期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Stage Predictions of Landslide and Subsidence from an Once-Through Cycle
1
作者 Yan TongzhenDepartment of Hydrogeology and Engineering Geology, China University of Geosciences, Wuhan 430074 《Journal of Earth Science》 SCIE CAS CSCD 1990年第1期77-86,共10页
In this paper both processes of landslide and subsidence are considered to be limited systems. Each of these systems in nature might be regarded as an organism. Generally their lifespan must develop with common ecolog... In this paper both processes of landslide and subsidence are considered to be limited systems. Each of these systems in nature might be regarded as an organism. Generally their lifespan must develop with common ecological characteristics, including several evolutional stages, such as initiation, growth, maturation, decline and death. Among these stages, maturation is emphasized so as to find the occurring or thriving date of both systems. An once-through cycle of both landslide and subsidence is established and is accurately predicted by a developed, mathematic model of the Poisson cycle. The Weibull distribution is cited for a landslide example. Both fundamentals are discussed. Stage predictions of landslide and subsidence are performed for several examples. Back analysis of landslides that have already happened are studied with the same model. And when compared with results from the biological mathematic model and with practical results, it is found that they correspond. Stage prediction of subsidences is also researched by the principle of the Poisson cycle. 展开更多
关键词 limited system LANDSLIDE SUBSIDENCE stage predictions of an once-through cycle the Poisson cycle the Weibull distribution back analysis/future analysis.
下载PDF
Predicting the 25th solar cycle using deep learning methods based on sunspot area data 被引量:1
2
作者 Qiang Li Miao Wan +2 位作者 Shu-Guang Zeng Sheng Zheng Lin-Hua Deng 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2021年第7期290-298,共9页
It is a significant task to predict the solar activity for space weather and solar physics. All kinds of approaches have been used to forecast solar activities, and they have been applied to many areas such as the sol... It is a significant task to predict the solar activity for space weather and solar physics. All kinds of approaches have been used to forecast solar activities, and they have been applied to many areas such as the solar dynamo of simulation and space mission planning. In this paper, we employ the long-shortterm memory(LSTM) and neural network autoregression(NNAR) deep learning methods to predict the upcoming 25 th solar cycle using the sunspot area(SSA) data during the period of May 1874 to December2020. Our results show that the 25 th solar cycle will be 55% stronger than Solar Cycle 24 with a maximum sunspot area of 3115±401 and the cycle reaching its peak in October 2022 by using the LSTM method. It also shows that deep learning algorithms perform better than the other commonly used methods and have high application value. 展开更多
关键词 Sun:activity Sun:solar cycle prediction Sun:sunspot area Method:deep neural network
下载PDF
Two-stage aging trajectory prediction of LFP lithium-ion battery based on transfer learning with the cycle life prediction 被引量:4
3
作者 Ziyou Zhou Yonggang Liu +2 位作者 Mingxing You Rui Xiong Xuan Zhou 《Green Energy and Intelligent Transportation》 2022年第1期104-120,共17页
With the wide application of the LFP lithium-ion batteries,more attention is paid to the battery life and future aging behaviors as the safety and performance of the battery are guaranteed by accurate battery aging mo... With the wide application of the LFP lithium-ion batteries,more attention is paid to the battery life and future aging behaviors as the safety and performance of the battery are guaranteed by accurate battery aging monitoring.In recent years,long-term aging trajectory prediction of the lithium-ion battery is always a challenge due to its complex nonlinear aging behaviors especially the aging behaviors in the two aging stages are quite different when the battery experiences the two-stage aging process under fast-charging conditions.Thus,it is harder to achieve accurate long-term aging trajectory prediction of the LFP lithium-ion batteries on the condition of the two-stage aging process.To address it,a novel transfer learning strategy combined with the cycle life prediction technology is presented in this paper.Specifically,a new cycle life prediction method is proposed based on feature extraction and deep learning technology and achieves accurate cycle life prediction.The transfer learning is started by developing a base aging model offline to learn the information of the two-stage aging process.Then,taking the predicted cycle life as its prior information,the Bayesian model migration technology is employed to predict the aging trajectory accurately,and the uncertainty of the aging trajectory is quantified.Two batches of the battery datasets are used for performance evaluation and comparison with two benchmarks.It is novel to combine the cycle life prediction and transfer learning technique to achieve accurate two-stage aging trajectory prediction with only a few data available(first 30%). 展开更多
关键词 Battery aging trajectory prediction Data-driven method Feature engineering cycle life prediction Transfer learning
原文传递
Driving-Cycle-Aware Energy Management of Hybrid Electric Vehicles Using a Three-Dimensional Markov Chain Model 被引量:7
4
作者 Bolin Zhao Chen Lv Theo Hofman 《Automotive Innovation》 EI CSCD 2019年第2期146-156,共11页
This study developed a new online driving cycle prediction method for hybrid electric vehicles based on a three-dimensional stochastic Markov chain model and applied the method to a driving-cycle-aware energy manageme... This study developed a new online driving cycle prediction method for hybrid electric vehicles based on a three-dimensional stochastic Markov chain model and applied the method to a driving-cycle-aware energy management strategy.The impacts of different prediction time lengths on driving cycle generation were explored.The results indicate that the original driving cycle is compressed by 50%,which significantly reduces the computational burden while having only a slight effect on the prediction performance.The developed driving cycle prediction method was implemented in a real-time energy management algorithm with a hybrid electric vehicle powertrain model,and the model was verified by simulation using two different testing scenarios.The testing results demonstrate that the developed driving cycle prediction method is able to efficiently predict future driving tasks,and it can be successfully used for the energy management of hybrid electric vehicles. 展开更多
关键词 Driving cycle prediction Markov chain model Hybrid electric vehicles Energy managemen
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部