期刊文献+
共找到21,410篇文章
< 1 2 250 >
每页显示 20 50 100
Cyclic Beam Direction of Arrival Estimation Method for Ship Propeller Noise
1
作者 ZHANG Xiaowei NIE Weihang +1 位作者 XU Ji YAN Yonghong 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第4期883-896,共14页
In underwater acoustic applications,the conventional cyclic direction of arrival algorithm faces challenges,including a low signal-to-noise ratio and high bandwidth when compared with modulated frequencies.In response... In underwater acoustic applications,the conventional cyclic direction of arrival algorithm faces challenges,including a low signal-to-noise ratio and high bandwidth when compared with modulated frequencies.In response to these issues,this paper introduces a novel,robust,and broadband cyclic beamforming algorithm.The proposed method substitutes the conventional cyclic covariance matrix with the variance of the cyclic covariance matrix as its primary feature.Assuming that the same frequency band shares a common steering vector,the new algorithm achieves superior detection performance for targets with specific modulation frequencies while suppressing interference signals and background noise.Experimental results demonstrate a significant enhancement in the directibity index by 81%and 181%when compared with the traditional Capon beamforming algorithm and the traditional extended wideband spectral cyclic MUSIC(EWSCM)algorithm,respectively.Moreover,the proposed algorithm substantially reduces computational complexity to 1/40th of that of the EWSCM algorithm,employing frequency band statistical averaging and covariance matrix variance. 展开更多
关键词 CYCLOSTATIONARITY direction of arrival extended wideband spectral cyclic music cyclic covariance matrix
下载PDF
Mechanical responses of anchoring structure under triaxial cyclic loading 被引量:2
2
作者 Peng Wang Nong Zhang +5 位作者 Qun Wei Xingliang Xu Guangzhen Cui Aoran Li Sen Yang Jiaguang Kan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期545-560,共16页
Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the inves... Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the investigation of the mechanical response,failure mode,instability assessment criteria,and anchorage effect of AS subjected to combined cyclic dynamic-static triaxial stress paths.The results show that the peak bearing strength is positively correlated with the anchoring matrix strength,anchorage length,and edgewise compressive strength.The bearing capacity decreases significantly when the anchorage direction is severely inclined.The free face failure modes are typically transverse cracking,concave fracturing,V-shaped slipping and detachment,and spallation detachment.Besides,when the anchoring matrix strength and the anchorage length decrease while the edgewise compressive strength,loading rate,and anchorage inclination angle increase,the failure intensity rises.Instability is determined by a negative tangent modulus of the displacement-strength curve or the continued deformation increase against the general downward trend.Under cyclic loads,the driving force that breaks the rock mass along the normal vector and the rigidity of the AS are the two factors that determine roadway stability.Finally,a control measure for surrounding rock stability is proposed to reduce the internal driving force via a pressure relief method and improve the rigidity of the AS by full-length anchorage and grouting modification. 展开更多
关键词 Triaxial stress Dynamic-static combination load Cyclic loading Anchoring structure(AS) Cumulative damage
下载PDF
Damage evolution of rock-encased-backfill structure under stepwise cyclic triaxial loading 被引量:1
3
作者 Xin Yu Yuye Tan +4 位作者 Weidong Song John Kemeny Shengwen Qi Bowen Zheng Songfeng Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期597-615,共19页
Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB ... Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB structures,a series of triaxial stepwise-increasing-amplitude cyclic loading experiments was conducted with cylindrical RB specimens(rock on outside,backfill on inside)with different volume fractions of rock(VF=0.48,0.61,0.73,and 0.84),confining pressures(0,6,9,and 12 MPa),and cyclic loading rates(200,300,400,and 500 N/s).The damage evolution and meso-crack formation during the cyclic tests were analyzed with results from stress-strain hysteresis loops,acoustic emission events,and post-failure X-ray 3D fracture morphology.The results showed significant differences between cyclic and monotonic loadings of RB specimens,particularly with regard to the generation of shear microcracks,the development of stress memory and strain hardening,and the contact forces and associated friction that develops along the rock-backfill interface.One important finding is that as a function of the number of cycles,the elastic strain increases linearly and the dissipated energy increases exponentially.Also,compared with monotonic loading,the cyclic strain hardening characteristics are more sensitive to rising confining pressures during the initial compaction stage.Another finding is that compared with monotonic loading,more shear microcracks are generated during every reloading stage,but these microcracks tend to be dispersed and lessen the likelihood of large shear fracture formation.The transition from elastic to plastic behavior varies depending on the parameters of each test(confinement,volume fraction,and cyclic rate),and an interesting finding was that the transformation to plastic behavior is significantly lower under the conditions of 0.73 rock volume fraction,400 N/s cyclic loading rate,and 9 MPa confinement.All the findings have important practical implications on the ability of backfill to support underground excavations. 展开更多
关键词 Rock and backfill Triaxial cyclic loading Volume fraction Damage evolution 3D visualization
下载PDF
Liquefaction susceptibility and deformation characteristics of saturated coral sandy soils subjected to cyclic loadings-a critical review 被引量:1
4
作者 Chen Guoxing Qin You +3 位作者 Ma Weijia Liang Ke Wu Qi C.Hsein Juang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期261-296,共36页
Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and respons... Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and responses of these soils subjected to monotonic and cyclic loadings have been a subject of intense interest among the geotechnical and earthquake engineering communities.This paper critically reviews the progress of experimental investigations on the undrained behavior of coral sandy soils under monotonic and cyclic loadings over the last three decades.The focus of coverage includes the contractive-dilative behavior,the pattern of excess pore-water pressure(EPWP)generation and the liquefaction mechanism and liquefaction resistance,the small-strain shear modulus and strain-dependent shear modulus and damping,the cyclic softening feature,and the anisotropic characteristics of undrained responses of saturated coral sandy soils.In particular,the advances made in the past decades are reviewed from the following aspects:(1)the characterization of factors that impact the mechanism and patterns of EPWP build-up;(2)the identification of liquefaction triggering in terms of the apparent viscosity and the average flow coefficient;(3)the establishment of the invariable form of strain-based,stress-based,or energy-based EPWP ratio formulas and the unique relationship between the new proxy of liquefaction resistance and the number of cycles required to reach liquefaction;(4)the establishment of the invariable form of the predictive formulas of small strain modulus and strain-dependent shear modulus;and(5)the investigation on the effects of stress-induced anisotropy on liquefaction susceptibility and dynamic deformation characteristics.Insights gained through the critical review of these advances in the past decades offer a perspective for future research to further resolve the fundamental issues concerning the liquefaction mechanism and responses of coral sandy sites subjected to cyclic loadings associated with seismic events in marine environments. 展开更多
关键词 liquefaction susceptibility dynamic deformation characteristics coral sandy soil cyclic loading review and prospect
下载PDF
Enhancing capacitive deionization performance and cyclic stability of nitrogen-doped activated carbon by the electro-oxidation of anode materials
5
作者 Xiaona Liu Baohua Zhao +6 位作者 Yanyun Hu Luyue Huang Jingxiang Ma Shuqiao Xu Zhonglin Xia Xiaoying Ma Shuangchen Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期23-33,共11页
Electrode materials with high desalination capacity and long-term cyclic stability are the focus of capacitive deionization(CDI) community. Understanding the causes of performance decay in traditional carbons is cruci... Electrode materials with high desalination capacity and long-term cyclic stability are the focus of capacitive deionization(CDI) community. Understanding the causes of performance decay in traditional carbons is crucial to design a high-performance material. Based on this, here, nitrogen-doped activated carbon(NAC) was prepared by pyrolyzing the blend of activated carbon powder(ACP) and melamine for the positive electrode of asymmetric CDI. By comparing the indicators changes such as conductivity, salt adsorption capacity, pH, and charge efficiency of the symmetrical ACP-ACP device to the asymmetric ACP-NAC device under different CDI cycles, as well as the changes of the electrochemical properties of anode and cathode materials after long-term operation, the reasons for the decline of the stability of the CDI performance were revealed. It was found that the carboxyl functional groups generated by the electro-oxidation of anode carbon materials make the anode zero-charge potential(E_(pzc)) shift positively,which results in the uneven distribution of potential windows of CDI units and affects the adsorption capacity. Furthermore, by understanding the electron density on C atoms surrounding the N atoms, we attribute the increased cyclic stability to the enhanced negativity of the charge of carbon atoms adjacent to quaternary-N and pyridinic-oxide-N. 展开更多
关键词 Anodic oxidation Capacitive deionization Cyclic stability N-DOPING
下载PDF
Experimental study of the damage characteristics of rocks containing non-penetrating cracks under cyclic loading
6
作者 Jun Xu Xiaochun Xiao +3 位作者 Lu Ma Sen Luo Jiaxu Jin Baijian Wu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期197-210,共14页
The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics ... The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics under cyclic loading.The results show that under cyclic loading,the relationship between the number of non-penetrating crack(s)and the characteristic parameters(cyclic number,peak stress,peak strain,failure stress,and failure strain)of the pre-cracked specimens can be represented by a decreasing linear function.The damage evolution equation is fitted by calibrating the accumulative plastic strain for each cycle,and the damage constitutive equation is proposed by the concept of effective stress.Additionally,non-penetrating cracks are more likely to cause uneven stress distribution,damage accumulation,and local failure of specimen.The local failure can change the stress distribution and relieve the inhibition of non-penetrating crack extension and eventually cause a dramatic destruction of the specimen.Therefore,the evolution process caused by non-penetrating cracks can be regarded as one of the important reasons for inducing rockburst.These results are expected to improve the understanding of the process of spalling formation and rockburst and can be used to analyze the stability of rocks or rock structures. 展开更多
关键词 Damage characteristics Constitutive model Fissured rocks Non-penetrating crack Cyclic loading
下载PDF
Theoretical investigation on axial cyclic performance of monopile in sands using interface constitutive models
7
作者 Pan Zhou Jingpei Li +2 位作者 Kaoshan Dai Stefan Vogt Seyedmohsen Miraei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2645-2662,共18页
Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing c... Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing capacity attenuation.This paper presents a semi-analytical solution for predicting the axial cyclic behavior of piles in sands.The solution relies on two enhanced nonlinear load-transfer models considering stress-strain hysteresis and cyclic degradation in the pile-soil interaction.Model parameters are calibrated through cyclic shear tests of the sand-steel interface and laboratory geotechnical testing of sands.A novel aspect involves the meticulous formulation of the shaft loadtransfer function using an interface constitutive model,which inherently inherits the interface model’s advantages,such as capturing hysteresis,hardening,degradation,and particle breakage.The semi-analytical solution is computed numerically using the matrix displacement method,and the calculated values are validated through model tests performed on non-displacement and displacement piles in sands.The results demonstrate that the predicted values show excellent agreement with the measured values for both the static and cyclic responses of piles in sands.The displacement pile response,including factors such as bearing capacity,mobilized shaft resistance,and convergence rate of permanent settlement,exhibit improvements compared to non-displacement piles attributed to the soil squeezing effect.This methodology presents an innovative analytical framework,allowing for integrating cyclic interface models into the theoretical investigation of pile responses. 展开更多
关键词 PILES Cyclic degradation Load-transfer models Interface constitutive model Semi-analytical solution Model tests
下载PDF
Dynamic failure process of expanded polystyrene particle lightweight soil under cyclic loading using discrete element method
8
作者 Zhou Wei Hou Tianshun +3 位作者 Chen Ye Wang Qi Luo Yasheng Zhang Yafei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期815-828,共14页
Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research atten... Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research attention.The traditional method for studying the dynamic strength characteristics of soils is dynamic triaxial testing,and the discrete element simulation of lightweight soils under cyclic load has rarely been considered.To study the meso-mechanisms of the dynamic failure processes of EPS particle lightweight soils,a discrete element numerical model is established using the particle flow code(PFC)software.The contact force,displacement field,and velocity field of lightweight soil under different cumulative compressive strains are studied.The results show that the hysteresis curves of lightweight soil present characteristics of strain accumulation,which reflect the cyclic effects of the dynamic load.When the confining pressure increases,the contact force of the particles also increases.The confining pressure can restrain the motion of the particle system and increase the dynamic strength of the sample.When the confining pressure is held constant,an increase in compressive strain causes minimal change in the contact force between soil particles.However,the contact force between the EPS particles decreases,and their displacement direction points vertically toward the center of the sample.Under an increase in compressive strain,the velocity direction of the particle system changes from a random distribution and points vertically toward the center of the sample.When the compressive strain is 5%,the number of particles deflected in the particle velocity direction increases significantly,and the cumulative rate of deformation in the lightweight soil accelerates.Therefore,it is feasible to use 5%compressive strain as the dynamic strength standard for lightweight soil.Discrete element methods provide a new approach toward the dynamic performance evaluation of lightweight soil subgrades. 展开更多
关键词 lightweight soil cyclic loading dynamic triaxial test discrete element method hysteresis curve
下载PDF
Sodium Nitrate/Formamide Deep Eutectic Solvent as Flame-Retardant and Anticorrosive Electrolyte Enabling 2.6 V Safe Supercapacitors with Long Cyclic Stability
9
作者 Huachao Yang Yiheng Qi +6 位作者 Zifan Wang Qinghu Pan Chuanzhi Zhang Jianhua Yan Kefa Cen Zheng Bo Kostya(Ken)Ostrikov 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期374-383,共10页
Safe operation of electrochemical capacitors(supercapacitors)is hindered by the flammability of commercial organic electrolytes.Non-flammable Water-in-Salt(WIS)electrolytes are promising alternatives;however,they are ... Safe operation of electrochemical capacitors(supercapacitors)is hindered by the flammability of commercial organic electrolytes.Non-flammable Water-in-Salt(WIS)electrolytes are promising alternatives;however,they are plagued by the limited operation voltage window(typically≤2.3 V)and inherent corrosion of current collectors.Herein,a novel deep eutectic solvent(DES)-based electrolyte which uses formamide(FMD)as hydrogen-bond donor and sodium nitrate(NaNO_(3))as hydrogen-bond acceptor is demonstrated.The electrolyte exhibits the wide electrochemical stability window(3.14 V),high electrical conductivity(14.01 mScm^(-1)),good flame-retardance,anticorrosive property,and ultralow cost(7%of the commercial electrolyte and 2%of WIS).Raman spectroscopy and Density Functional Theory calculations reveal that the hydrogen bonds between the FMD molecules and NO_(3)^(-)ions are primarily responsible for the superior stability and conductivity.The developed NaNO_(3)/FMD-based coin cell supercapacitor is among the best-performing state-of-art DES and WIS devices,evidenced by the high voltage window(2.6 V),outstanding energy and power densities(22.77 Wh kg^(-1)at 630 W kg^(-1)and 17.37 kW kg^(-1)at 12.55 Wh kg^(-1)),ultralong cyclic stability(86%after 30000 cycles),and negligible current collector corrosion.The NaNO_(3)/FMD industry adoption potential is demonstrated by fabricating 100 F pouch cell supercapacitors using commercial aluminum current collectors. 展开更多
关键词 cyclic stability deep eutectic solvents electrical conductivity electrochemical stability window SUPERCAPACITORS
下载PDF
Strength and damage evolution mechanism of rock mass with holes under cyclic loading
10
作者 LIU Hong-tao HAN Zi-jun +6 位作者 GUO Xiao-fei LIU Qin-yu QIAO Zhong-jin LIANG Jia-lu CHENG Wen-cong ZHANG Xi-ying ZHANG Yu-qi 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2717-2735,共19页
The damage and failure law of rock mass with holes is of great significance to the stability control of roadways. This study investigates the mechanical properties and failure modes of porous rock masses under cyclic ... The damage and failure law of rock mass with holes is of great significance to the stability control of roadways. This study investigates the mechanical properties and failure modes of porous rock masses under cyclic loading, elucidates the acoustic emission (AE) characteristics and their spatial evolution, and establishes the interrelation among AE, stress, strain, time, and cumulative damage. The results reveal that the rock mass with holes and the intact rock mass show softening and hardening characteristics after cyclic loading. The plastic strain of the rock mass with holes is smaller than that of the intact rock mass, and the stress −strain curve shows hysteresis characteristics. Under uniaxial compression, the pore-bearing rock mass shows the characteristics of higher ringing count, AE energy, b-value peak, and more cumulative ringing count in the failure stage, while it shows lower characteristics under cyclic action. At the initial stage of loading, compared with the intact rock mass, the pore-containing rock mass shows the characteristics of a low b-value. The AE positioning and cumulative damage percentage are larger, and the AE positioning is denser around the hole. The specimen with holes is mainly shear failure, and the complete specimen is mainly tensile shear failure. 展开更多
关键词 roadway surrounding rock control acoustic emission cyclic loading failure mode precursor of destruction
下载PDF
Effect of NaCl Concentration on the Cumulative Strain and Pore Distribution of Clay under Cyclic Loading
11
作者 Xinshan Zhuang Shunlei Xia Ruijie Pan 《Fluid Dynamics & Materials Processing》 EI 2024年第2期447-461,共15页
Clay,as the most common soil used for foundationfill,is widely used in various infrastructure projects.The phy-sical and mechanical properties of clay are influenced by the pore solution environment.This study uses a GD... Clay,as the most common soil used for foundationfill,is widely used in various infrastructure projects.The phy-sical and mechanical properties of clay are influenced by the pore solution environment.This study uses a GDS static/dynamic triaxial apparatus and nuclear magnetic resonance experiments to investigate the effects of cyclic loading on clay foundations.Moreover,the development of cumulative strain in clay is analyzed,and afitting model for cumulative plastic strain is introduced by considering factors such as NaCl solution concentration,con-solidation stress ratio,and cycle number.In particular,the effects of the NaCl solution concentration and con-solidation stress ratio on the pore distribution of the test samples before and after cyclic loading are examined,and the relationship between microscopic pore size and macroscopic cumulative strain is obtained accordingly.Our results show that as the consolidation stress ratio grows,an increasing number of large pores in the soil samples are transformed into small pores.As the NaCl solution concentration becomes higher,the number of small pores gradually decreases,while the number of large pores remains unchanged.Cyclic loading causes the disappearance of the large pores in the samples,and the average pore size before cyclic loading is posi-tively correlated with the axial cumulative strain after cyclic loading.The cumulative strain produced by the soil under cyclic loading is inversely proportional to the NaCl solution concentration and consolidation stress ratio. 展开更多
关键词 Geotechnical engineering CLAY cyclic loading nuclear magnetic resonance NaCl solution consolidation ratio accumulative strain
下载PDF
Comprehensive interventions for adult cyclic vomiting syndrome complicated by superior mesenteric artery syndrome:A case report
12
作者 Bo Liu Hui Sun +3 位作者 Yang Liu Min-Lan Yuan Hong-Ru Zhu Wei Zhang 《World Journal of Clinical Cases》 SCIE 2024年第29期6327-6334,共8页
BACKGROUND Cyclic vomiting syndrome(CVS)is a chronic functional gastrointestinal disorder involving the gut–brain interaction that is characterized by recurring episodes of nausea,vomiting,abdominal pain,and interspe... BACKGROUND Cyclic vomiting syndrome(CVS)is a chronic functional gastrointestinal disorder involving the gut–brain interaction that is characterized by recurring episodes of nausea,vomiting,abdominal pain,and interspersed complete normal periods.Superior mesenteric artery(SMA)syndrome(SMAS)is a vascular condition in which the horizontal portion of the duodenum is compressed due to a reduced angle between the aorta and the SMA.This condition presents with symptoms similar to CVS,posing challenges in distinguishing between the two and often resulting in misdiagnosis or inappropriate treatment.CASE SUMMARY A 20-year-old female patient presented with recurrent episodes of vomiting and experienced a persistent fear of vomiting for the past 2 years.She adopted conscious dietary restrictions,which led to severe malnutrition.Initially,she was diagnosed with SMAS,as revealed by computed tomography angiography.Despite efforts to increase the angle between the aorta and the SMA through weight gain,her vomiting did not improve.Finally,she was diagnosed with comorbidities including CVS,SMAS and anxiety disorder.She underwent comprehensive interventions,including enteral and parenteral nutritional supplementation,administration of antiemetic and anti-anxiety agents,and participation in mindfulness-based cognitive therapy.The patient eventually experienced a notable improvement in both body weight and clinical symptoms.CONCLUSION We present a rare case of CVS in an adult complicated with SMAS and propose additional treatment with nutritional support,pharmacological intervention,and psychotherapy. 展开更多
关键词 Cyclic vomiting syndrome Superior mesenteric artery syndrome Anxiety disorder Nutritional supplementation Mindfulness-based cognitive therapy Case report
下载PDF
Numerical Analysis of Fiber Reinforced Polymer-Confined Concrete under Cyclic Compression Using Cohesive Zone Models
13
作者 Mingxu Zhang Mingliang Wang Wei Zhang 《Structural Durability & Health Monitoring》 EI 2024年第5期599-622,共24页
This paper examines the mechanical behavior offiber reinforced polymer(FRP)-confined concrete under cyclic compression using the 3D cohesive zone model(CZM).A numerical modeling method was developed,employing zero-thick... This paper examines the mechanical behavior offiber reinforced polymer(FRP)-confined concrete under cyclic compression using the 3D cohesive zone model(CZM).A numerical modeling method was developed,employing zero-thickness cohesive elements to represent the stress-displacement relationship of concrete potential fracture surfaces and FRP-concrete interfaces.Additionally,mixed-mode damage plastic constitutive models were pro-posed for the concrete potential fracture surfaces and FRP-concrete interface,considering interfacial friction.Furthermore,an anisotropic plastic constitutive model was developed for the FRP composite jacket.The CZM model proposed in this study was validated using experimental data from plain concrete and large rupture strain(LRS)FRP-confined concrete subjected to cyclic compression.The simulation results demonstrate that the pro-posed model accurately predicts the mechanical response of both concrete and FRP-confined concrete under cyc-lic compression.Lastly,various parametric studies were conducted to investigate the internal failure mechanism of FRP-confined concrete under cyclic loading to analyze the influence of the inner friction plasticity of different components. 展开更多
关键词 Cyclic compression CZM FRP wrapped concrete constitutive model fracture behavior
下载PDF
Experimental investigation on shear strength deterioration at the interface between different rock types under cyclic loading
14
作者 Qiong Wu Zhiqi Liu +6 位作者 Huiming Tang Liangqing Wang Xiaoxue Huo Zhen Cui Shiyu Li Bo Zhang Zhiwei Lin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3063-3079,共17页
The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake... The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake;however,rare work has been devoted to this subject due to lack of attention.In this study,experimental investigations on shear strength weakening of discontinuities with different joint wall material(DDJM)under cyclic loading were conducted by taking the interface between siltstone and mudstone in the Shaba slope of Yunnan Province,China as research objects.A total of 99 pairs of similar material samples of DDJM(81 pairs)and discontinuities with identical joint wall material(DIJM)(18 pairs)were fabricated by inserting plates,engraved with typical surface morphology obtained by performing three-dimensional laser scanning on natural DDJMs sampled from field,into mold boxes.Cyclic shear tests were conducted on these samples to study their shear strength changes with the cyclic number considering the effects of normal stress,joint surface morphology,shear displacement amplitude and shear rate.The results indicate that the shear stress vs.shear displacement curves under each shear cycle and the peak shear strength vs.cyclic number curves of the studied DDJMs are between those of DIJMs with siltstone and mudstone,while closer to those of DIJMs with mudstone.The peak shear strengths of DDJMs exhibit an initial rapid decline followed by a gradual decrease with the cyclic number and the decrease rate varies from 6%to 55.9%for samples with varied surface morphology under different testing conditions.The normal stress,joint surface morphology,shear displacement amplitude and shear rate collectively influence the shear strength deterioration of DDJM under cyclic shear loading,with the degree of influence being greater for larger normal stress,rougher surface morphology,larger shear displacement amplitude and faster shear rate. 展开更多
关键词 Discontinuities with different joint wall material(DDJM) Discontinuities with identical joint wall material(DIJM) Cyclic shear test Shear strength deterioration Joint surface morphology Shear displacement amplitude Shear rate Normal stress
下载PDF
Role of cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes pathway in diabetes and its complications
15
作者 Ming-Wei Fan Jin-Lan Tian +5 位作者 Tan Chen Can Zhang Xin-Ru Liu Zi-Jian Zhao Shu-Hui Zhang Yan Chen 《World Journal of Diabetes》 SCIE 2024年第10期2041-2057,共17页
Diabetes mellitus(DM)is one of the major causes of mortality worldwide,with inflammation being an important factor in its onset and development.This review summarizes the specific mechanisms of the cyclic guanosine mo... Diabetes mellitus(DM)is one of the major causes of mortality worldwide,with inflammation being an important factor in its onset and development.This review summarizes the specific mechanisms of the cyclic guanosine monophosphate-adenosine monophosphate synthase(cGAS)-stimulator of interferon genes(STING)pathway in mediating inflammatory responses.Furthermore,it compre-hensively presents related research progress and the subsequent involvement of this pathway in the pathogenesis of early-stage DM,diabetic gastroenteropathy,diabetic cardiomyopathy,non-alcoholic fatty liver disease,and other complic-ations.Additionally,the role of cGAS-STING in autonomic dysfunction and intes-tinal dysregulation,which can lead to digestive complications,has been discuss-ed.Altogether,this study provides a comprehensive analysis of the research advances regarding the cGAS-STING pathway-targeted therapeutic agents and the prospects for their application in the precision treatment of DM. 展开更多
关键词 Cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes Diabetes mellitus Inflammation Glycolipid metabolism Diabetes gastroenteropathy Nonalcoholic fatty liver disease Diabetes cardiovascular disease Diabetes nephropathy
下载PDF
The Effect of Preloading on the Cyclic Liquefaction Strength Measured in the Laboratory
16
作者 Konstantinos Stamatopoulos 《Journal of Civil Engineering and Architecture》 2024年第6期269-275,共7页
The effect of preloading on the liquefaction cyclic strength was investigated by cyclic shear tests where horizontal shear stress oscillated about a zero mean value on sands with varying fines content and at varying p... The effect of preloading on the liquefaction cyclic strength was investigated by cyclic shear tests where horizontal shear stress oscillated about a zero mean value on sands with varying fines content and at varying prestress ratios, densities and verticalstresses. Test results showed a marked increase of the cyclic soil strength with the prestress ratio. The effect is more pronounced for the looser specimens. An empirical expression predicting this effect is proposed. This expression is validated from results of a field test. 展开更多
关键词 Cyclic liquefaction shear stress field test
下载PDF
The Performance of Small Diameter Aluminum Light Support Structures Containing Handholes under Cyclic Fatigue
17
作者 Cameron R. Rusnak Aya Al-Hamami Craig C. Menzemer 《Open Journal of Civil Engineering》 2024年第2期196-213,共18页
Aluminum light poles play a pivotal role in modern infrastructure, ensuring proper illumination along highways and in populated areas during nighttime. These poles typically feature handholes near their bases, providi... Aluminum light poles play a pivotal role in modern infrastructure, ensuring proper illumination along highways and in populated areas during nighttime. These poles typically feature handholes near their bases, providing access to electrical wiring for installation and maintenance. While essential for functionality, these handholes introduce a vulnerability to the overall structure, making them a potential failure point. Although prior research and analyses on aluminum light poles have been conducted, the behavior of smaller diameter poles containing handholes remains unexplored. Recognizing this need, a research team at the University of Akron undertook a comprehensive experimental program involving aluminum light poles with handholes containing welded inserts in order to gain a better understanding of their fatigue life, mechanical behavior, and failure mechanisms. The research involved testing seven large-scale aluminum light poles each 8-inch diameter, with two separate handholes. These handholes included a reinforcement that was welded to the poles. Finite Element Analysis (FEA), statistical analysis, and comparison analysis with their large counterparts (10-inch diameter) were used to augment the experimental results. The results revealed two distinct failure modes: progressive crack propagation leading to ultimate failure, and rupture of the pole near the weld initiation/termination site around the handhole. The comparison analysis indicated that the 8-inch diameter specimens exhibited an average fatigue life exceeding that of their 10-inch counterparts by an average of 30.7%. The experimental results were plotted alongside the fatigue detail classifications outlined in the Aluminum Design Manual (ADM), enhancing understanding of the fatigue detail category of the respective poles/handholes. 展开更多
关键词 Light Pole Handhole Cyclic Fatigue Fatigue Analysis Finite Element Analysis Statistical Analysis
下载PDF
Investigation of the Micro-Mechanics of an Extruded Precipitation-Strengthened Magnesium Alloy under Cyclic Loading
18
作者 Chuhao Liu Xiaodan Zhang +1 位作者 Huamiao Wang Yinghong Peng 《Journal of Materials Science and Chemical Engineering》 2024年第7期40-52,共13页
Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macrosc... Precipitation strengthening is a crucial microscopic mechanism for enhancing the strength of magnesium alloys. In order to elucidate the influence of precipitation on the microscopic deformation mechanisms and macroscopic mechanical response of magnesium alloys under cyclic loading conditions, we employed a crystal plasticity model to analyze the stress-strain curves, specific crystal plane diffraction intensities, and the temporal evolution of various microscopic deformation mechanisms and twinning volume fractions for an extruded magnesium alloy, AXM10304, containing coherent precipitates. The research findings indicate that precipitation does not fundamentally alter the microscopic mechanisms of this alloy. However, it hinders twinning during the compression stage, mildly promotes detwinning during the tension stage, and enhances tension secondary hardening by elevating the difficulty of activation of the prismatic slip. 展开更多
关键词 Cyclic Deformation Magnesium Alloy In-Situ Neutron Diffraction Precipitation Strengthening Crystal Plasticity Lattice Strain Mechanism Evolution
下载PDF
On Some Mathematical Connections between the Cyclic Universe, Inflationary Universe, p-Adic Inflation, p-Adic Cosmology and Various Sectors of Number Theory
19
作者 Michele Nardelli 《Journal of Modern Physics》 2024年第11期1869-1958,共90页
This paper is a review, a thesis, of some interesting results that have been obtained in various research concerning the “brane collisions in string and M-theory” (Cyclic Universe), p-adic inflation and p-adic cosmo... This paper is a review, a thesis, of some interesting results that have been obtained in various research concerning the “brane collisions in string and M-theory” (Cyclic Universe), p-adic inflation and p-adic cosmology. In Section 2, we have described some equations concerning cosmic evolution in a Cyclic Universe. In Section 3, we have described some equations concerning the cosmological perturbations in a Big Crunch/Big Bang space-time, the M-theory model of a Big Crunch/Big Bang transition and some equations concerning the solution of a braneworld Big Crunch/Big Bang Cosmology. In Section 4, we have described some equations concerning the generating ekpyrotic curvature perturbations before the Big Bang, some equations concerning the effective five-dimensional theory of the strongly coupled heterotic string as a gauged version of N=1five-dimensional supergravity with four-dimensional boundaries, and some equations concerning the colliding branes and the origin of the Hot Big Bang. In Section 5, we have described some equations regarding the “null energy condition” violation concerning the inflationary models and some equations concerning the evolution to a smooth universe in an ekpyrotic contracting phase with w>1. In Section 6, we have described some equations concerning the approximate inflationary solutions rolling away from the unstable maximum of p-adic string theory. In Section 7, we have described various equations concerning the p-adic minisuperspace model, zeta strings, zeta nonlocal scalar fields and p-adic and adelic quantum cosmology. In Section 8, we have shown various and interesting mathematical connections between some equations concerning the p-adic inflation, the p-adic quantum cosmology, the zeta strings and the brane collisions in string and M-theory. Furthermore, in each section, we have shown the mathematical connections with various sectors of Number Theory, principally the Ramanujan’s modular equations, the Aurea Ratio and the Fibonacci’s numbers. 展开更多
关键词 String Theory M-THEORY Cyclic Cosmology p-Adic and Adelic Analysis Number Theory Ramanujan’s Modular Equations
下载PDF
Assessment of cyclic deformation and critical stress amplitude of jointed rocks via cyclic triaxial testing
20
作者 Waranga Habaraduwa Peellage Behzad Fatahi Haleh Rasekh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1370-1390,共21页
Jointed rock specimens with a natural replicated joint surface oriented at a mean dip angle of 60were prepared,and a series of cyclic triaxial tests was performed at different confining pressures and cyclic deviatoric... Jointed rock specimens with a natural replicated joint surface oriented at a mean dip angle of 60were prepared,and a series of cyclic triaxial tests was performed at different confining pressures and cyclic deviatoric stress amplitudes.The samples were subjected to 10,000 loading-unloading cycles with a frequency of 8 Hz.At each level of confining pressure,the applied cyclic deviatoric stress amplitude was increased incrementally until excessive deformation of the jointed rock specimen was observed.Analysis of the test results indicated that there existed a critical cyclic deviatoric stress amplitude(i.e.critical dynamic deviatoric stress)beyond which the jointed rock specimens yielded.The measured critical dynamic deviatoric stress was less than the corresponding static deviatoric stress.At cyclic deviatoric stress amplitudes less than the critical dynamic deviatoric stress,minor cumulative residual axial strains were observed,resulting in hysteretic damping.However,for cyclic deviatoric stresses beyond the critical dynamic deviatoric stress,the plastic strains increased promptly,and the resilient moduli degraded rapidly during the initial loading cycles.Cyclic triaxial test results showed that at higher confining pressures,the ultimate residual axial strain attained by the jointed rock specimen decreased,the steadystate dissipated energy density and steady-state damping ratio per load cycle decreased,while steadystate resilient moduli increased. 展开更多
关键词 Cyclic triaxial test Jointed rock Joint surface Confining pressure Cyclic deviatoric stress amplitude FAILURE Residual deformation Dissipated energy
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部