The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enh...The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.展开更多
In underwater acoustic applications,the conventional cyclic direction of arrival algorithm faces challenges,including a low signal-to-noise ratio and high bandwidth when compared with modulated frequencies.In response...In underwater acoustic applications,the conventional cyclic direction of arrival algorithm faces challenges,including a low signal-to-noise ratio and high bandwidth when compared with modulated frequencies.In response to these issues,this paper introduces a novel,robust,and broadband cyclic beamforming algorithm.The proposed method substitutes the conventional cyclic covariance matrix with the variance of the cyclic covariance matrix as its primary feature.Assuming that the same frequency band shares a common steering vector,the new algorithm achieves superior detection performance for targets with specific modulation frequencies while suppressing interference signals and background noise.Experimental results demonstrate a significant enhancement in the directibity index by 81%and 181%when compared with the traditional Capon beamforming algorithm and the traditional extended wideband spectral cyclic MUSIC(EWSCM)algorithm,respectively.Moreover,the proposed algorithm substantially reduces computational complexity to 1/40th of that of the EWSCM algorithm,employing frequency band statistical averaging and covariance matrix variance.展开更多
Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the inves...Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the investigation of the mechanical response,failure mode,instability assessment criteria,and anchorage effect of AS subjected to combined cyclic dynamic-static triaxial stress paths.The results show that the peak bearing strength is positively correlated with the anchoring matrix strength,anchorage length,and edgewise compressive strength.The bearing capacity decreases significantly when the anchorage direction is severely inclined.The free face failure modes are typically transverse cracking,concave fracturing,V-shaped slipping and detachment,and spallation detachment.Besides,when the anchoring matrix strength and the anchorage length decrease while the edgewise compressive strength,loading rate,and anchorage inclination angle increase,the failure intensity rises.Instability is determined by a negative tangent modulus of the displacement-strength curve or the continued deformation increase against the general downward trend.Under cyclic loads,the driving force that breaks the rock mass along the normal vector and the rigidity of the AS are the two factors that determine roadway stability.Finally,a control measure for surrounding rock stability is proposed to reduce the internal driving force via a pressure relief method and improve the rigidity of the AS by full-length anchorage and grouting modification.展开更多
Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB ...Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB structures,a series of triaxial stepwise-increasing-amplitude cyclic loading experiments was conducted with cylindrical RB specimens(rock on outside,backfill on inside)with different volume fractions of rock(VF=0.48,0.61,0.73,and 0.84),confining pressures(0,6,9,and 12 MPa),and cyclic loading rates(200,300,400,and 500 N/s).The damage evolution and meso-crack formation during the cyclic tests were analyzed with results from stress-strain hysteresis loops,acoustic emission events,and post-failure X-ray 3D fracture morphology.The results showed significant differences between cyclic and monotonic loadings of RB specimens,particularly with regard to the generation of shear microcracks,the development of stress memory and strain hardening,and the contact forces and associated friction that develops along the rock-backfill interface.One important finding is that as a function of the number of cycles,the elastic strain increases linearly and the dissipated energy increases exponentially.Also,compared with monotonic loading,the cyclic strain hardening characteristics are more sensitive to rising confining pressures during the initial compaction stage.Another finding is that compared with monotonic loading,more shear microcracks are generated during every reloading stage,but these microcracks tend to be dispersed and lessen the likelihood of large shear fracture formation.The transition from elastic to plastic behavior varies depending on the parameters of each test(confinement,volume fraction,and cyclic rate),and an interesting finding was that the transformation to plastic behavior is significantly lower under the conditions of 0.73 rock volume fraction,400 N/s cyclic loading rate,and 9 MPa confinement.All the findings have important practical implications on the ability of backfill to support underground excavations.展开更多
Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and respons...Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and responses of these soils subjected to monotonic and cyclic loadings have been a subject of intense interest among the geotechnical and earthquake engineering communities.This paper critically reviews the progress of experimental investigations on the undrained behavior of coral sandy soils under monotonic and cyclic loadings over the last three decades.The focus of coverage includes the contractive-dilative behavior,the pattern of excess pore-water pressure(EPWP)generation and the liquefaction mechanism and liquefaction resistance,the small-strain shear modulus and strain-dependent shear modulus and damping,the cyclic softening feature,and the anisotropic characteristics of undrained responses of saturated coral sandy soils.In particular,the advances made in the past decades are reviewed from the following aspects:(1)the characterization of factors that impact the mechanism and patterns of EPWP build-up;(2)the identification of liquefaction triggering in terms of the apparent viscosity and the average flow coefficient;(3)the establishment of the invariable form of strain-based,stress-based,or energy-based EPWP ratio formulas and the unique relationship between the new proxy of liquefaction resistance and the number of cycles required to reach liquefaction;(4)the establishment of the invariable form of the predictive formulas of small strain modulus and strain-dependent shear modulus;and(5)the investigation on the effects of stress-induced anisotropy on liquefaction susceptibility and dynamic deformation characteristics.Insights gained through the critical review of these advances in the past decades offer a perspective for future research to further resolve the fundamental issues concerning the liquefaction mechanism and responses of coral sandy sites subjected to cyclic loadings associated with seismic events in marine environments.展开更多
To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)condit...To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)conditions.We analyzed the evolution of shear stress,normal stress,stress path,dilatancy characteristics,and friction coefficient and revealed the failure mechanisms of en-echelon joints at different angles.The results show that the cyclic shear behavior of the en-echelon joints is closely related to the joint angle,with the shear strength at a positive angle exceeding that at a negative angle during shear cycles.As the number of cycles increases,the shear strength decreases rapidly,and the difference between the varying angles gradually decreases.Dilation occurs in the early shear cycles(1 and 2),while contraction is the main feature in later cycles(310).The friction coefficient decreases with the number of cycles and exhibits a more significant sensitivity to joint angles than shear cycles.The joint angle determines the asperities on the rupture surfaces and the block size,and thus determines the subsequent shear failure mode(block crushing and asperity degradation).At positive angles,block size is more greater and asperities on the rupture surface are smaller than at nonpositive angles.Therefore,the cyclic shear behavior is controlled by block crushing at positive angles and asperity degradation at negative angles.展开更多
An equivalent visco-elastic model of saturated soft clay was studied under unconsolidated undrained (UU) condition, which can be used to evaluate the stability of ocean foundation. Cyclic triaxial compression and exte...An equivalent visco-elastic model of saturated soft clay was studied under unconsolidated undrained (UU) condition, which can be used to evaluate the stability of ocean foundation. Cyclic triaxial compression and extension tests were conducted to study the parameters of the model. Results showed that the relationships of the damping ratio and the octahedral shear modulus with the octahedral cyclic shear strain were nearly unique, when the initial octahedral shear stress ratios of specimens were equal to 0.3, 0.5 and 0.7. The relationships of the damping ratio and the octahedral shear modulus with the octahedral cyclic shear strain determined from the cyclic triaxial compression tests were basically the same as those determined from the cyclic triaxial extension tests. Furthermore, the relationships were not related to the initial stress condition, the test stress state and the octahedral cyclic shear stress ratio. The relationships determined from the cyclic triaxial tests under no deviatoric stress were basically the same as those determined from the cyclic triaxial tests under deviatoric stress. The change of the octahedral cyclic accumulative strain with the number of cycles was unique under different tests stress states. An equivalent visco-elastic constitutive model of saturated soft clay under UU condition was initially established.展开更多
Electrode materials with high desalination capacity and long-term cyclic stability are the focus of capacitive deionization(CDI) community. Understanding the causes of performance decay in traditional carbons is cruci...Electrode materials with high desalination capacity and long-term cyclic stability are the focus of capacitive deionization(CDI) community. Understanding the causes of performance decay in traditional carbons is crucial to design a high-performance material. Based on this, here, nitrogen-doped activated carbon(NAC) was prepared by pyrolyzing the blend of activated carbon powder(ACP) and melamine for the positive electrode of asymmetric CDI. By comparing the indicators changes such as conductivity, salt adsorption capacity, pH, and charge efficiency of the symmetrical ACP-ACP device to the asymmetric ACP-NAC device under different CDI cycles, as well as the changes of the electrochemical properties of anode and cathode materials after long-term operation, the reasons for the decline of the stability of the CDI performance were revealed. It was found that the carboxyl functional groups generated by the electro-oxidation of anode carbon materials make the anode zero-charge potential(E_(pzc)) shift positively,which results in the uneven distribution of potential windows of CDI units and affects the adsorption capacity. Furthermore, by understanding the electron density on C atoms surrounding the N atoms, we attribute the increased cyclic stability to the enhanced negativity of the charge of carbon atoms adjacent to quaternary-N and pyridinic-oxide-N.展开更多
The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics ...The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics under cyclic loading.The results show that under cyclic loading,the relationship between the number of non-penetrating crack(s)and the characteristic parameters(cyclic number,peak stress,peak strain,failure stress,and failure strain)of the pre-cracked specimens can be represented by a decreasing linear function.The damage evolution equation is fitted by calibrating the accumulative plastic strain for each cycle,and the damage constitutive equation is proposed by the concept of effective stress.Additionally,non-penetrating cracks are more likely to cause uneven stress distribution,damage accumulation,and local failure of specimen.The local failure can change the stress distribution and relieve the inhibition of non-penetrating crack extension and eventually cause a dramatic destruction of the specimen.Therefore,the evolution process caused by non-penetrating cracks can be regarded as one of the important reasons for inducing rockburst.These results are expected to improve the understanding of the process of spalling formation and rockburst and can be used to analyze the stability of rocks or rock structures.展开更多
The cyclic hydraulic stimulation(CHS) has proven as a prospective technology for enhancing the permeability of unconventional formations such as coalbeds. However, the effects of CHS on the microstructure and gas sorp...The cyclic hydraulic stimulation(CHS) has proven as a prospective technology for enhancing the permeability of unconventional formations such as coalbeds. However, the effects of CHS on the microstructure and gas sorption behavior of coal remain unclear. In this study, laboratory tests including the nuclear magnetic resonance(NMR), low-temperature nitrogen sorption(LTNS), and methane sorption isotherm measurement were conducted to explore changes in the pore structure and methane sorption characteristics caused by CHS on an anthracite coal from Qinshui Basin, China. The NMR and LTNS tests show that after CHS treatment, meso- and macro-pores tend to be enlarged, whereas micropores with larger sizes and transition-pores may be converted into smaller-sized micro-pores. After the coal samples treated with 1, 3, 5 and 7 hydraulic stimulation cycles, the total specific surface area(TSSA)decreased from 0.636 to 0.538, 0.516, 0.505, and 0.491 m^(2)/g, respectively. Fractal analysis based on the NMR and LTNS results show that the surface fractal dimensions increase with the increase in the number of hydraulic stimulation cycles, while the volume fractal dimensions exhibit an opposite trend to the surface fractal dimensions, indicating that the pore surface roughness and pore structure connectivity are both increased after CHS treatment. Methane sorption isothermal measurements show that both the Langmuir volume and Langmuir pressure decrease significantly with the increase in the number of hydraulic stimulation cycles. The Langmuir volume and the Langmuir pressure decrease from 33.47 cm^(3)/g and 0.205 MPa to 24.18 cm^(3)/g and 0.176 MPa after the coal samples treated with 7 hydraulic stimulation cycles, respectively. The increments of Langmuir volume and Langmuir pressure are positively correlated with the increment of TSSA and negatively correlated with the increments of surface fractal dimensions.展开更多
The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants.With advantageous dielectric and mechanical properties,initiated chemical vapor deposited(iCVD)po...The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants.With advantageous dielectric and mechanical properties,initiated chemical vapor deposited(iCVD)poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane)(pV3D3)emerges as a promising candidate.However,previous works have not explored etching for this cyclosiloxane polymer thin film,which is indispensable for potential applications to the back-end-of-line fabrication.Here,we developed an etching process utilizing O2/Ar remote plasma for cyclic removal of iCVD pV3D3 thin film at sub-nanometer scale.We employed in-situ quartz crystal microbalance to investigate the process parameters including the plasma power,plasma duration and O2 flow rate.X-ray photoelectron spectroscopy and cross-sectional microscopy reveal the formation of an oxidized skin layer during the etching process.This skin layer further substantiates an etching mechanism driven by surface oxidation and sputtering.Additionally,this oxidized skin layer leads to improved elastic modulus and hardness and acts as a barrier layer for protecting the bottom cyclosiloxane polymer from further oxidation.展开更多
Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing c...Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing capacity attenuation.This paper presents a semi-analytical solution for predicting the axial cyclic behavior of piles in sands.The solution relies on two enhanced nonlinear load-transfer models considering stress-strain hysteresis and cyclic degradation in the pile-soil interaction.Model parameters are calibrated through cyclic shear tests of the sand-steel interface and laboratory geotechnical testing of sands.A novel aspect involves the meticulous formulation of the shaft loadtransfer function using an interface constitutive model,which inherently inherits the interface model’s advantages,such as capturing hysteresis,hardening,degradation,and particle breakage.The semi-analytical solution is computed numerically using the matrix displacement method,and the calculated values are validated through model tests performed on non-displacement and displacement piles in sands.The results demonstrate that the predicted values show excellent agreement with the measured values for both the static and cyclic responses of piles in sands.The displacement pile response,including factors such as bearing capacity,mobilized shaft resistance,and convergence rate of permanent settlement,exhibit improvements compared to non-displacement piles attributed to the soil squeezing effect.This methodology presents an innovative analytical framework,allowing for integrating cyclic interface models into the theoretical investigation of pile responses.展开更多
Due to excavation disturbances and the coupled hydro-mechanical effects,deep rock masses experience nonlinear large deformations in the surrounding rock,necessitating an urgent exploration of the rock damage and failu...Due to excavation disturbances and the coupled hydro-mechanical effects,deep rock masses experience nonlinear large deformations in the surrounding rock,necessitating an urgent exploration of the rock damage and failure mechanisms from the perspectives of hydro-mechanical coupling and mechanical properties.Therefore,this study conducted uniaxial cyclic loading-unloading tests on sandstone samples with different water contents(0%,0.26%,0.52%,0.78%,and 1.04%)to investigate the microstructural evolution,energy evolution laws,and failure characteristics under varying water contents and cyclic loading conditions.The main conclusions are as follows:(1)Concerning micro-pore structures,as the water content increases,the porosity and maximum pore size of the sandstone first decrease and then increase.At 0%water content,the porosity is 4.82%and the maximum pore size is 31.94μm.At 0.26%water content,both porosity and maximum pore size decrease to 3.03%and 16.15μm,respectively.When the water content reaches 1.04%,the porosity and maximum pore size increase to 14.34%and 45.99μm,respectively.(2)Regarding energy evolution laws,the energy evolution of the specimens during cyclic loading-unloading mainly converts to elastic energy,showing a step-wise increase in energy.Further analysis reveals that the water content has a significant impact on the dissipation energy coefficient of the sandstone.At lower stress levels(<0.4σmax),the water content has a negligible effect,while at higher stress levels(>0.85σmax),an increase in water content leads to increased fluctuations in the dissipation energy coefficient.(3)In terms of failure characteristics,with increasing water content,the failure mode of the specimens shifts from primary crack failure to microcrack failure,corresponding to the energy evolution during cyclic loading-unloading processes.展开更多
Owing to the special layer-by-layer deposition process of directed energy deposition(DED),columnar coarse grains,produced by cyclic reheating with intrinsic directional heat flow along the building direc-tion,are diff...Owing to the special layer-by-layer deposition process of directed energy deposition(DED),columnar coarse grains,produced by cyclic reheating with intrinsic directional heat flow along the building direc-tion,are difficult to avoid.These grains result in strong anisotropic characteristics with poor mechanical properties,which restrict the application of DED products.This work proposes a novel fabrication strat-egy based on the cyclic-phase-transformation behavior,which can reduce the anisotropy and improve the mechanical properties of DED-printed stainless steel.Using this fabrication strategy,316 L powder(austenitic stainless steel)and 17-4PH powder(martensitic stainless steel)were mixed in different mass ratios to fabricate five types of DED-printed stainless steels.Among the five samples,P70(mixture of 70 wt%17-4PH powder and 30 wt%316 L powder)showed the weakest anisotropy and the best mechanical properties,which can be attributed to the cyclic phase transformation under cyclic reheating treatment and the transformation-induced plasticity(TRIP)effect over a wide range of strains,respectively.Com-pared with the pure 316 L printed material,the tensile test results of P70 showed that the yield strength(YS)and ultimate tensile strength(UTS)increased by 35.4%and 34.5%,respectively,whereas the uniform elongation(UE)and total elongation(TE)were improved by 63.9%and 31.4%,respectively.In addition,the strength-ductility balance(UTS×UE)increased by as much as 120.4%.The proposed fabrication strategy is expected to reduce the anisotropy in other materials that undergo cyclic-phase-transformation phe-nomena during additive manufacturing.展开更多
Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research atten...Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research attention.The traditional method for studying the dynamic strength characteristics of soils is dynamic triaxial testing,and the discrete element simulation of lightweight soils under cyclic load has rarely been considered.To study the meso-mechanisms of the dynamic failure processes of EPS particle lightweight soils,a discrete element numerical model is established using the particle flow code(PFC)software.The contact force,displacement field,and velocity field of lightweight soil under different cumulative compressive strains are studied.The results show that the hysteresis curves of lightweight soil present characteristics of strain accumulation,which reflect the cyclic effects of the dynamic load.When the confining pressure increases,the contact force of the particles also increases.The confining pressure can restrain the motion of the particle system and increase the dynamic strength of the sample.When the confining pressure is held constant,an increase in compressive strain causes minimal change in the contact force between soil particles.However,the contact force between the EPS particles decreases,and their displacement direction points vertically toward the center of the sample.Under an increase in compressive strain,the velocity direction of the particle system changes from a random distribution and points vertically toward the center of the sample.When the compressive strain is 5%,the number of particles deflected in the particle velocity direction increases significantly,and the cumulative rate of deformation in the lightweight soil accelerates.Therefore,it is feasible to use 5%compressive strain as the dynamic strength standard for lightweight soil.Discrete element methods provide a new approach toward the dynamic performance evaluation of lightweight soil subgrades.展开更多
Safe operation of electrochemical capacitors(supercapacitors)is hindered by the flammability of commercial organic electrolytes.Non-flammable Water-in-Salt(WIS)electrolytes are promising alternatives;however,they are ...Safe operation of electrochemical capacitors(supercapacitors)is hindered by the flammability of commercial organic electrolytes.Non-flammable Water-in-Salt(WIS)electrolytes are promising alternatives;however,they are plagued by the limited operation voltage window(typically≤2.3 V)and inherent corrosion of current collectors.Herein,a novel deep eutectic solvent(DES)-based electrolyte which uses formamide(FMD)as hydrogen-bond donor and sodium nitrate(NaNO_(3))as hydrogen-bond acceptor is demonstrated.The electrolyte exhibits the wide electrochemical stability window(3.14 V),high electrical conductivity(14.01 mScm^(-1)),good flame-retardance,anticorrosive property,and ultralow cost(7%of the commercial electrolyte and 2%of WIS).Raman spectroscopy and Density Functional Theory calculations reveal that the hydrogen bonds between the FMD molecules and NO_(3)^(-)ions are primarily responsible for the superior stability and conductivity.The developed NaNO_(3)/FMD-based coin cell supercapacitor is among the best-performing state-of-art DES and WIS devices,evidenced by the high voltage window(2.6 V),outstanding energy and power densities(22.77 Wh kg^(-1)at 630 W kg^(-1)and 17.37 kW kg^(-1)at 12.55 Wh kg^(-1)),ultralong cyclic stability(86%after 30000 cycles),and negligible current collector corrosion.The NaNO_(3)/FMD industry adoption potential is demonstrated by fabricating 100 F pouch cell supercapacitors using commercial aluminum current collectors.展开更多
The damage and failure law of rock mass with holes is of great significance to the stability control of roadways. This study investigates the mechanical properties and failure modes of porous rock masses under cyclic ...The damage and failure law of rock mass with holes is of great significance to the stability control of roadways. This study investigates the mechanical properties and failure modes of porous rock masses under cyclic loading, elucidates the acoustic emission (AE) characteristics and their spatial evolution, and establishes the interrelation among AE, stress, strain, time, and cumulative damage. The results reveal that the rock mass with holes and the intact rock mass show softening and hardening characteristics after cyclic loading. The plastic strain of the rock mass with holes is smaller than that of the intact rock mass, and the stress −strain curve shows hysteresis characteristics. Under uniaxial compression, the pore-bearing rock mass shows the characteristics of higher ringing count, AE energy, b-value peak, and more cumulative ringing count in the failure stage, while it shows lower characteristics under cyclic action. At the initial stage of loading, compared with the intact rock mass, the pore-containing rock mass shows the characteristics of a low b-value. The AE positioning and cumulative damage percentage are larger, and the AE positioning is denser around the hole. The specimen with holes is mainly shear failure, and the complete specimen is mainly tensile shear failure.展开更多
In this study, the influence of opening parameters on the ultimate strength of perforated plates subjected to extreme cyclic loading in the presence of material kinematic hardening and isotro pic hardening was analyze...In this study, the influence of opening parameters on the ultimate strength of perforated plates subjected to extreme cyclic loading in the presence of material kinematic hardening and isotro pic hardening was analyzed. It is found that the ultimate strength of the perforated plates decreases rapidly and stabilizes in the first four cycles. Plates with oblong openings have a greater ultimate strength compared to plates with rectangular openings, while the relative strengthening ratio decreases over the duration of the cycle. The location of the openings is also an important parameter that affects the strength of the structure, as the plates with openings close to the edges in the longitudinal direction have higher strengths, while in the transverse direction the strengths are higher when the openings are close to the center. Among the three opening-strengthening methods compared, the Carling stiffener method maintains a better strengthening effect under cyclic loads for many periods.展开更多
Clay,as the most common soil used for foundationfill,is widely used in various infrastructure projects.The phy-sical and mechanical properties of clay are influenced by the pore solution environment.This study uses a GD...Clay,as the most common soil used for foundationfill,is widely used in various infrastructure projects.The phy-sical and mechanical properties of clay are influenced by the pore solution environment.This study uses a GDS static/dynamic triaxial apparatus and nuclear magnetic resonance experiments to investigate the effects of cyclic loading on clay foundations.Moreover,the development of cumulative strain in clay is analyzed,and afitting model for cumulative plastic strain is introduced by considering factors such as NaCl solution concentration,con-solidation stress ratio,and cycle number.In particular,the effects of the NaCl solution concentration and con-solidation stress ratio on the pore distribution of the test samples before and after cyclic loading are examined,and the relationship between microscopic pore size and macroscopic cumulative strain is obtained accordingly.Our results show that as the consolidation stress ratio grows,an increasing number of large pores in the soil samples are transformed into small pores.As the NaCl solution concentration becomes higher,the number of small pores gradually decreases,while the number of large pores remains unchanged.Cyclic loading causes the disappearance of the large pores in the samples,and the average pore size before cyclic loading is posi-tively correlated with the axial cumulative strain after cyclic loading.The cumulative strain produced by the soil under cyclic loading is inversely proportional to the NaCl solution concentration and consolidation stress ratio.展开更多
BACKGROUND Cyclic vomiting syndrome(CVS)is a chronic functional gastrointestinal disorder involving the gut–brain interaction that is characterized by recurring episodes of nausea,vomiting,abdominal pain,and interspe...BACKGROUND Cyclic vomiting syndrome(CVS)is a chronic functional gastrointestinal disorder involving the gut–brain interaction that is characterized by recurring episodes of nausea,vomiting,abdominal pain,and interspersed complete normal periods.Superior mesenteric artery(SMA)syndrome(SMAS)is a vascular condition in which the horizontal portion of the duodenum is compressed due to a reduced angle between the aorta and the SMA.This condition presents with symptoms similar to CVS,posing challenges in distinguishing between the two and often resulting in misdiagnosis or inappropriate treatment.CASE SUMMARY A 20-year-old female patient presented with recurrent episodes of vomiting and experienced a persistent fear of vomiting for the past 2 years.She adopted conscious dietary restrictions,which led to severe malnutrition.Initially,she was diagnosed with SMAS,as revealed by computed tomography angiography.Despite efforts to increase the angle between the aorta and the SMA through weight gain,her vomiting did not improve.Finally,she was diagnosed with comorbidities including CVS,SMAS and anxiety disorder.She underwent comprehensive interventions,including enteral and parenteral nutritional supplementation,administration of antiemetic and anti-anxiety agents,and participation in mindfulness-based cognitive therapy.The patient eventually experienced a notable improvement in both body weight and clinical symptoms.CONCLUSION We present a rare case of CVS in an adult complicated with SMAS and propose additional treatment with nutritional support,pharmacological intervention,and psychotherapy.展开更多
基金supported by the National Natural Science Foundation of China,No.82003965the Science and Technology Research Project of Sichuan Provincial Administration of Traditional Chinese Medicine,No.2024MS167(to LH)+2 种基金the Xinglin Scholar Program of Chengdu University of Traditional Chinese Medicine,No.QJRC2022033(to LH)the Improvement Plan for the'Xinglin Scholar'Scientific Research Talent Program at Chengdu University of Traditional Chinese Medicine,No.XKTD2023002(to LH)the 2023 National Project of the College Students'Innovation and Entrepreneurship Training Program at Chengdu University of Traditional Chinese Medicine,No.202310633028(to FD)。
文摘The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.
基金supported by the IOA Frontier Exploration Project (No.ZYTS202001)the Youth Innovation Promotion Association CAS。
文摘In underwater acoustic applications,the conventional cyclic direction of arrival algorithm faces challenges,including a low signal-to-noise ratio and high bandwidth when compared with modulated frequencies.In response to these issues,this paper introduces a novel,robust,and broadband cyclic beamforming algorithm.The proposed method substitutes the conventional cyclic covariance matrix with the variance of the cyclic covariance matrix as its primary feature.Assuming that the same frequency band shares a common steering vector,the new algorithm achieves superior detection performance for targets with specific modulation frequencies while suppressing interference signals and background noise.Experimental results demonstrate a significant enhancement in the directibity index by 81%and 181%when compared with the traditional Capon beamforming algorithm and the traditional extended wideband spectral cyclic MUSIC(EWSCM)algorithm,respectively.Moreover,the proposed algorithm substantially reduces computational complexity to 1/40th of that of the EWSCM algorithm,employing frequency band statistical averaging and covariance matrix variance.
基金This paper is financially supported by the National Natural Science Foundation of China(Grant Nos.52074263 and 52034007)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.KYCX21_2332).
文摘Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the investigation of the mechanical response,failure mode,instability assessment criteria,and anchorage effect of AS subjected to combined cyclic dynamic-static triaxial stress paths.The results show that the peak bearing strength is positively correlated with the anchoring matrix strength,anchorage length,and edgewise compressive strength.The bearing capacity decreases significantly when the anchorage direction is severely inclined.The free face failure modes are typically transverse cracking,concave fracturing,V-shaped slipping and detachment,and spallation detachment.Besides,when the anchoring matrix strength and the anchorage length decrease while the edgewise compressive strength,loading rate,and anchorage inclination angle increase,the failure intensity rises.Instability is determined by a negative tangent modulus of the displacement-strength curve or the continued deformation increase against the general downward trend.Under cyclic loads,the driving force that breaks the rock mass along the normal vector and the rigidity of the AS are the two factors that determine roadway stability.Finally,a control measure for surrounding rock stability is proposed to reduce the internal driving force via a pressure relief method and improve the rigidity of the AS by full-length anchorage and grouting modification.
基金We acknowledge the funding support from the National Natural Science Foundation of China Youth Fund(Grant No.52004019)the National Natural Science Foundation of China(Grant No.41825018)China Postdoctoral Science Foundation(Grant No.2023M733481).
文摘Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB structures,a series of triaxial stepwise-increasing-amplitude cyclic loading experiments was conducted with cylindrical RB specimens(rock on outside,backfill on inside)with different volume fractions of rock(VF=0.48,0.61,0.73,and 0.84),confining pressures(0,6,9,and 12 MPa),and cyclic loading rates(200,300,400,and 500 N/s).The damage evolution and meso-crack formation during the cyclic tests were analyzed with results from stress-strain hysteresis loops,acoustic emission events,and post-failure X-ray 3D fracture morphology.The results showed significant differences between cyclic and monotonic loadings of RB specimens,particularly with regard to the generation of shear microcracks,the development of stress memory and strain hardening,and the contact forces and associated friction that develops along the rock-backfill interface.One important finding is that as a function of the number of cycles,the elastic strain increases linearly and the dissipated energy increases exponentially.Also,compared with monotonic loading,the cyclic strain hardening characteristics are more sensitive to rising confining pressures during the initial compaction stage.Another finding is that compared with monotonic loading,more shear microcracks are generated during every reloading stage,but these microcracks tend to be dispersed and lessen the likelihood of large shear fracture formation.The transition from elastic to plastic behavior varies depending on the parameters of each test(confinement,volume fraction,and cyclic rate),and an interesting finding was that the transformation to plastic behavior is significantly lower under the conditions of 0.73 rock volume fraction,400 N/s cyclic loading rate,and 9 MPa confinement.All the findings have important practical implications on the ability of backfill to support underground excavations.
基金National Natural Science Foundation of China under Grant No.52278503。
文摘Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and responses of these soils subjected to monotonic and cyclic loadings have been a subject of intense interest among the geotechnical and earthquake engineering communities.This paper critically reviews the progress of experimental investigations on the undrained behavior of coral sandy soils under monotonic and cyclic loadings over the last three decades.The focus of coverage includes the contractive-dilative behavior,the pattern of excess pore-water pressure(EPWP)generation and the liquefaction mechanism and liquefaction resistance,the small-strain shear modulus and strain-dependent shear modulus and damping,the cyclic softening feature,and the anisotropic characteristics of undrained responses of saturated coral sandy soils.In particular,the advances made in the past decades are reviewed from the following aspects:(1)the characterization of factors that impact the mechanism and patterns of EPWP build-up;(2)the identification of liquefaction triggering in terms of the apparent viscosity and the average flow coefficient;(3)the establishment of the invariable form of strain-based,stress-based,or energy-based EPWP ratio formulas and the unique relationship between the new proxy of liquefaction resistance and the number of cycles required to reach liquefaction;(4)the establishment of the invariable form of the predictive formulas of small strain modulus and strain-dependent shear modulus;and(5)the investigation on the effects of stress-induced anisotropy on liquefaction susceptibility and dynamic deformation characteristics.Insights gained through the critical review of these advances in the past decades offer a perspective for future research to further resolve the fundamental issues concerning the liquefaction mechanism and responses of coral sandy sites subjected to cyclic loadings associated with seismic events in marine environments.
基金financially supported by the National Natural Science Foundation of China(Grant No.42172292)Taishan Scholars Project Special Funding,and Shandong Energy Group(Grant No.SNKJ 2022A01-R26).
文摘To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)conditions.We analyzed the evolution of shear stress,normal stress,stress path,dilatancy characteristics,and friction coefficient and revealed the failure mechanisms of en-echelon joints at different angles.The results show that the cyclic shear behavior of the en-echelon joints is closely related to the joint angle,with the shear strength at a positive angle exceeding that at a negative angle during shear cycles.As the number of cycles increases,the shear strength decreases rapidly,and the difference between the varying angles gradually decreases.Dilation occurs in the early shear cycles(1 and 2),while contraction is the main feature in later cycles(310).The friction coefficient decreases with the number of cycles and exhibits a more significant sensitivity to joint angles than shear cycles.The joint angle determines the asperities on the rupture surfaces and the block size,and thus determines the subsequent shear failure mode(block crushing and asperity degradation).At positive angles,block size is more greater and asperities on the rupture surface are smaller than at nonpositive angles.Therefore,the cyclic shear behavior is controlled by block crushing at positive angles and asperity degradation at negative angles.
基金Supported by National Natural Science Foundation of China ( No. 51179120)
文摘An equivalent visco-elastic model of saturated soft clay was studied under unconsolidated undrained (UU) condition, which can be used to evaluate the stability of ocean foundation. Cyclic triaxial compression and extension tests were conducted to study the parameters of the model. Results showed that the relationships of the damping ratio and the octahedral shear modulus with the octahedral cyclic shear strain were nearly unique, when the initial octahedral shear stress ratios of specimens were equal to 0.3, 0.5 and 0.7. The relationships of the damping ratio and the octahedral shear modulus with the octahedral cyclic shear strain determined from the cyclic triaxial compression tests were basically the same as those determined from the cyclic triaxial extension tests. Furthermore, the relationships were not related to the initial stress condition, the test stress state and the octahedral cyclic shear stress ratio. The relationships determined from the cyclic triaxial tests under no deviatoric stress were basically the same as those determined from the cyclic triaxial tests under deviatoric stress. The change of the octahedral cyclic accumulative strain with the number of cycles was unique under different tests stress states. An equivalent visco-elastic constitutive model of saturated soft clay under UU condition was initially established.
文摘Electrode materials with high desalination capacity and long-term cyclic stability are the focus of capacitive deionization(CDI) community. Understanding the causes of performance decay in traditional carbons is crucial to design a high-performance material. Based on this, here, nitrogen-doped activated carbon(NAC) was prepared by pyrolyzing the blend of activated carbon powder(ACP) and melamine for the positive electrode of asymmetric CDI. By comparing the indicators changes such as conductivity, salt adsorption capacity, pH, and charge efficiency of the symmetrical ACP-ACP device to the asymmetric ACP-NAC device under different CDI cycles, as well as the changes of the electrochemical properties of anode and cathode materials after long-term operation, the reasons for the decline of the stability of the CDI performance were revealed. It was found that the carboxyl functional groups generated by the electro-oxidation of anode carbon materials make the anode zero-charge potential(E_(pzc)) shift positively,which results in the uneven distribution of potential windows of CDI units and affects the adsorption capacity. Furthermore, by understanding the electron density on C atoms surrounding the N atoms, we attribute the increased cyclic stability to the enhanced negativity of the charge of carbon atoms adjacent to quaternary-N and pyridinic-oxide-N.
基金supported by the National Natural Science Foundation of China(Nos.52204092 and 52274203).
文摘The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics under cyclic loading.The results show that under cyclic loading,the relationship between the number of non-penetrating crack(s)and the characteristic parameters(cyclic number,peak stress,peak strain,failure stress,and failure strain)of the pre-cracked specimens can be represented by a decreasing linear function.The damage evolution equation is fitted by calibrating the accumulative plastic strain for each cycle,and the damage constitutive equation is proposed by the concept of effective stress.Additionally,non-penetrating cracks are more likely to cause uneven stress distribution,damage accumulation,and local failure of specimen.The local failure can change the stress distribution and relieve the inhibition of non-penetrating crack extension and eventually cause a dramatic destruction of the specimen.Therefore,the evolution process caused by non-penetrating cracks can be regarded as one of the important reasons for inducing rockburst.These results are expected to improve the understanding of the process of spalling formation and rockburst and can be used to analyze the stability of rocks or rock structures.
基金financially supported by the National Natural Science Foundation of China (51904319)the Fundamental Research Funds for the Central Universities (21CX06029A)。
文摘The cyclic hydraulic stimulation(CHS) has proven as a prospective technology for enhancing the permeability of unconventional formations such as coalbeds. However, the effects of CHS on the microstructure and gas sorption behavior of coal remain unclear. In this study, laboratory tests including the nuclear magnetic resonance(NMR), low-temperature nitrogen sorption(LTNS), and methane sorption isotherm measurement were conducted to explore changes in the pore structure and methane sorption characteristics caused by CHS on an anthracite coal from Qinshui Basin, China. The NMR and LTNS tests show that after CHS treatment, meso- and macro-pores tend to be enlarged, whereas micropores with larger sizes and transition-pores may be converted into smaller-sized micro-pores. After the coal samples treated with 1, 3, 5 and 7 hydraulic stimulation cycles, the total specific surface area(TSSA)decreased from 0.636 to 0.538, 0.516, 0.505, and 0.491 m^(2)/g, respectively. Fractal analysis based on the NMR and LTNS results show that the surface fractal dimensions increase with the increase in the number of hydraulic stimulation cycles, while the volume fractal dimensions exhibit an opposite trend to the surface fractal dimensions, indicating that the pore surface roughness and pore structure connectivity are both increased after CHS treatment. Methane sorption isothermal measurements show that both the Langmuir volume and Langmuir pressure decrease significantly with the increase in the number of hydraulic stimulation cycles. The Langmuir volume and the Langmuir pressure decrease from 33.47 cm^(3)/g and 0.205 MPa to 24.18 cm^(3)/g and 0.176 MPa after the coal samples treated with 7 hydraulic stimulation cycles, respectively. The increments of Langmuir volume and Langmuir pressure are positively correlated with the increment of TSSA and negatively correlated with the increments of surface fractal dimensions.
基金the funding from the National Natural Science Foundation of China(22178301 and 21938011)the grant from the Science&Technology Department of Zhejiang Province(2023C01182)+3 种基金the funding from the Natural Science Foundation of Zhejiang Province(LR21B060003)supported by the Fundamental Research Funds for the Central Universities(226-2024-00023)Shanxi Institute of Zhejiang University for New Materials and Chemical Industry(2022SZ-TD005)Quzhou Science and Technology Program(2021NC02).
文摘The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants.With advantageous dielectric and mechanical properties,initiated chemical vapor deposited(iCVD)poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane)(pV3D3)emerges as a promising candidate.However,previous works have not explored etching for this cyclosiloxane polymer thin film,which is indispensable for potential applications to the back-end-of-line fabrication.Here,we developed an etching process utilizing O2/Ar remote plasma for cyclic removal of iCVD pV3D3 thin film at sub-nanometer scale.We employed in-situ quartz crystal microbalance to investigate the process parameters including the plasma power,plasma duration and O2 flow rate.X-ray photoelectron spectroscopy and cross-sectional microscopy reveal the formation of an oxidized skin layer during the etching process.This skin layer further substantiates an etching mechanism driven by surface oxidation and sputtering.Additionally,this oxidized skin layer leads to improved elastic modulus and hardness and acts as a barrier layer for protecting the bottom cyclosiloxane polymer from further oxidation.
基金the financial support provided by the National Natural Science Foundation of China(Grant No.42272310).
文摘Cyclic loads generated by environmental factors,such as winds,waves,and trains,will likely lead to performance degradation in pile foundations,resulting in issues like permanent displacement accumulation and bearing capacity attenuation.This paper presents a semi-analytical solution for predicting the axial cyclic behavior of piles in sands.The solution relies on two enhanced nonlinear load-transfer models considering stress-strain hysteresis and cyclic degradation in the pile-soil interaction.Model parameters are calibrated through cyclic shear tests of the sand-steel interface and laboratory geotechnical testing of sands.A novel aspect involves the meticulous formulation of the shaft loadtransfer function using an interface constitutive model,which inherently inherits the interface model’s advantages,such as capturing hysteresis,hardening,degradation,and particle breakage.The semi-analytical solution is computed numerically using the matrix displacement method,and the calculated values are validated through model tests performed on non-displacement and displacement piles in sands.The results demonstrate that the predicted values show excellent agreement with the measured values for both the static and cyclic responses of piles in sands.The displacement pile response,including factors such as bearing capacity,mobilized shaft resistance,and convergence rate of permanent settlement,exhibit improvements compared to non-displacement piles attributed to the soil squeezing effect.This methodology presents an innovative analytical framework,allowing for integrating cyclic interface models into the theoretical investigation of pile responses.
基金supported by Ordos Science and Technology Bureau (Grant No. IMRI23005)funded by the National Natural Science Foundation of China (Grant Nos. 51904306, 42277174)
文摘Due to excavation disturbances and the coupled hydro-mechanical effects,deep rock masses experience nonlinear large deformations in the surrounding rock,necessitating an urgent exploration of the rock damage and failure mechanisms from the perspectives of hydro-mechanical coupling and mechanical properties.Therefore,this study conducted uniaxial cyclic loading-unloading tests on sandstone samples with different water contents(0%,0.26%,0.52%,0.78%,and 1.04%)to investigate the microstructural evolution,energy evolution laws,and failure characteristics under varying water contents and cyclic loading conditions.The main conclusions are as follows:(1)Concerning micro-pore structures,as the water content increases,the porosity and maximum pore size of the sandstone first decrease and then increase.At 0%water content,the porosity is 4.82%and the maximum pore size is 31.94μm.At 0.26%water content,both porosity and maximum pore size decrease to 3.03%and 16.15μm,respectively.When the water content reaches 1.04%,the porosity and maximum pore size increase to 14.34%and 45.99μm,respectively.(2)Regarding energy evolution laws,the energy evolution of the specimens during cyclic loading-unloading mainly converts to elastic energy,showing a step-wise increase in energy.Further analysis reveals that the water content has a significant impact on the dissipation energy coefficient of the sandstone.At lower stress levels(<0.4σmax),the water content has a negligible effect,while at higher stress levels(>0.85σmax),an increase in water content leads to increased fluctuations in the dissipation energy coefficient.(3)In terms of failure characteristics,with increasing water content,the failure mode of the specimens shifts from primary crack failure to microcrack failure,corresponding to the energy evolution during cyclic loading-unloading processes.
基金the support of the Key Program of National Natural Science Foundation of China(Grant No.52235005)the Natural Science Foundation of Hunan Province,China(Grant No.2023JJ30137).
文摘Owing to the special layer-by-layer deposition process of directed energy deposition(DED),columnar coarse grains,produced by cyclic reheating with intrinsic directional heat flow along the building direc-tion,are difficult to avoid.These grains result in strong anisotropic characteristics with poor mechanical properties,which restrict the application of DED products.This work proposes a novel fabrication strat-egy based on the cyclic-phase-transformation behavior,which can reduce the anisotropy and improve the mechanical properties of DED-printed stainless steel.Using this fabrication strategy,316 L powder(austenitic stainless steel)and 17-4PH powder(martensitic stainless steel)were mixed in different mass ratios to fabricate five types of DED-printed stainless steels.Among the five samples,P70(mixture of 70 wt%17-4PH powder and 30 wt%316 L powder)showed the weakest anisotropy and the best mechanical properties,which can be attributed to the cyclic phase transformation under cyclic reheating treatment and the transformation-induced plasticity(TRIP)effect over a wide range of strains,respectively.Com-pared with the pure 316 L printed material,the tensile test results of P70 showed that the yield strength(YS)and ultimate tensile strength(UTS)increased by 35.4%and 34.5%,respectively,whereas the uniform elongation(UE)and total elongation(TE)were improved by 63.9%and 31.4%,respectively.In addition,the strength-ductility balance(UTS×UE)increased by as much as 120.4%.The proposed fabrication strategy is expected to reduce the anisotropy in other materials that undergo cyclic-phase-transformation phe-nomena during additive manufacturing.
基金supported by the National Natural Science Foundation of China (No. 51509211)the China Postdoctoral Science Foundation (No. 2016M602863)+5 种基金the Natural Science Foundation of Shaanxi Province (Nos. 2024JC-YBMS-354 and 2021JLM-51)the Excellent Science and Technology Activities Foundation for Returned Overseas Teachers of Shaanxi Province (No. 2018031)the Social Development Foundation of Shaanxi Province (No. 2015SF260)the Postdoctoral Science Foundation of Shaanxi Province (No. 2017BSHYDZZ50)Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University (No. SZ02306)Xi’an Key Laboratory of Geotechnical and Underground Engineering, Xi’an University of Science and Technology (No. XKLGUEKF21-02)
文摘Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research attention.The traditional method for studying the dynamic strength characteristics of soils is dynamic triaxial testing,and the discrete element simulation of lightweight soils under cyclic load has rarely been considered.To study the meso-mechanisms of the dynamic failure processes of EPS particle lightweight soils,a discrete element numerical model is established using the particle flow code(PFC)software.The contact force,displacement field,and velocity field of lightweight soil under different cumulative compressive strains are studied.The results show that the hysteresis curves of lightweight soil present characteristics of strain accumulation,which reflect the cyclic effects of the dynamic load.When the confining pressure increases,the contact force of the particles also increases.The confining pressure can restrain the motion of the particle system and increase the dynamic strength of the sample.When the confining pressure is held constant,an increase in compressive strain causes minimal change in the contact force between soil particles.However,the contact force between the EPS particles decreases,and their displacement direction points vertically toward the center of the sample.Under an increase in compressive strain,the velocity direction of the particle system changes from a random distribution and points vertically toward the center of the sample.When the compressive strain is 5%,the number of particles deflected in the particle velocity direction increases significantly,and the cumulative rate of deformation in the lightweight soil accelerates.Therefore,it is feasible to use 5%compressive strain as the dynamic strength standard for lightweight soil.Discrete element methods provide a new approach toward the dynamic performance evaluation of lightweight soil subgrades.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LY23E060004)Royal Society Newton Advanced Fellowship(No.52061130218)
文摘Safe operation of electrochemical capacitors(supercapacitors)is hindered by the flammability of commercial organic electrolytes.Non-flammable Water-in-Salt(WIS)electrolytes are promising alternatives;however,they are plagued by the limited operation voltage window(typically≤2.3 V)and inherent corrosion of current collectors.Herein,a novel deep eutectic solvent(DES)-based electrolyte which uses formamide(FMD)as hydrogen-bond donor and sodium nitrate(NaNO_(3))as hydrogen-bond acceptor is demonstrated.The electrolyte exhibits the wide electrochemical stability window(3.14 V),high electrical conductivity(14.01 mScm^(-1)),good flame-retardance,anticorrosive property,and ultralow cost(7%of the commercial electrolyte and 2%of WIS).Raman spectroscopy and Density Functional Theory calculations reveal that the hydrogen bonds between the FMD molecules and NO_(3)^(-)ions are primarily responsible for the superior stability and conductivity.The developed NaNO_(3)/FMD-based coin cell supercapacitor is among the best-performing state-of-art DES and WIS devices,evidenced by the high voltage window(2.6 V),outstanding energy and power densities(22.77 Wh kg^(-1)at 630 W kg^(-1)and 17.37 kW kg^(-1)at 12.55 Wh kg^(-1)),ultralong cyclic stability(86%after 30000 cycles),and negligible current collector corrosion.The NaNO_(3)/FMD industry adoption potential is demonstrated by fabricating 100 F pouch cell supercapacitors using commercial aluminum current collectors.
基金Projects(U22A20165, 52004289) supported by the National Natural Science Foundation of ChinaProjects(2022XJNY01, BBJ2024001) supported by the Fundamental Research Funds for the Central Universities,China。
文摘The damage and failure law of rock mass with holes is of great significance to the stability control of roadways. This study investigates the mechanical properties and failure modes of porous rock masses under cyclic loading, elucidates the acoustic emission (AE) characteristics and their spatial evolution, and establishes the interrelation among AE, stress, strain, time, and cumulative damage. The results reveal that the rock mass with holes and the intact rock mass show softening and hardening characteristics after cyclic loading. The plastic strain of the rock mass with holes is smaller than that of the intact rock mass, and the stress −strain curve shows hysteresis characteristics. Under uniaxial compression, the pore-bearing rock mass shows the characteristics of higher ringing count, AE energy, b-value peak, and more cumulative ringing count in the failure stage, while it shows lower characteristics under cyclic action. At the initial stage of loading, compared with the intact rock mass, the pore-containing rock mass shows the characteristics of a low b-value. The AE positioning and cumulative damage percentage are larger, and the AE positioning is denser around the hole. The specimen with holes is mainly shear failure, and the complete specimen is mainly tensile shear failure.
文摘In this study, the influence of opening parameters on the ultimate strength of perforated plates subjected to extreme cyclic loading in the presence of material kinematic hardening and isotro pic hardening was analyzed. It is found that the ultimate strength of the perforated plates decreases rapidly and stabilizes in the first four cycles. Plates with oblong openings have a greater ultimate strength compared to plates with rectangular openings, while the relative strengthening ratio decreases over the duration of the cycle. The location of the openings is also an important parameter that affects the strength of the structure, as the plates with openings close to the edges in the longitudinal direction have higher strengths, while in the transverse direction the strengths are higher when the openings are close to the center. Among the three opening-strengthening methods compared, the Carling stiffener method maintains a better strengthening effect under cyclic loads for many periods.
文摘Clay,as the most common soil used for foundationfill,is widely used in various infrastructure projects.The phy-sical and mechanical properties of clay are influenced by the pore solution environment.This study uses a GDS static/dynamic triaxial apparatus and nuclear magnetic resonance experiments to investigate the effects of cyclic loading on clay foundations.Moreover,the development of cumulative strain in clay is analyzed,and afitting model for cumulative plastic strain is introduced by considering factors such as NaCl solution concentration,con-solidation stress ratio,and cycle number.In particular,the effects of the NaCl solution concentration and con-solidation stress ratio on the pore distribution of the test samples before and after cyclic loading are examined,and the relationship between microscopic pore size and macroscopic cumulative strain is obtained accordingly.Our results show that as the consolidation stress ratio grows,an increasing number of large pores in the soil samples are transformed into small pores.As the NaCl solution concentration becomes higher,the number of small pores gradually decreases,while the number of large pores remains unchanged.Cyclic loading causes the disappearance of the large pores in the samples,and the average pore size before cyclic loading is posi-tively correlated with the axial cumulative strain after cyclic loading.The cumulative strain produced by the soil under cyclic loading is inversely proportional to the NaCl solution concentration and consolidation stress ratio.
基金Supported by 1·3·5 Project for Disciplines of Excellence,West China Hospital,Sichuan University,No.ZYJC21004.
文摘BACKGROUND Cyclic vomiting syndrome(CVS)is a chronic functional gastrointestinal disorder involving the gut–brain interaction that is characterized by recurring episodes of nausea,vomiting,abdominal pain,and interspersed complete normal periods.Superior mesenteric artery(SMA)syndrome(SMAS)is a vascular condition in which the horizontal portion of the duodenum is compressed due to a reduced angle between the aorta and the SMA.This condition presents with symptoms similar to CVS,posing challenges in distinguishing between the two and often resulting in misdiagnosis or inappropriate treatment.CASE SUMMARY A 20-year-old female patient presented with recurrent episodes of vomiting and experienced a persistent fear of vomiting for the past 2 years.She adopted conscious dietary restrictions,which led to severe malnutrition.Initially,she was diagnosed with SMAS,as revealed by computed tomography angiography.Despite efforts to increase the angle between the aorta and the SMA through weight gain,her vomiting did not improve.Finally,she was diagnosed with comorbidities including CVS,SMAS and anxiety disorder.She underwent comprehensive interventions,including enteral and parenteral nutritional supplementation,administration of antiemetic and anti-anxiety agents,and participation in mindfulness-based cognitive therapy.The patient eventually experienced a notable improvement in both body weight and clinical symptoms.CONCLUSION We present a rare case of CVS in an adult complicated with SMAS and propose additional treatment with nutritional support,pharmacological intervention,and psychotherapy.