal-fired power generation technologies, a supercritical CO_2 Brayton cycle for coal-fired power plants, large-scale air-cooling coal-fired power plant technologies, and innovative layouts for waste heat utilization and enhanced energy cascade utilization;(3) coal-fired power generation combined with poly-generation technologies, which are represented by integrated gasification combined cycle(IGCC) and integrated gasification fuel cell(IGFC) technologies. Concerning the existing coal-fired power units, which are responsible for peak shaving, possible strategies for enhancing flexibility and operational stability are discussed. Furthermore, future trends for coal-fired power plants coupled with cyber-physical system(CPS) technologies are introduced. The development of advanced, coal-fired power generation technologies demonstrates the progress of science and is suitable for the sustainable development of human society.
基金This work was supported in part by the National Key Research and Development Program of China(No.2017YFB0903000)the Science and Technology Project of the State Grid Corporation of China(Basic Theory and Methodology for Analysis and Control of Grid Cyber Physical Systems(Supporting Projects)).
文摘Due to the tight coupling between the cyber and physical sides of a cyber-physical power system(CPPS),the safe and reliable operation of CPPSs is being increasingly impacted by cyber security.This situation poses a challenge to traditional security defense systems,which considers the threat from only one side,i.e.,cyber or physical.To cope with cyberattacks,this paper reaches beyond the traditional one-side security defense systems and proposes the concept of cyber-physical coordinated situation awareness and active defense to improve the ability of CPPSs.An example of a regional frequency control system is used to show the validness and potential of this concept.Then,the research framework is presented for studying and implementing this concept.Finally,key technologies for cyber-physical coordinated situation awareness and active defense against cyber-attacks are introduced.
基金jointly supported by the Research Project Supported by the Shanxi Scholarship Council of China(No.2015044)the Fundamental Research Project of Shanxi Province(No.2015021085)the National Science Foundation of China(No.61603268,No.61272530 and No.61573096).
文摘The consensus protocol of cyber-physical power systems is proposed based on fractional-order multi-agent systems with communication constraints.It aims to enable each generator to reach a time-varying common rotor angle and rotor speed.Communication constraints including event-triggered sampling and partial information transmission are considered to render the consensus protocol more realistic.The Zeno behavior is excluded during the system sampling process.A sufficient condition is derived to solve the consensus problem.The effectiveness of the proposed consensus protocol is demonstrated by a numerical example.
基金supported by the National Key Research and Development Program of China(No.2017YFB0903000)National Natural Science Foundation of China(No.61471328)Natural Science Foundation of Tianjin City(No.15JCQNJC07000).
文摘To warn the cascading failures caused by cyberattacks(CFCAs)in real time and reduce their damage on cyber-physical power systems(CPPSs),a novel early warning method based on attack gains and cost principle(AGCP)is proposed.Firstly,according to the CFCA characteristics,the leading role of attackers in the whole evolutionary process is discussed.The breaking out of a CFCA is deduced based on the AGCP from the view of attackers,and the priority order of all CFCAs is then provided.Then,the method to calculate the probability of CFCAs is proposed,and an early warning model for CFCA is designed.Finally,to verify the effectiveness of this method,a variety of CFCAs are simulated in a local CPPS model based on the IEEE 39-bus system.The experimental results demonstrate that this method can be used as a reliable assistant analysis technology to facilitate early warning of CFCAs.
基金supported by the National Key Research and Development Program of China under Grant 2016YFB0901100.
文摘The extensive application of modern information and communication technology in the power system through the in-depth integration of the information system and the power system has led to the gradual development of the cyberphysical power system(CPPS).While advanced information technology increases the safety and reliability of power system operations,it also increases the risks of fault propagation.To improve the reliability of CPPS from the perspective of power communication routing,it is proposed that the CPPS model and vulnerability assessment of power node reflect the correlation between information and energy flows with the service impact on power grid operation,which is an important index for evaluating communication services.According to the distribution of services at the different important levels on the links,the importance of the cross-layer link is established as the vulnerability evaluation index of the communication network.Then,the routing optimization model is proposed in combination with the service transmission risk under cyber-attack and the operating characteristics of the information system,which is solved through an improved fast-convergent genetic algorithm.The simulation results show that the proposed method allocates the alternate route to the low-risk link without significantly increasing the delay of the main route,which effectively improves the power supply reliability of CPPS in extreme cyber-attack scenarios.
基金supported by the National Natural Science Foundation of China(No.61833008)the National Natural Science Foundation of China-State Grid Joint Fund for Smart Grid(No.U1966202)the Six Talent Peaks High Level Project of Jiangsu Province(No.2017-XNY-004).
文摘Economic dispatch problem(EDP)is a fundamental optimization problem in power system operation,which aims at minimizing the total generation cost.In fact,the power grid is becoming a cyber-physical power system(CPPS).Therefore,the quality of communication is a key point.In this paper,considering two important factors,i.e.,time delays and channel noises,a fully distributed consensus based algorithm is proposed for solving EDP.The critical maximum allowable upper bounds of heterogeneous communication delays and self-delays are obtained.It should be pointed out that the proposed algorithm can be robust against the time-varying delays and channel noises considering generator constraints.In addition,even with time-varying delays and channel noises,the power balance of supply and demand is not broken during the optimization.Several simulation studies are presented to validate the correctness and superiority of the developed results.