A new LiCoO2 recovery technology for Li-ion batteries was studied in this paper. LiCoO2 was peeled from the Al foil with dimethyl acetamide (DMAC), and then polyvinylidene fluoride (PVDF) and carbon powders in the...A new LiCoO2 recovery technology for Li-ion batteries was studied in this paper. LiCoO2 was peeled from the Al foil with dimethyl acetamide (DMAC), and then polyvinylidene fluoride (PVDF) and carbon powders in the active material were eliminated by high temperature calcining. Subsequently, Li2CO3, LiOH-H20 and LiAc-2H2O were added into the recycled powders to adjust the Li/Co molar ratio to 1.00. The new LiCoO2 was obtained by calcining the mixture at 850℃ for 12 h in air. The structure and morphology of the recycled powders and resulting samples were studied by XRD and SEM techniques, respectively. The layered structure of LiCoO2 synthesized by adding Li2CO3 is the best, and it is found to have the best characteristics as a cathode material in terms of charge-discharge capacity and cycling performance. The first discharge capacity is 160 mAh·g^-1 between 3.0-4.3 V. The discharge capacity after cycling for 50 times is still 145.2 mAh·g^-1.展开更多
Plasma spray-physical vapor deposition(PS-PVD)as a novel process was used to prepare feather-like columnar thermal barrier coatings(TBCs).This special microstructure shows good strain tolerance and non-line-of-sight(N...Plasma spray-physical vapor deposition(PS-PVD)as a novel process was used to prepare feather-like columnar thermal barrier coatings(TBCs).This special microstructure shows good strain tolerance and non-line-of-sight(NLOS)deposition,giving great potential application in aero-engine.However,due to serious service environment of aero-engine,particle erosion performance is a weakness for PS-PVD 7YSZ TBCs.As a solution,an Al-modification approach was proposed in this investigation.Through in-situ reaction of Al and ZrO2,anα-Al2O3 overlay can be formed on the surface of 7YSZ columnar coating.The results demonstrate that this approach can improve particle erosion resistance since hardness improvement of Al-modified TBCs.Meanwhile,as another important performance of thermal cycle,it has a better optimization with 350-cycle water-quenching,compared with the as-sprayed TBCs.展开更多
Layered oxide is a promising cathode material for sodium-ion batteries because of its high-capacity,high operating voltage,and simple synthesis.Cycling performance is an important criterion for evaluating the applicat...Layered oxide is a promising cathode material for sodium-ion batteries because of its high-capacity,high operating voltage,and simple synthesis.Cycling performance is an important criterion for evaluating the application prospects of batteries.However,facing challenges,including phase transitions,ambient stability,side reactions,and irreversible anionic oxygen activity,the cycling performance of layered oxide cathode materials still cannot meet the application requirements.Therefore,this review proposes several strategies to address these challenges.First,bulk doping is introduced from three aspects:cationic single doping,anionic single doping,and multi-ion doping.Second,homogeneous surface coating and concentration gradient modification are reviewed.In addition,methods such as mixed structure design,particle engineering,high-entropy material construction,and integrated modification are proposed.Finally,a summary and outlook provide a new horizon for developing and modifying layered oxide cathode materials.展开更多
In challenging operational environments,Lithium-ion batteries(LIBs)inevitably experience mechanical stresses,including impacts and extrusion,which can lead to battery damage,failure,and even the occurrence of fire and...In challenging operational environments,Lithium-ion batteries(LIBs)inevitably experience mechanical stresses,including impacts and extrusion,which can lead to battery damage,failure,and even the occurrence of fire and explosion incidents.Consequently,it is imperative to investigate the safety performance of LIBs under mechanical loads.This study is grounded in a more realistic coupling scenario consisting of electrochemical cycling and low-velocity impact.We systematically and experimentally uncovered the mechanical,electrochemical,and thermal responses,damage behavior,and corresponding mechanisms under various conditions.Our study demonstrates that higher impact energy results in increased structural stiffness,maximum temperature,and maximum voltage drop.Furthermore,heightened impact energy significantly influences the electrical resistance parameters within the internal resistance.We also examined the effects of State of Charge(SOC)and C-rates.The methodology and experimental findings will offer insights for enhancing the safety design,conducting risk assessments,and enabling the cascading utilization of energy storage systems based on LIBs.展开更多
Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challen...Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challenges due to the dissolution of intermediate reaction products.In this work,we aim to harness the advantages of Se while reducing its limitations by preparing a core-shell mesoporous carbon hollow sphere with a titanium nitride(C@TiN)host to load 63.9wt%Se as the positive electrode material for Al-Se batteries.Using the physical and chemical confinement offered by the hollow mesoporous carbon and TiN,the obtained core-shell mesoporous carbon hollow spheres coated with Se(Se@C@TiN)display superior utilization of the active material and remarkable cycling stability.As a result,Al-Se batteries equipped with the as-prepared Se@C@TiN composite positive electrodes show an initial discharge specific capacity of 377 mAh·g^(-1)at a current density of 1000 mA·g^(-1)while maintaining a discharge specific capacity of 86.0 mAh·g^(-1)over 200 cycles.This improved cycling performance is ascribed to the high electrical conductivity of the core-shell mesoporous carbon hollow spheres and the unique three-dimensional hierarchical architecture of Se@C@TiN.展开更多
Na^+ doped sample Li0.95Na0.05FePO4 was prepared through solid state method. Structure characterization shows Na^+ is successfully introduced into the LiFePO4 matrix. Scanning electron microscopy shows the particle ...Na^+ doped sample Li0.95Na0.05FePO4 was prepared through solid state method. Structure characterization shows Na^+ is successfully introduced into the LiFePO4 matrix. Scanning electron microscopy shows the particle size mainly ranges in 1-3 μm. X-ray diffraction Rietveld refinement demonstrates lattice distortion with an increased cell volume. As one cathode material, it has a discharge capacity of 150 mAh/g at 0.1 C rate. The material exhibits a capacity of 109 and 107 mAh/g at 5 and 7.5 C respectively. When cycled at 1 and 5 C, the material retains 84% (after 1000 cycles) and 86% (after 350 cycles) of the initial discharge capacity respectively indicating excellent structure stability and cycling performance. Na^+ doping enhances the electrochemical activity especially the cycle performance effectively.展开更多
Dynamic performance is important to the controlling and monitoring of the organic Rankine cycle(ORC) system so to avoid the occurrence of unwanted conditions. A small scale waste heat recovery system with organic Rank...Dynamic performance is important to the controlling and monitoring of the organic Rankine cycle(ORC) system so to avoid the occurrence of unwanted conditions. A small scale waste heat recovery system with organic Rankine cycle was constructed and the dynamic behavior was presented. In the dynamic test, the pump was stopped and then started. In addition, there was a step change of the flue gas volume flow rate and the converter frequency of multistage pump, respectively. The results indicate that the working fluid flow rate has the shortest response time, followed by the expander inlet pressure and the expander inlet temperature.The operation frequency of pump is a key parameter for the ORC system. Due to a step change of pump frequency(39.49-35.24 Hz),the expander efficiency and thermal efficiency drop by 16% and 21% within 2 min, respectively. Besides, the saturated mixture can lead to an increase of the expander rotation speed.展开更多
Activated carbon aerogels(ACAs) derived from sol-gel polycondensation of resorcinol (R) and formaldehyde (F) were pyrolyzed under Ar flow and activated in CO2 atmosphere. The morphology of ACAs was characterized...Activated carbon aerogels(ACAs) derived from sol-gel polycondensation of resorcinol (R) and formaldehyde (F) were pyrolyzed under Ar flow and activated in CO2 atmosphere. The morphology of ACAs was characterized by scanning electron microscopy (SEM) and the structural properties were determined by N2 adsorption at 77 K. The results show that ACAs have a typical three-dimensional nanonetwork structure composing of cross-linking of carbon nanoparticles. The specific surface area and the total pore volume remarkably increase with increasing activation time while the previous porous structure still remains. The specific capacitance of the 950-10-ACA electrode can reach up to 212.3 F/g in 6 mol/L KOH electrolyte. The results of constant-current charge-discharge testing indicate that the ACAs electrodes present fast charge- discharge rate and long cycle life (about 98% capacitance retained after 3000 charge-discharge cycles at 1.25 mA/cm2). Lower internal resistances can be achieved for 950-10-ACA electrode in KOH electrolyte. Our investigations are very important to improve the wettability and electrochemical performance of electrode for supercapacitors.展开更多
Lithium sulfur batteries(LSBs)are recognized as promising devices for developing next-generation energy storage systems.In addition,they are attractive rechargeable battery systems for replacing lithium-ion batteries(...Lithium sulfur batteries(LSBs)are recognized as promising devices for developing next-generation energy storage systems.In addition,they are attractive rechargeable battery systems for replacing lithium-ion batteries(LIBs)for commercial use owing to their higher theoretical energy density and lower cost compared to those of LIBs.However,LSBs are still beset with some persistent issues that prevent them from being used industrially,such as the unavoidable dissolution of lithium polysulfide intermediates during electrochemical reactions and large volume expansion(up to 80%)upon the formation of Li_(2)S,resulting in serious battery life and safety limitations.In the process of solving these problems,it is necessary to maintain a high sulfur content in the cathode materials to ensure that the LSBs have high energy densities and excellent cycle performance.In this review,the novel preparation methods and cathode materials used for preparing LSBs in recent years are reviewed considering the sulfur content and cycle performance.In addition,the problems and difficulties in practically applying cathode materials are described,and the development trend is discussed.展开更多
To solve low efficiency,environmental pollution,and toxicity for synthesizing zeolitic imidazolate frameworks(ZIFs)in organic solvents,a KOH-assisted aqueous strategy is proposed to synthesize bimetallic ZIFs polyhedr...To solve low efficiency,environmental pollution,and toxicity for synthesizing zeolitic imidazolate frameworks(ZIFs)in organic solvents,a KOH-assisted aqueous strategy is proposed to synthesize bimetallic ZIFs polyhedrons,which are used as precursors to prepare bimetallic selenide and N-doped carbon(NC)composites.Among them,Fe–Co–Se/NC retains the three-dimensional(3D)polyhedrons with mesoporous structure,and Fe–Co–Se nanoparticles are uniform in size and evenly distributed.When assessed as anode material for lithium-ion batteries,Fe–Co–Se/NC achieves an excellent initial specific capacity of 1165.9 m Ah·g^(-1)at 1.0 A·g^(-1),and the reversible capacity of Fe–Co–Se/NC anode is 1247.4 m Ah·g^(-1)after 550 cycles.It is attributed to that the uniform composite of bimetallic selenides and N-doped carbon can effectively tune redox active sites,the stable 3D structure of Fe–Co–Se/NCs guarantees the structural stability and wettability of the electrolyte,and the uniform distribution of Fe–Co–S nanoparticles in size esuppresses the volume expansion and accelerates the electrochemical reaction kinetics.展开更多
To solve the environmental pollution and low yield during the sythesis of zeolitic imidazolate frameworks(ZIFs)and their derived materials,a KOH-assisted aqueous strategy is proposed to synthesize cobalt zeolitic imid...To solve the environmental pollution and low yield during the sythesis of zeolitic imidazolate frameworks(ZIFs)and their derived materials,a KOH-assisted aqueous strategy is proposed to synthesize cobalt zeolitic imidazolate framework(ZIF-67)polyhedrons,which are used as precursors to prepare cobalt selenide/carbon composites with different crystal phases(Co_(0.85)Se,CoSe_2).When evaluated as anode material for lithium ion batteries,Co_(0.85)Se/C composites deliver a reversible capacity of 758.7 m A·h·g^(-1)with a capacity retention rate of 90.5%at 1.0 A·g^(-1)after 500 cycles,and the superior rate capability is 620 m A·h·g^(-1)at 2.0 A·g^(-1).The addition of KOH accelerates the production of ZIF-67 crystals by boosting deprotonation of dimethylimidazole,resulting in rapid growth and structures transition from two-dimensional to three-dimensional of ZIF-67 in aqueous solution,which greatly promotes the application of MOFs in the field of energy storage and conversion.展开更多
The construction of stable cathode electrolyte interphase(CEI)is the key to improve the NCM811 particle structure and interfacial stability via electrolyte engineering.In He’s work,lithium hexamethyldisilazide(LiHMDS...The construction of stable cathode electrolyte interphase(CEI)is the key to improve the NCM811 particle structure and interfacial stability via electrolyte engineering.In He’s work,lithium hexamethyldisilazide(LiHMDS)as the electrolyte additive is proposed to facilitate the generation of stable CEI on NCM811 cathode surface and eliminate H_(2)O and HF in the electrolyte at the same time,which boosts the cycling performance of Li||NCM811 battery up to 1000 or 500 cycles with 4.5 V cut-off voltage at 25 or 60℃.展开更多
Sodium-ion battery is a potential application system for large-scale energy storage due to the advantage of higher nature abundance and lower production cost of sodium-based materials.However,there exist inevitably th...Sodium-ion battery is a potential application system for large-scale energy storage due to the advantage of higher nature abundance and lower production cost of sodium-based materials.However,there exist inevitably the safety problems such as flammability due to the use of the same type of organic liquid electrolyte with lithium-ion battery.Gel polymer electrolytes are being considered as an effective solution to replace conventional organic liquid electrolytes for building safer sodium-ion batteries.In this review paper,the authors present a comprehensive overview of the research progress in electrochemical and physical properties of the gel polymer electrolyte-based sodium batteries.The gel polymer electrolytes based on different polymer hosts namely poly(ethylene oxide),poly(acrylonitrile),poly(methyl methacrylate),poly(vinylidene fluoride),poly(vinylidene fluoride-hexafluoro propylene),and other new polymer networks are summarized.The ionic conductivity,ion transference number,electrochemical window,thermal stability,mechanical property,and interfacial issue with electrodes of gel polymer electrolytes,and the corresponding influence factors are described in detail.Furthermore,the ion transport pathway and ion conduction mechanism are analyzed and discussed.In addition,the advanced gel polymer electrolyte systems including flame-retardant polymer electrolytes,composite gel polymer electrolytes,copolymerization,single-ion conducting polymer electrolytes,etc.with more superior and functional performance are classified and summarized.Finally,the application prospects,development opportunities,remaining challenges,and possible solutions are discussed.展开更多
Due to its high operational voltage and energy density,P2-type Na_(0.67)Ni_(0.3)Mn_(0.7)O_(2) has become a leading cathode material for sodium-ion batteries(SIBs),which is an ideal option for large-scale energy storag...Due to its high operational voltage and energy density,P2-type Na_(0.67)Ni_(0.3)Mn_(0.7)O_(2) has become a leading cathode material for sodium-ion batteries(SIBs),which is an ideal option for large-scale energy storage.However,the practical application of P2-type Na_(0.67)Ni_(0.3)Mn_(0.7)O_(2) is limited by the capacity constraints and unwanted phase transitions,presenting significant challenges to the widespread application of SIBs.To address these challenges and optimize the electrochemical properties of the P2 phase cathode material,this study proposes a Cu and Zn co-doped strategy to improve the electrochemical performance.The incorporation of Cu/Zn can stabilize the P2-phase structure against P2-O2 phase transitions,thus enhancing its electrochemical properties.The as-obtained P2-type Na0.67[Ni_(0.3)Mn_(0.58)Cu_(0.09)Zn_(0.03)]O_(2) cathode material shows an impressive cycling stability,maintaining 80%capacity retention after 1000 cycles at 2 C.The cyclic voltammetry(CV)tests show that the Cu^(2+)/Cu^(3+)redox reaction is also involved in charge compensation during the charge/discharge process.展开更多
Effects of film-forming additive on stability of electrode and cycling performance of LiFePO4/graphite cell at elevated temperature were studied. Two 18650 cells with and without VC additive were investigated by galva...Effects of film-forming additive on stability of electrode and cycling performance of LiFePO4/graphite cell at elevated temperature were studied. Two 18650 cells with and without VC additive were investigated by galvanostatic cycling, electrochemical impedance spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis and Raman spectroscopy. The results show that in the presence of VC additive, dissolution of Fe from LiFePO4 material is greatly depressed and stability of graphite structure is improved; the additive can not only reduce reaction of electrolyte on surface of LiFePO4 electrode but also suppress reduction of solvent and thickening of the solid electrolyte interface (SEI) layer on graphite surface. Electrolyte with VC is considered to be a good candidate for improving cycling performance of the LiFePOa/graphite cell at elevated temperature.展开更多
LiNi0.8Co0.1Mn0.1O2 powder was prepared by mixing LiOH·H2O and co-precipitated Ni0.8Co0.1Mn0.1(OH)2 at a molar ratio of 1:1.05, followed by sintering at different temperatures. The effects of temperature on th...LiNi0.8Co0.1Mn0.1O2 powder was prepared by mixing LiOH·H2O and co-precipitated Ni0.8Co0.1Mn0.1(OH)2 at a molar ratio of 1:1.05, followed by sintering at different temperatures. The effects of temperature on the morphology, structure and electrochemical performance were extensively studied. SEM and XRD results demonstrate that the sintering temperature has large influence on the morphology and structure and suitable temperature is very important to obtain spherical materials and suppresses the ionic distribution. The charge-discharge tests show that the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 powders becomes better with the increase of temperature from 700 ℃ to 750 ℃ and higher temperature will deteriorate the performance. Although both of materials obtained at 750 ℃ and 780 ℃ demonstrate almost identical cyclic stability at 2C rate, which delivers 71.9%retention after 200 cycles, the rate performance of powder calcined at 780 ℃ is much poorer than that at 750 ℃. The XRD results demonstrate that the poor performance is ascribed to more severe ionic distribution caused by higher temperature.展开更多
Lil.03Co0.10MnL90FxO4-x (z=0, 0.05, 0.10, 0.15 and 0.20) cathode materials were synthesized by solid-state reaction using Mn203, Li2CO3, C0203 and LiF as raw materials. The chemical compositions of Lil.03COo.lMnl.9F...Lil.03Co0.10MnL90FxO4-x (z=0, 0.05, 0.10, 0.15 and 0.20) cathode materials were synthesized by solid-state reaction using Mn203, Li2CO3, C0203 and LiF as raw materials. The chemical compositions of Lil.03COo.lMnl.9FzO4-z were examined by inductively coupled plasma (ICP) and potentiometric analysis, the effects of F-substitution contents on structure, morphology and electrochemical performance of spinel Lil.03Coo.loMnl.9004 were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurements. It is found that the Lix.03 Co0.10Mnl.9oFzOa_z samples display a single phase of cubic spinel structure. The lattice parameters increase with the increase of F content when z〈_0.10. However, the lattice parameters begin to decrease when F content continues to increase. The results show that an appropriate amount ofF substitution for O element with Li+, Co3+ improves discharge capacity and structure stability of the materials. The Lil.03Co0.10Mnl.90FoAsO3.s5 sample shows an initial discharge capacity of 111.0 mA.h/g and has capacity retention of 97.0% after 30 cycles at 0.2C.展开更多
The spinel LiMn2O4 cathode material was synthesized with the solid-state reaction method. Four manganese compounds including electrolytic manganese dioxide (EMD), MnCO3, Mn3O4 and nano-EMD were used as Mn sources whil...The spinel LiMn2O4 cathode material was synthesized with the solid-state reaction method. Four manganese compounds including electrolytic manganese dioxide (EMD), MnCO3, Mn3O4 and nano-EMD were used as Mn sources while LiOH·H2O was used as the uniform Li source. The crystal structure characteristics of these samples produced were investigated by means of XRD, SEM, particle size distribution analysis and specific surface area testing. Their electrochemical properties were also studied by comparing their specific capacity, charge and discharge efficiency and cycle performance.展开更多
Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems.And applicable host for NH_(4)^(+)in aqueous solution is always in the process of development.On the basis of density ...Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems.And applicable host for NH_(4)^(+)in aqueous solution is always in the process of development.On the basis of density functional theory calcula-tions,the excellent performance of NH_(4)^(+)insertion in Prussian blue analogues(PBAs)is proposed,especially for copper hexacyanoferrate(CuHCF).In this work,we prove the outstanding cycling and rate performance of CuHCF via electrochemical analyses,delivering no capacity fading during ultra-long cycles of 3000 times and high capacity retention of 93.6%at 50 C.One of main contributions to superior performance from highly reversible redox reaction and structural change is verified during the ammoniation/de-ammoniation progresses.More importantly,we propose the NH_(4)^(+)diffusion mechanism in CuHCF based on con-tinuous formation and fracture of hydrogen bonds from a joint theoretical and experimental study,which is another essential reason for rapid charge transfer and superior NH_(4)^(+)storage.Lastly,a full cell by coupling CuHCF cathode and polyaniline anode is constructed to explore the practical application of CuHCF.In brief,the outstanding aqueous NH_(4)^(+)storage in cubic PBAs creates a blueprint for fast and sustainable energy storage.展开更多
The mechanism for capacity fading of18650lithium ion full cells under room-temperature(RT)is discussedsystematically.The capacity loss of18650cells is about12.91%after500cycles.The cells after cycles are analyzed by X...The mechanism for capacity fading of18650lithium ion full cells under room-temperature(RT)is discussedsystematically.The capacity loss of18650cells is about12.91%after500cycles.The cells after cycles are analyzed by XRD,SEM,EIS and CV.Impedance measurement shows an overall increase in the cell resistance upon cycling.Moreover,it also presents anincreased charge-transfer resistance(Rct)for the cell cycled at RT.CV test shows that the reversibility of lithium ioninsertion/extraction reaction is reduced.The capacity fading for the cells cycled can be explained by taking into account the repeatedfilm formation over the surface of anode and the side reactions.The products of side reactions deposited on separator are able toreduce the porosity of separator.As a result,the migration resistance of lithium ion between the cathode and anode would beincreased,leading the fading of capacity and potential.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 50762004 and 50864004)
文摘A new LiCoO2 recovery technology for Li-ion batteries was studied in this paper. LiCoO2 was peeled from the Al foil with dimethyl acetamide (DMAC), and then polyvinylidene fluoride (PVDF) and carbon powders in the active material were eliminated by high temperature calcining. Subsequently, Li2CO3, LiOH-H20 and LiAc-2H2O were added into the recycled powders to adjust the Li/Co molar ratio to 1.00. The new LiCoO2 was obtained by calcining the mixture at 850℃ for 12 h in air. The structure and morphology of the recycled powders and resulting samples were studied by XRD and SEM techniques, respectively. The layered structure of LiCoO2 synthesized by adding Li2CO3 is the best, and it is found to have the best characteristics as a cathode material in terms of charge-discharge capacity and cycling performance. The first discharge capacity is 160 mAh·g^-1 between 3.0-4.3 V. The discharge capacity after cycling for 50 times is still 145.2 mAh·g^-1.
基金We would like to acknowledge the financial support from the National Natural Science Foundation of China(52172067)Guangdong Province Outstanding Youth Foundation(2021B1515020038)+1 种基金Guangdong Special Support Program(2019BT02C629)Guangdong Academy of Sciences Program(2020GDASYL-20200104030).
文摘Plasma spray-physical vapor deposition(PS-PVD)as a novel process was used to prepare feather-like columnar thermal barrier coatings(TBCs).This special microstructure shows good strain tolerance and non-line-of-sight(NLOS)deposition,giving great potential application in aero-engine.However,due to serious service environment of aero-engine,particle erosion performance is a weakness for PS-PVD 7YSZ TBCs.As a solution,an Al-modification approach was proposed in this investigation.Through in-situ reaction of Al and ZrO2,anα-Al2O3 overlay can be formed on the surface of 7YSZ columnar coating.The results demonstrate that this approach can improve particle erosion resistance since hardness improvement of Al-modified TBCs.Meanwhile,as another important performance of thermal cycle,it has a better optimization with 350-cycle water-quenching,compared with the as-sprayed TBCs.
基金the Fundamental Research Funds for the Central Universities,China(No.06500177)the National Natural Science Foundation of China Joint Fund Project(No.U1764255)。
文摘Layered oxide is a promising cathode material for sodium-ion batteries because of its high-capacity,high operating voltage,and simple synthesis.Cycling performance is an important criterion for evaluating the application prospects of batteries.However,facing challenges,including phase transitions,ambient stability,side reactions,and irreversible anionic oxygen activity,the cycling performance of layered oxide cathode materials still cannot meet the application requirements.Therefore,this review proposes several strategies to address these challenges.First,bulk doping is introduced from three aspects:cationic single doping,anionic single doping,and multi-ion doping.Second,homogeneous surface coating and concentration gradient modification are reviewed.In addition,methods such as mixed structure design,particle engineering,high-entropy material construction,and integrated modification are proposed.Finally,a summary and outlook provide a new horizon for developing and modifying layered oxide cathode materials.
基金supported by the National Natural Science Foundation of China(Grant No.12111530222)the Fundamental Research Funds for the Central Universities(Grant No.23GH02023)+2 种基金the Taicang Basic Research Program Project(Grant No.TC2023JC15)the Shaanxi Key Research and Development Program for International Cooperation and Exchanges(Grant No.2022KWZ-23)the 111 Project of China(Grant No.BP0719007).
文摘In challenging operational environments,Lithium-ion batteries(LIBs)inevitably experience mechanical stresses,including impacts and extrusion,which can lead to battery damage,failure,and even the occurrence of fire and explosion incidents.Consequently,it is imperative to investigate the safety performance of LIBs under mechanical loads.This study is grounded in a more realistic coupling scenario consisting of electrochemical cycling and low-velocity impact.We systematically and experimentally uncovered the mechanical,electrochemical,and thermal responses,damage behavior,and corresponding mechanisms under various conditions.Our study demonstrates that higher impact energy results in increased structural stiffness,maximum temperature,and maximum voltage drop.Furthermore,heightened impact energy significantly influences the electrical resistance parameters within the internal resistance.We also examined the effects of State of Charge(SOC)and C-rates.The methodology and experimental findings will offer insights for enhancing the safety design,conducting risk assessments,and enabling the cascading utilization of energy storage systems based on LIBs.
基金supported by the National Natural Science Foundation of China(No.52374350)China Postdoctoral Science Foundation(Nos.2020M680347 and 2021T140051)the Fundamental Research Funds for the Central Universities(No.FRF-TP-20-045A1)。
文摘Incorporating a selenium(Se)positive electrode into aluminum(Al)-ion batteries is an effective strategy for improving the overall battery performance.However,the cycling stability of Se positive electrodes has challenges due to the dissolution of intermediate reaction products.In this work,we aim to harness the advantages of Se while reducing its limitations by preparing a core-shell mesoporous carbon hollow sphere with a titanium nitride(C@TiN)host to load 63.9wt%Se as the positive electrode material for Al-Se batteries.Using the physical and chemical confinement offered by the hollow mesoporous carbon and TiN,the obtained core-shell mesoporous carbon hollow spheres coated with Se(Se@C@TiN)display superior utilization of the active material and remarkable cycling stability.As a result,Al-Se batteries equipped with the as-prepared Se@C@TiN composite positive electrodes show an initial discharge specific capacity of 377 mAh·g^(-1)at a current density of 1000 mA·g^(-1)while maintaining a discharge specific capacity of 86.0 mAh·g^(-1)over 200 cycles.This improved cycling performance is ascribed to the high electrical conductivity of the core-shell mesoporous carbon hollow spheres and the unique three-dimensional hierarchical architecture of Se@C@TiN.
基金V. ACKNOWLEDGMENTS The work was supported by the Natural Science Foundation of Anhui province (No.90414178) and USTC-NSRL Association funding (No.KY2060030010).
文摘Na^+ doped sample Li0.95Na0.05FePO4 was prepared through solid state method. Structure characterization shows Na^+ is successfully introduced into the LiFePO4 matrix. Scanning electron microscopy shows the particle size mainly ranges in 1-3 μm. X-ray diffraction Rietveld refinement demonstrates lattice distortion with an increased cell volume. As one cathode material, it has a discharge capacity of 150 mAh/g at 0.1 C rate. The material exhibits a capacity of 109 and 107 mAh/g at 5 and 7.5 C respectively. When cycled at 1 and 5 C, the material retains 84% (after 1000 cycles) and 86% (after 350 cycles) of the initial discharge capacity respectively indicating excellent structure stability and cycling performance. Na^+ doping enhances the electrochemical activity especially the cycle performance effectively.
基金Project(2009Gk2009)supported by the Science and Technology Department Funds of Hunan Province,ChinaProject(12C0379)supported by the Scientific Research Fund of Hunan Province,ChinaProject(13QDZ04)supported by the Scientific Research Foundation for Doctors of Xiang Tan University,China
文摘Dynamic performance is important to the controlling and monitoring of the organic Rankine cycle(ORC) system so to avoid the occurrence of unwanted conditions. A small scale waste heat recovery system with organic Rankine cycle was constructed and the dynamic behavior was presented. In the dynamic test, the pump was stopped and then started. In addition, there was a step change of the flue gas volume flow rate and the converter frequency of multistage pump, respectively. The results indicate that the working fluid flow rate has the shortest response time, followed by the expander inlet pressure and the expander inlet temperature.The operation frequency of pump is a key parameter for the ORC system. Due to a step change of pump frequency(39.49-35.24 Hz),the expander efficiency and thermal efficiency drop by 16% and 21% within 2 min, respectively. Besides, the saturated mixture can lead to an increase of the expander rotation speed.
基金Funded by the National Science Foundation of China(Nos.11074176 and 10976019)the Research Fund for the Doctoral Program of Higher Education of China(No.20100181110080)
文摘Activated carbon aerogels(ACAs) derived from sol-gel polycondensation of resorcinol (R) and formaldehyde (F) were pyrolyzed under Ar flow and activated in CO2 atmosphere. The morphology of ACAs was characterized by scanning electron microscopy (SEM) and the structural properties were determined by N2 adsorption at 77 K. The results show that ACAs have a typical three-dimensional nanonetwork structure composing of cross-linking of carbon nanoparticles. The specific surface area and the total pore volume remarkably increase with increasing activation time while the previous porous structure still remains. The specific capacitance of the 950-10-ACA electrode can reach up to 212.3 F/g in 6 mol/L KOH electrolyte. The results of constant-current charge-discharge testing indicate that the ACAs electrodes present fast charge- discharge rate and long cycle life (about 98% capacitance retained after 3000 charge-discharge cycles at 1.25 mA/cm2). Lower internal resistances can be achieved for 950-10-ACA electrode in KOH electrolyte. Our investigations are very important to improve the wettability and electrochemical performance of electrode for supercapacitors.
基金the National Natural Science Foundation of China(52103093)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(2021QNRC001)+2 种基金the Jiangxi Provincial Natural Science Foundation(20212BAB214048)Science and Technology Support Project of Shangrao(2020L009,2021J006)Science and Technological Project of Education Department of Jiangxi(GJJ211704)for funding their contributions to this paper。
文摘Lithium sulfur batteries(LSBs)are recognized as promising devices for developing next-generation energy storage systems.In addition,they are attractive rechargeable battery systems for replacing lithium-ion batteries(LIBs)for commercial use owing to their higher theoretical energy density and lower cost compared to those of LIBs.However,LSBs are still beset with some persistent issues that prevent them from being used industrially,such as the unavoidable dissolution of lithium polysulfide intermediates during electrochemical reactions and large volume expansion(up to 80%)upon the formation of Li_(2)S,resulting in serious battery life and safety limitations.In the process of solving these problems,it is necessary to maintain a high sulfur content in the cathode materials to ensure that the LSBs have high energy densities and excellent cycle performance.In this review,the novel preparation methods and cathode materials used for preparing LSBs in recent years are reviewed considering the sulfur content and cycle performance.In addition,the problems and difficulties in practically applying cathode materials are described,and the development trend is discussed.
基金financially supported by the National Natural Science Foundation of China(No.52102100)the Natural Science Foundation of Jiangsu Province(No.BK20181469)the Guangdong Basic and Applied Basic Research Foundation,China(No.2020A1515110035)。
文摘To solve low efficiency,environmental pollution,and toxicity for synthesizing zeolitic imidazolate frameworks(ZIFs)in organic solvents,a KOH-assisted aqueous strategy is proposed to synthesize bimetallic ZIFs polyhedrons,which are used as precursors to prepare bimetallic selenide and N-doped carbon(NC)composites.Among them,Fe–Co–Se/NC retains the three-dimensional(3D)polyhedrons with mesoporous structure,and Fe–Co–Se nanoparticles are uniform in size and evenly distributed.When assessed as anode material for lithium-ion batteries,Fe–Co–Se/NC achieves an excellent initial specific capacity of 1165.9 m Ah·g^(-1)at 1.0 A·g^(-1),and the reversible capacity of Fe–Co–Se/NC anode is 1247.4 m Ah·g^(-1)after 550 cycles.It is attributed to that the uniform composite of bimetallic selenides and N-doped carbon can effectively tune redox active sites,the stable 3D structure of Fe–Co–Se/NCs guarantees the structural stability and wettability of the electrolyte,and the uniform distribution of Fe–Co–S nanoparticles in size esuppresses the volume expansion and accelerates the electrochemical reaction kinetics.
基金financially supported by the National Key Research and Development Program of China (2017YFA0208200)the National Natural Science Foundation of China (52102100,22022505 and 21872069)+4 种基金the Natural Science Foundation of Jiangsu Province (BK20181469)Guangdong Basic and Applied Basic Research Foundation (2020A1515110035)the Fundamental Research Funds for the Central Universities (0205-14380266,0205-14380272)the Scientific and Technological Innovation Special Fund for Carbon Peak and Carbon Neutrality of Jiangsu Province (BK20220008)the 2021 Suzhou Gusu Leading Talents of Science and Technology Innovation and Entrepreneurship in Wujiang District。
文摘To solve the environmental pollution and low yield during the sythesis of zeolitic imidazolate frameworks(ZIFs)and their derived materials,a KOH-assisted aqueous strategy is proposed to synthesize cobalt zeolitic imidazolate framework(ZIF-67)polyhedrons,which are used as precursors to prepare cobalt selenide/carbon composites with different crystal phases(Co_(0.85)Se,CoSe_2).When evaluated as anode material for lithium ion batteries,Co_(0.85)Se/C composites deliver a reversible capacity of 758.7 m A·h·g^(-1)with a capacity retention rate of 90.5%at 1.0 A·g^(-1)after 500 cycles,and the superior rate capability is 620 m A·h·g^(-1)at 2.0 A·g^(-1).The addition of KOH accelerates the production of ZIF-67 crystals by boosting deprotonation of dimethylimidazole,resulting in rapid growth and structures transition from two-dimensional to three-dimensional of ZIF-67 in aqueous solution,which greatly promotes the application of MOFs in the field of energy storage and conversion.
基金the support from the National Natural Science Foundation of China(Grant No.51971090 and U21A20311)。
文摘The construction of stable cathode electrolyte interphase(CEI)is the key to improve the NCM811 particle structure and interfacial stability via electrolyte engineering.In He’s work,lithium hexamethyldisilazide(LiHMDS)as the electrolyte additive is proposed to facilitate the generation of stable CEI on NCM811 cathode surface and eliminate H_(2)O and HF in the electrolyte at the same time,which boosts the cycling performance of Li||NCM811 battery up to 1000 or 500 cycles with 4.5 V cut-off voltage at 25 or 60℃.
基金supported by the National Natural Science Foundation of China(Nos.21771164,U1804129)the Natural Science Foundation of Henan Province(No.222300420525)the Zhongyuan Youth Talent Support Program of Henan Province
文摘Sodium-ion battery is a potential application system for large-scale energy storage due to the advantage of higher nature abundance and lower production cost of sodium-based materials.However,there exist inevitably the safety problems such as flammability due to the use of the same type of organic liquid electrolyte with lithium-ion battery.Gel polymer electrolytes are being considered as an effective solution to replace conventional organic liquid electrolytes for building safer sodium-ion batteries.In this review paper,the authors present a comprehensive overview of the research progress in electrochemical and physical properties of the gel polymer electrolyte-based sodium batteries.The gel polymer electrolytes based on different polymer hosts namely poly(ethylene oxide),poly(acrylonitrile),poly(methyl methacrylate),poly(vinylidene fluoride),poly(vinylidene fluoride-hexafluoro propylene),and other new polymer networks are summarized.The ionic conductivity,ion transference number,electrochemical window,thermal stability,mechanical property,and interfacial issue with electrodes of gel polymer electrolytes,and the corresponding influence factors are described in detail.Furthermore,the ion transport pathway and ion conduction mechanism are analyzed and discussed.In addition,the advanced gel polymer electrolyte systems including flame-retardant polymer electrolytes,composite gel polymer electrolytes,copolymerization,single-ion conducting polymer electrolytes,etc.with more superior and functional performance are classified and summarized.Finally,the application prospects,development opportunities,remaining challenges,and possible solutions are discussed.
基金supported by the National Natural Science Foundation of China(Nos.22179077,51774251,21908142)Shanghai Science and Technology Commission’s“2020 Science and Technology In-novation Action Plan”(No.20511104003)Natural Science Foundation in Shanghai(No.21ZR1424200)。
文摘Due to its high operational voltage and energy density,P2-type Na_(0.67)Ni_(0.3)Mn_(0.7)O_(2) has become a leading cathode material for sodium-ion batteries(SIBs),which is an ideal option for large-scale energy storage.However,the practical application of P2-type Na_(0.67)Ni_(0.3)Mn_(0.7)O_(2) is limited by the capacity constraints and unwanted phase transitions,presenting significant challenges to the widespread application of SIBs.To address these challenges and optimize the electrochemical properties of the P2 phase cathode material,this study proposes a Cu and Zn co-doped strategy to improve the electrochemical performance.The incorporation of Cu/Zn can stabilize the P2-phase structure against P2-O2 phase transitions,thus enhancing its electrochemical properties.The as-obtained P2-type Na0.67[Ni_(0.3)Mn_(0.58)Cu_(0.09)Zn_(0.03)]O_(2) cathode material shows an impressive cycling stability,maintaining 80%capacity retention after 1000 cycles at 2 C.The cyclic voltammetry(CV)tests show that the Cu^(2+)/Cu^(3+)redox reaction is also involved in charge compensation during the charge/discharge process.
基金Project(2007BAE12B01)supported by the National Key Technology Research and Development Program of ChinaProject(20803095)supported by the National Natural Science Foundation of China
文摘Effects of film-forming additive on stability of electrode and cycling performance of LiFePO4/graphite cell at elevated temperature were studied. Two 18650 cells with and without VC additive were investigated by galvanostatic cycling, electrochemical impedance spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis and Raman spectroscopy. The results show that in the presence of VC additive, dissolution of Fe from LiFePO4 material is greatly depressed and stability of graphite structure is improved; the additive can not only reduce reaction of electrolyte on surface of LiFePO4 electrode but also suppress reduction of solvent and thickening of the solid electrolyte interface (SEI) layer on graphite surface. Electrolyte with VC is considered to be a good candidate for improving cycling performance of the LiFePOa/graphite cell at elevated temperature.
基金Project(2014CB643406)supported by the National Basic Research Program of China
文摘LiNi0.8Co0.1Mn0.1O2 powder was prepared by mixing LiOH·H2O and co-precipitated Ni0.8Co0.1Mn0.1(OH)2 at a molar ratio of 1:1.05, followed by sintering at different temperatures. The effects of temperature on the morphology, structure and electrochemical performance were extensively studied. SEM and XRD results demonstrate that the sintering temperature has large influence on the morphology and structure and suitable temperature is very important to obtain spherical materials and suppresses the ionic distribution. The charge-discharge tests show that the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 powders becomes better with the increase of temperature from 700 ℃ to 750 ℃ and higher temperature will deteriorate the performance. Although both of materials obtained at 750 ℃ and 780 ℃ demonstrate almost identical cyclic stability at 2C rate, which delivers 71.9%retention after 200 cycles, the rate performance of powder calcined at 780 ℃ is much poorer than that at 750 ℃. The XRD results demonstrate that the poor performance is ascribed to more severe ionic distribution caused by higher temperature.
基金Project(2011GZ0131) supported by the Sichuan Province Key Technology Support Program,China
文摘Lil.03Co0.10MnL90FxO4-x (z=0, 0.05, 0.10, 0.15 and 0.20) cathode materials were synthesized by solid-state reaction using Mn203, Li2CO3, C0203 and LiF as raw materials. The chemical compositions of Lil.03COo.lMnl.9FzO4-z were examined by inductively coupled plasma (ICP) and potentiometric analysis, the effects of F-substitution contents on structure, morphology and electrochemical performance of spinel Lil.03Coo.loMnl.9004 were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical measurements. It is found that the Lix.03 Co0.10Mnl.9oFzOa_z samples display a single phase of cubic spinel structure. The lattice parameters increase with the increase of F content when z〈_0.10. However, the lattice parameters begin to decrease when F content continues to increase. The results show that an appropriate amount ofF substitution for O element with Li+, Co3+ improves discharge capacity and structure stability of the materials. The Lil.03Co0.10Mnl.90FoAsO3.s5 sample shows an initial discharge capacity of 111.0 mA.h/g and has capacity retention of 97.0% after 30 cycles at 0.2C.
基金Supported by the National Natural Science Foundation of China (No. 20273047).
文摘The spinel LiMn2O4 cathode material was synthesized with the solid-state reaction method. Four manganese compounds including electrolytic manganese dioxide (EMD), MnCO3, Mn3O4 and nano-EMD were used as Mn sources while LiOH·H2O was used as the uniform Li source. The crystal structure characteristics of these samples produced were investigated by means of XRD, SEM, particle size distribution analysis and specific surface area testing. Their electrochemical properties were also studied by comparing their specific capacity, charge and discharge efficiency and cycle performance.
基金This work is sponsored by NSAF joint Fund(U1830106)Science and Technology Innovation 2025 Major Program of Ningbo(2018B10061)National Natural Science Foundation of China(U1632114,51901205),and K.C.Wong Magna Fund in Ningbo University.
文摘Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems.And applicable host for NH_(4)^(+)in aqueous solution is always in the process of development.On the basis of density functional theory calcula-tions,the excellent performance of NH_(4)^(+)insertion in Prussian blue analogues(PBAs)is proposed,especially for copper hexacyanoferrate(CuHCF).In this work,we prove the outstanding cycling and rate performance of CuHCF via electrochemical analyses,delivering no capacity fading during ultra-long cycles of 3000 times and high capacity retention of 93.6%at 50 C.One of main contributions to superior performance from highly reversible redox reaction and structural change is verified during the ammoniation/de-ammoniation progresses.More importantly,we propose the NH_(4)^(+)diffusion mechanism in CuHCF based on con-tinuous formation and fracture of hydrogen bonds from a joint theoretical and experimental study,which is another essential reason for rapid charge transfer and superior NH_(4)^(+)storage.Lastly,a full cell by coupling CuHCF cathode and polyaniline anode is constructed to explore the practical application of CuHCF.In brief,the outstanding aqueous NH_(4)^(+)storage in cubic PBAs creates a blueprint for fast and sustainable energy storage.
基金Project(51574287)supported by the National Natural Science Foundation of ChinaProject(2015CX001)supported by the Innovation-driven Plan in Central South University,China
文摘The mechanism for capacity fading of18650lithium ion full cells under room-temperature(RT)is discussedsystematically.The capacity loss of18650cells is about12.91%after500cycles.The cells after cycles are analyzed by XRD,SEM,EIS and CV.Impedance measurement shows an overall increase in the cell resistance upon cycling.Moreover,it also presents anincreased charge-transfer resistance(Rct)for the cell cycled at RT.CV test shows that the reversibility of lithium ioninsertion/extraction reaction is reduced.The capacity fading for the cells cycled can be explained by taking into account the repeatedfilm formation over the surface of anode and the side reactions.The products of side reactions deposited on separator are able toreduce the porosity of separator.As a result,the migration resistance of lithium ion between the cathode and anode would beincreased,leading the fading of capacity and potential.