期刊文献+
共找到21,683篇文章
< 1 2 250 >
每页显示 20 50 100
长牡蛎(Crassostrea gigas)环GMP-AMP合酶(cyclic GMP-AMP synthase,cGAS)的基因克隆与功能研究
1
作者 白晶 毛帆 +3 位作者 刘客林 宋菁晨 喻子牛 张扬 《热带海洋学报》 北大核心 2025年第1期24-34,共11页
环GMP-AMP合酶(cyclic GMP-AMP synthase,cGAS)是一种关键的细胞内传感器,能够识别细胞质内异常存在的DNA并触发免疫反应。为了揭示cGAS在软体动物先天性免疫调控中的重要作用,本研究成功克隆了长牡蛎中的cGAS基因(CgcGAS),其开放阅读框... 环GMP-AMP合酶(cyclic GMP-AMP synthase,cGAS)是一种关键的细胞内传感器,能够识别细胞质内异常存在的DNA并触发免疫反应。为了揭示cGAS在软体动物先天性免疫调控中的重要作用,本研究成功克隆了长牡蛎中的cGAS基因(CgcGAS),其开放阅读框(open reading frame,ORF)全长1623bp,编码540个氨基酸,理论相对分子质量为62.3kDa,并具有保守的Mab21结构域。系统进化分析表明了CgcGAS为软体动物cGAS家族中的一员。定量逆转录聚合酶链式反应(qRTPCR)结果显示CgcGAS广泛表达于各组织,并在消化腺的相对表达量最高。亚细胞定位实验观察到CgcGAS蛋白在细胞核和细胞质中都有分布,主要定位于细胞核,提示其可能在细胞核内的DNA感应以及细胞质内的DNA结合和信号传递中发挥作用。另外,双荧光素酶报告基因系统和RNA干扰实验结果显示,CgcGAS能够显著激活核因子κB(nuclear factor kappa-B,NF-κB)和干扰素刺激性反应元件(interferon-sensitive response element,ISRE)信号通路,及其下游的炎症相关因子干扰素诱导病毒抑制蛋白(virus inhibitory protein endoplasmic reticulum-associated interferon-inducible,viperin)、肿瘤坏死因子(tumor necrosis factor,TNF)、白细胞介素-17(interleukin-17,IL-17)及转录因子干扰素调节因子2/8(interferon regulatory factor 2/8,IRF2/8)的表达。综上所述,CgcGAS在长牡蛎的先天性免疫反应中的信号传递过程中发挥了关键作用。 展开更多
关键词 长牡蛎 先天性免疫 环GMP-AMP合酶 基因克隆 功能
下载PDF
Exploring the interaction between the gut microbiota and cyclic adenosine monophosphate-protein kinase A signaling pathway:a potential therapeutic approach for neurodegenerative diseases
2
作者 Fengcheng Deng Dan Yang +6 位作者 Lingxi Qing Yifei Chen Jilian Zou Meiling Jia Qian Wang Runda Jiang Lihua Huang 《Neural Regeneration Research》 SCIE CAS 2025年第11期3095-3112,共18页
The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enh... The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases. 展开更多
关键词 cyclic adenosine monophosphate emotional disorders gut microbiota neurodegenerative diseases neurological diseases protein kinase A reciprocal regulation signaling pathway STRATEGY THERAPIES
下载PDF
Effects of bacterial strains on undrained cyclic behavior of bio-cemented sand considering wetting and drying cycles
3
作者 Nilanjana Banik Rajib Sarkar 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期432-452,共21页
The microbial-induced calcite precipitation(MICP)technique has been developed as a sustainable methodology for the improvement of the engineering characteristics of sandy soils.However,the efficiency of MICP-treated s... The microbial-induced calcite precipitation(MICP)technique has been developed as a sustainable methodology for the improvement of the engineering characteristics of sandy soils.However,the efficiency of MICP-treated sand has not been well established in the literature considering cyclic loading under undrained conditions.Furthermore,the efficacy of different bacterial strains in enhancing the cyclic properties of MICP-treated sand has not been sufficiently documented.Moreover,the effect of wetting-drying(WD)cycles on the cyclic characteristics of MICP-treated sand is not readily available,which may contribute to the limited adoption of MICP treatment in field applications.In this study,strain-controlled consolidated undrained(CU)cyclic triaxial testing was conducted to evaluate the effects of MICP treatment on standard Ennore sand from India with two bacterial strains:Sporosarcina pasteurii and Bacillus subtilis.The treatment durations of 7 d and 14 d were considered,with an interval of 12 h between treatments.The cyclic characteristics,such as the shear modulus and damping ratio,of the MICP-treated sand with the different bacterial strains have been estimated and compared.Furthermore,the effect of WD cycles on the cyclic characteristics of MICP-treated sand has been evaluated considering 5–15 cycles and aging of samples up to three months.The findings of this study may be helpful in assessing the cyclic characteristics of MICP-treated sand,considering the influence of different bacterial strains,treatment duration,and WD cycles. 展开更多
关键词 Bio-cemented sand Microbial-induced calcite precipitation(MICP)treatment Consolidated undrained(CU)cyclic triaxial testing cyclic characteristics Wetting-drying(WD)cycles
下载PDF
A Damage Control Model for Reinforced Concrete Pier Columns Based on Pre-Damage Tests under Cyclic Reverse Loading
4
作者 Zhao-Jun Zhang Jing-Shui Zhen +3 位作者 Bo-Cheng Li De-Cheng Cai Yang-Yang Du Wen-Wei Wang 《Structural Durability & Health Monitoring》 2025年第2期327-346,共20页
To mitigate the challenges in managing the damage level of reinforced concrete(RC)pier columns subjected to cyclic reverse loading,this study conducted a series of cyclic reverse tests on RC pier columns.By analyzing ... To mitigate the challenges in managing the damage level of reinforced concrete(RC)pier columns subjected to cyclic reverse loading,this study conducted a series of cyclic reverse tests on RC pier columns.By analyzing the outcomes of destructive testing on various specimens and fine-tuning the results with the aid of the IMK(Ibarra Medina Krawinkler)recovery model,the energy dissipation capacity coefficient of the pier columns were able to be determined.Furthermore,utilizing the calibrated damage model parameters,the damage index for each specimen were calculated.Based on the obtained damage levels,three distinct pre-damage conditions were designed for the pier columns:minor damage,moderate damage,and severe damage.The study then predicted the variations in hysteresis curves and damage indices under cyclic loading conditions.The experimental findings reveal that the displacement at the top of the pier columns can serve as a reliable indicator for controlling the damage level of pier columns post-loading.Moreover,the calibrated damage index model exhibits proficiency in accurately predicting the damage level of RC pier columns under cyclic loading. 展开更多
关键词 Reinforced concrete pier cyclic reverse load pre-damage damage index displacement control
下载PDF
SlPGR5/SlPGRL1 pathway-dependent cyclic electron transport regulates photoprotection and chloroplast quality in tomato plants
5
作者 Xiaolong Yang Yumeng Zhang +5 位作者 Ting Liu Jiali Shi Mingfang Qi Riyuan Chen Yufeng Liu Tianlai Li 《Horticultural Plant Journal》 2025年第1期211-226,共16页
The essential photoprotective role of proton gradient regulation 5(PGR5)-dependent cyclic electron flow(CEF)has been reported in Arabidopsis,rice,and algae.However,its functional assessment has not been performed in t... The essential photoprotective role of proton gradient regulation 5(PGR5)-dependent cyclic electron flow(CEF)has been reported in Arabidopsis,rice,and algae.However,its functional assessment has not been performed in tomato yet.In this study,we focused on elucidate the function of SlPGR5 and SlPGR5-like photosynthetic phenotype 1(PGRL1)in tomato.We performed RNA interference and found that SlPGR5/SlPGRL1-suppressed transformants exhibited extremely low CO_(2)assimilation capacity,their photosystem I(PSI)and PSII were severely photoinhibited and chloroplasts were obviously damaged.The SlPGR5/SlPGRL1-suppressed plants almost completely inhibited CEF and Y(ND),and PSII photoinhibition may be directly related to the inability to produce sufficient proton motive force to induce NPQ.The transgenic plants overexpressing SlPGR5 and SlPGRL1 driven by 35S promoter capable alleviate photoinhibition of plants under low night temperature.The transcriptomic and proteomic analyses suggested that the nuclear gene transcription and turnover of chloroplast proteins,including the plastoglobule-related proteins,were closely related to SlPGR5/SlPGRL1 pathway dependent CEF.The bridge relationship between CEF and chloroplast quality maintenance was a novel report to our knowledge.In conclusion,these results revealed the regulatory mechanism of the SlPGR5/SlPGRL1 pathway in photoprotection and maintenance of chloroplast function in tomato,which is crucial for reduce yield loss,especially under adverse environmental conditions. 展开更多
关键词 TOMATO cyclic electron transport SlPGR5/SlPGRL1 PHOTOPROTECTION Chloroplast quality Plastoglobulus
下载PDF
Bidirectional regulation of the cyclic guanosine monophosphateadenosine monophosphate synthase-stimulator of interferon gene pathway and its impact on hepatocellular carcinoma
6
作者 Ai-Yu Nie Zhong-Hui Xiao +4 位作者 Jia-Li Deng Na Li Li-Yuan Hao Sheng-Hao Li Xiao-Yu Hu 《World Journal of Gastrointestinal Oncology》 2025年第2期246-261,共16页
BACKGROUND Hepatocellular carcinoma(HCC)ranks as the fourth leading cause of cancerrelated deaths in China,and the treatment options are limited.The cyclic guanosine monophosphate-adenosine monophosphate synthase(cGAS... BACKGROUND Hepatocellular carcinoma(HCC)ranks as the fourth leading cause of cancerrelated deaths in China,and the treatment options are limited.The cyclic guanosine monophosphate-adenosine monophosphate synthase(cGAS)activates the stimulator of interferon gene(STING)signaling pathway as a crucial immune response pathway in the cytoplasm,which detects cytoplasmic DNA to regulate innate and adaptive immune responses.As a potential therapeutic target,cGASSTING pathway markedly inhibits tumor cell proliferation and metastasis,with its activation being particularly relevant in HCC.However,prolonged pathway activation may lead to an immunosuppressive tumor microenvironment,which fostering the invasion or metastasis of liver tumor cells.AIM To investigate the dual-regulation mechanism of cGAS-STING in HCC.METHODS This review was conducted according to the PRISMA guidelines.The study conducted a comprehensive search for articles related to HCC on PubMed and Web of Science databases.Through rigorous screening and meticulous analysis of the retrieved literature,the research aimed to summarize and elucidate the impact of the cGAS-STING pathway on HCC tumors.RESULTS All authors collaboratively selected studies for inclusion,extracted data,and the initial search of online databases yielded 1445 studies.After removing duplicates,remaining 964 records were screened.Ultimately,55 articles met the inclusion criteria and were included in this review.CONCLUSION Acute inflammation can have a few inhibitory effects on cancer,while chronic inflammation generally promotes its progression.Extended cGAS-STING pathway activation will result in a suppressive tumor microenvironment. 展开更多
关键词 Hepatocellular carcinoma cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon gene Interferon genes The metastasis of a tumor IMMUNOLOGY
下载PDF
Mechanical responses of anchoring structure under triaxial cyclic loading 被引量:3
7
作者 Peng Wang Nong Zhang +5 位作者 Qun Wei Xingliang Xu Guangzhen Cui Aoran Li Sen Yang Jiaguang Kan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期545-560,共16页
Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the inves... Dynamic load on anchoring structures(AS)within deep roadways can result in cumulative damage and failure.This study develops an experimental device designed to test AS under triaxial loads.The device enables the investigation of the mechanical response,failure mode,instability assessment criteria,and anchorage effect of AS subjected to combined cyclic dynamic-static triaxial stress paths.The results show that the peak bearing strength is positively correlated with the anchoring matrix strength,anchorage length,and edgewise compressive strength.The bearing capacity decreases significantly when the anchorage direction is severely inclined.The free face failure modes are typically transverse cracking,concave fracturing,V-shaped slipping and detachment,and spallation detachment.Besides,when the anchoring matrix strength and the anchorage length decrease while the edgewise compressive strength,loading rate,and anchorage inclination angle increase,the failure intensity rises.Instability is determined by a negative tangent modulus of the displacement-strength curve or the continued deformation increase against the general downward trend.Under cyclic loads,the driving force that breaks the rock mass along the normal vector and the rigidity of the AS are the two factors that determine roadway stability.Finally,a control measure for surrounding rock stability is proposed to reduce the internal driving force via a pressure relief method and improve the rigidity of the AS by full-length anchorage and grouting modification. 展开更多
关键词 Triaxial stress Dynamic-static combination load cyclic loading Anchoring structure(AS) Cumulative damage
下载PDF
Experimental study of the damage characteristics of rocks containing non-penetrating cracks under cyclic loading 被引量:1
8
作者 Jun Xu Xiaochun Xiao +3 位作者 Lu Ma Sen Luo Jiaxu Jin Baijian Wu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期197-210,共14页
The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics ... The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics under cyclic loading.The results show that under cyclic loading,the relationship between the number of non-penetrating crack(s)and the characteristic parameters(cyclic number,peak stress,peak strain,failure stress,and failure strain)of the pre-cracked specimens can be represented by a decreasing linear function.The damage evolution equation is fitted by calibrating the accumulative plastic strain for each cycle,and the damage constitutive equation is proposed by the concept of effective stress.Additionally,non-penetrating cracks are more likely to cause uneven stress distribution,damage accumulation,and local failure of specimen.The local failure can change the stress distribution and relieve the inhibition of non-penetrating crack extension and eventually cause a dramatic destruction of the specimen.Therefore,the evolution process caused by non-penetrating cracks can be regarded as one of the important reasons for inducing rockburst.These results are expected to improve the understanding of the process of spalling formation and rockburst and can be used to analyze the stability of rocks or rock structures. 展开更多
关键词 Damage characteristics Constitutive model Fissured rocks Non-penetrating crack cyclic loading
下载PDF
Damage evolution of rock-encased-backfill structure under stepwise cyclic triaxial loading 被引量:1
9
作者 Xin Yu Yuye Tan +4 位作者 Weidong Song John Kemeny Shengwen Qi Bowen Zheng Songfeng Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期597-615,共19页
Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB ... Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB structures,a series of triaxial stepwise-increasing-amplitude cyclic loading experiments was conducted with cylindrical RB specimens(rock on outside,backfill on inside)with different volume fractions of rock(VF=0.48,0.61,0.73,and 0.84),confining pressures(0,6,9,and 12 MPa),and cyclic loading rates(200,300,400,and 500 N/s).The damage evolution and meso-crack formation during the cyclic tests were analyzed with results from stress-strain hysteresis loops,acoustic emission events,and post-failure X-ray 3D fracture morphology.The results showed significant differences between cyclic and monotonic loadings of RB specimens,particularly with regard to the generation of shear microcracks,the development of stress memory and strain hardening,and the contact forces and associated friction that develops along the rock-backfill interface.One important finding is that as a function of the number of cycles,the elastic strain increases linearly and the dissipated energy increases exponentially.Also,compared with monotonic loading,the cyclic strain hardening characteristics are more sensitive to rising confining pressures during the initial compaction stage.Another finding is that compared with monotonic loading,more shear microcracks are generated during every reloading stage,but these microcracks tend to be dispersed and lessen the likelihood of large shear fracture formation.The transition from elastic to plastic behavior varies depending on the parameters of each test(confinement,volume fraction,and cyclic rate),and an interesting finding was that the transformation to plastic behavior is significantly lower under the conditions of 0.73 rock volume fraction,400 N/s cyclic loading rate,and 9 MPa confinement.All the findings have important practical implications on the ability of backfill to support underground excavations. 展开更多
关键词 Rock and backfill Triaxial cyclic loading Volume fraction Damage evolution 3D visualization
下载PDF
Liquefaction susceptibility and deformation characteristics of saturated coral sandy soils subjected to cyclic loadings-a critical review 被引量:1
10
作者 Chen Guoxing Qin You +3 位作者 Ma Weijia Liang Ke Wu Qi C.Hsein Juang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期261-296,共36页
Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and respons... Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and responses of these soils subjected to monotonic and cyclic loadings have been a subject of intense interest among the geotechnical and earthquake engineering communities.This paper critically reviews the progress of experimental investigations on the undrained behavior of coral sandy soils under monotonic and cyclic loadings over the last three decades.The focus of coverage includes the contractive-dilative behavior,the pattern of excess pore-water pressure(EPWP)generation and the liquefaction mechanism and liquefaction resistance,the small-strain shear modulus and strain-dependent shear modulus and damping,the cyclic softening feature,and the anisotropic characteristics of undrained responses of saturated coral sandy soils.In particular,the advances made in the past decades are reviewed from the following aspects:(1)the characterization of factors that impact the mechanism and patterns of EPWP build-up;(2)the identification of liquefaction triggering in terms of the apparent viscosity and the average flow coefficient;(3)the establishment of the invariable form of strain-based,stress-based,or energy-based EPWP ratio formulas and the unique relationship between the new proxy of liquefaction resistance and the number of cycles required to reach liquefaction;(4)the establishment of the invariable form of the predictive formulas of small strain modulus and strain-dependent shear modulus;and(5)the investigation on the effects of stress-induced anisotropy on liquefaction susceptibility and dynamic deformation characteristics.Insights gained through the critical review of these advances in the past decades offer a perspective for future research to further resolve the fundamental issues concerning the liquefaction mechanism and responses of coral sandy sites subjected to cyclic loadings associated with seismic events in marine environments. 展开更多
关键词 liquefaction susceptibility dynamic deformation characteristics coral sandy soil cyclic loading review and prospect
下载PDF
Cyclic shear behavior of en-echelon joints under constant normal stiffness conditions 被引量:1
11
作者 Bin Wang Yujing Jiang +3 位作者 Qiangyong Zhang Hongbin Chen Richeng Liu Yuanchao Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3419-3436,共18页
To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)condit... To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)conditions.We analyzed the evolution of shear stress,normal stress,stress path,dilatancy characteristics,and friction coefficient and revealed the failure mechanisms of en-echelon joints at different angles.The results show that the cyclic shear behavior of the en-echelon joints is closely related to the joint angle,with the shear strength at a positive angle exceeding that at a negative angle during shear cycles.As the number of cycles increases,the shear strength decreases rapidly,and the difference between the varying angles gradually decreases.Dilation occurs in the early shear cycles(1 and 2),while contraction is the main feature in later cycles(310).The friction coefficient decreases with the number of cycles and exhibits a more significant sensitivity to joint angles than shear cycles.The joint angle determines the asperities on the rupture surfaces and the block size,and thus determines the subsequent shear failure mode(block crushing and asperity degradation).At positive angles,block size is more greater and asperities on the rupture surface are smaller than at nonpositive angles.Therefore,the cyclic shear behavior is controlled by block crushing at positive angles and asperity degradation at negative angles. 展开更多
关键词 En-echelon joint cyclic shear tests Shear stress Normal displacement Constant normal stiffness(CNS)
下载PDF
Cyclic Beam Direction of Arrival Estimation Method for Ship Propeller Noise
12
作者 ZHANG Xiaowei NIE Weihang +1 位作者 XU Ji YAN Yonghong 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第4期883-896,共14页
In underwater acoustic applications,the conventional cyclic direction of arrival algorithm faces challenges,including a low signal-to-noise ratio and high bandwidth when compared with modulated frequencies.In response... In underwater acoustic applications,the conventional cyclic direction of arrival algorithm faces challenges,including a low signal-to-noise ratio and high bandwidth when compared with modulated frequencies.In response to these issues,this paper introduces a novel,robust,and broadband cyclic beamforming algorithm.The proposed method substitutes the conventional cyclic covariance matrix with the variance of the cyclic covariance matrix as its primary feature.Assuming that the same frequency band shares a common steering vector,the new algorithm achieves superior detection performance for targets with specific modulation frequencies while suppressing interference signals and background noise.Experimental results demonstrate a significant enhancement in the directibity index by 81%and 181%when compared with the traditional Capon beamforming algorithm and the traditional extended wideband spectral cyclic MUSIC(EWSCM)algorithm,respectively.Moreover,the proposed algorithm substantially reduces computational complexity to 1/40th of that of the EWSCM algorithm,employing frequency band statistical averaging and covariance matrix variance. 展开更多
关键词 CYCLOSTATIONARITY direction of arrival extended wideband spectral cyclic music cyclic covariance matrix
下载PDF
Enhancing capacitive deionization performance and cyclic stability of nitrogen-doped activated carbon by the electro-oxidation of anode materials
13
作者 Xiaona Liu Baohua Zhao +6 位作者 Yanyun Hu Luyue Huang Jingxiang Ma Shuqiao Xu Zhonglin Xia Xiaoying Ma Shuangchen Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期23-33,共11页
Electrode materials with high desalination capacity and long-term cyclic stability are the focus of capacitive deionization(CDI) community. Understanding the causes of performance decay in traditional carbons is cruci... Electrode materials with high desalination capacity and long-term cyclic stability are the focus of capacitive deionization(CDI) community. Understanding the causes of performance decay in traditional carbons is crucial to design a high-performance material. Based on this, here, nitrogen-doped activated carbon(NAC) was prepared by pyrolyzing the blend of activated carbon powder(ACP) and melamine for the positive electrode of asymmetric CDI. By comparing the indicators changes such as conductivity, salt adsorption capacity, pH, and charge efficiency of the symmetrical ACP-ACP device to the asymmetric ACP-NAC device under different CDI cycles, as well as the changes of the electrochemical properties of anode and cathode materials after long-term operation, the reasons for the decline of the stability of the CDI performance were revealed. It was found that the carboxyl functional groups generated by the electro-oxidation of anode carbon materials make the anode zero-charge potential(E_(pzc)) shift positively,which results in the uneven distribution of potential windows of CDI units and affects the adsorption capacity. Furthermore, by understanding the electron density on C atoms surrounding the N atoms, we attribute the increased cyclic stability to the enhanced negativity of the charge of carbon atoms adjacent to quaternary-N and pyridinic-oxide-N. 展开更多
关键词 Anodic oxidation Capacitive deionization cyclic stability N-DOPING
下载PDF
Influence of cyclic ignition and steady-state operation on a 1–2 A barium tungsten hollow cathode
14
作者 Fufeng WANG Tianhang MENG +1 位作者 Zhongxi NING Ximing ZHU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第12期121-131,共11页
Booming low-power electric propulsion systems require 1–2 A hollow cathodes.Such cathodes are expected to go through more frequent ignitions in the low orbit,but the impact of cyclic ignitions on such 1–2 A barium t... Booming low-power electric propulsion systems require 1–2 A hollow cathodes.Such cathodes are expected to go through more frequent ignitions in the low orbit,but the impact of cyclic ignitions on such 1–2 A barium tungsten hollow cathodes with a heater was not clear.In this study,a 12,638-cyclic ignition test and a 6,000-hour-long life test on two identical cathodes were carried out.The discharge voltage of the cathode and the erosion of the orifice after cyclic ignition were all larger than that of the cathode after stable operation.This indicated that the impact of cycle ignition on the discharge performance of a low current BaO-W cathode with a heater was higher than that of stable operation.The results of the ion energy distribution function measured during the ignition period indicated that the main reason for the orifice expansion was ion bombardment.Therefore,it was necessary to pay attention to the number of ignitions for the lifetime of this kind of cathode. 展开更多
关键词 hollow cathode cyclic ignition stable operation ORIFICE ion bombardment
下载PDF
Ultimate Strength of Hull Perforated Plate Under Extreme Cyclic Loading
15
作者 ZHENG Ji-qian FENG Liang CHEN Xu-guang 《船舶力学》 EI CSCD 北大核心 2024年第12期1925-1939,共15页
In this study, the influence of opening parameters on the ultimate strength of perforated plates subjected to extreme cyclic loading in the presence of material kinematic hardening and isotro pic hardening was analyze... In this study, the influence of opening parameters on the ultimate strength of perforated plates subjected to extreme cyclic loading in the presence of material kinematic hardening and isotro pic hardening was analyzed. It is found that the ultimate strength of the perforated plates decreases rapidly and stabilizes in the first four cycles. Plates with oblong openings have a greater ultimate strength compared to plates with rectangular openings, while the relative strengthening ratio decreases over the duration of the cycle. The location of the openings is also an important parameter that affects the strength of the structure, as the plates with openings close to the edges in the longitudinal direction have higher strengths, while in the transverse direction the strengths are higher when the openings are close to the center. Among the three opening-strengthening methods compared, the Carling stiffener method maintains a better strengthening effect under cyclic loads for many periods. 展开更多
关键词 extreme cyclic loading perforated plate ultimate strength
下载PDF
Accumulated damage failure mechanism of anchoring structures under cyclic impact disturbance
16
作者 Peng Wang Nong Zhang +7 位作者 Jiaguang Kan Qun Wei Zhengzheng Xie Aoran Li Zhe He Jinghua Qi Xingliang Xu Changrui Duan 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第12期1693-1709,共17页
Cyclic impact induces ongoing fatigue damage and performance degradation in anchoring structures,ser-ving as a critical factor leading to the instability of deep roadways.This paper takes the intrinsic spatio-temporal... Cyclic impact induces ongoing fatigue damage and performance degradation in anchoring structures,ser-ving as a critical factor leading to the instability of deep roadways.This paper takes the intrinsic spatio-temporal relationship of macro-microscopic cumulative damage in anchoring structures as the main thread,revealing the mechanism of bearing capacity degradation and progressive instability of anchoring structure under cyclic impact.Firstly,a set of impact test devices and methods for the prestressed solid anchor bolt anchoring structure were developed,effectively replicating the cyclic impact stress paths in situ.Secondly,cyclic impact anchoring structure tests and simulations were conducted,which clarifies the damage evolution mechanism of the anchoring structure.Prestress loss follows a cubic decay func-tion as the number of impacts increases.Under the same impact energy and pretension force,the impact resistance cycles of extended anchoring and full-length anchoring were increased by 186.7%and 280%,respectively,compared to end anchoring.The rate of internal damage accumulation is positively corre-lated with impact energy and negatively correlated with anchorage length.Internal tensile cracks account for approximately 85%.Stress transmission follows a fluctuating pattern.Compared to the extended anchoring,the maximum vibration velocity of the exposed end particles in the full-length anchoring was reduced by 59.31%.Damage evolution exhibits a pronounced cumulative mutation effect.Then,a three-media,two-interface mechanical model of the anchoring structure was constructed.It has been clarified that the compressive stress,tensile stress,and oscillation effect arising from rapid transi-tions between compression and tension are the primary internal factors responsible for the degradation of the anchoring structure’s bearing capacity.Finally,the progressive instability mechanism of the anchoring structure under cyclic impact was elucidated.The mutual feedback and superposition of media rupture,interface debonding,and bearing capacity degradation result in overall failure.The failure pro-cess involves stages dominated by oscillation-compression,tensile stress,and compression failure.A tar-geted control strategy was further proposed.This provides a reference for maintaining the long-term stability of deep roadways under dynamic impact loads. 展开更多
关键词 cyclic impact Anchoring structure Cumulative damage Bearing capacity degradation Progressive instability
下载PDF
Mechanical properties and energy evolution law of water bearing sandstone under cyclic loading
17
作者 SUN Xiaoming DING Jiaxu +4 位作者 HE Linsen SHI Fukun ZHANG Yong MIAO Chengyu ZHANG Jing 《Journal of Mountain Science》 SCIE CSCD 2024年第11期3913-3929,共17页
Due to excavation disturbances and the coupled hydro-mechanical effects,deep rock masses experience nonlinear large deformations in the surrounding rock,necessitating an urgent exploration of the rock damage and failu... Due to excavation disturbances and the coupled hydro-mechanical effects,deep rock masses experience nonlinear large deformations in the surrounding rock,necessitating an urgent exploration of the rock damage and failure mechanisms from the perspectives of hydro-mechanical coupling and mechanical properties.Therefore,this study conducted uniaxial cyclic loading-unloading tests on sandstone samples with different water contents(0%,0.26%,0.52%,0.78%,and 1.04%)to investigate the microstructural evolution,energy evolution laws,and failure characteristics under varying water contents and cyclic loading conditions.The main conclusions are as follows:(1)Concerning micro-pore structures,as the water content increases,the porosity and maximum pore size of the sandstone first decrease and then increase.At 0%water content,the porosity is 4.82%and the maximum pore size is 31.94μm.At 0.26%water content,both porosity and maximum pore size decrease to 3.03%and 16.15μm,respectively.When the water content reaches 1.04%,the porosity and maximum pore size increase to 14.34%and 45.99μm,respectively.(2)Regarding energy evolution laws,the energy evolution of the specimens during cyclic loading-unloading mainly converts to elastic energy,showing a step-wise increase in energy.Further analysis reveals that the water content has a significant impact on the dissipation energy coefficient of the sandstone.At lower stress levels(<0.4σmax),the water content has a negligible effect,while at higher stress levels(>0.85σmax),an increase in water content leads to increased fluctuations in the dissipation energy coefficient.(3)In terms of failure characteristics,with increasing water content,the failure mode of the specimens shifts from primary crack failure to microcrack failure,corresponding to the energy evolution during cyclic loading-unloading processes. 展开更多
关键词 cyclic loading and unloading SANDSTONE Mechanical property Energy evolution Pore structure
下载PDF
Sodium Nitrate/Formamide Deep Eutectic Solvent as Flame-Retardant and Anticorrosive Electrolyte Enabling 2.6 V Safe Supercapacitors with Long Cyclic Stability
18
作者 Huachao Yang Yiheng Qi +6 位作者 Zifan Wang Qinghu Pan Chuanzhi Zhang Jianhua Yan Kefa Cen Zheng Bo Kostya(Ken)Ostrikov 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期374-383,共10页
Safe operation of electrochemical capacitors(supercapacitors)is hindered by the flammability of commercial organic electrolytes.Non-flammable Water-in-Salt(WIS)electrolytes are promising alternatives;however,they are ... Safe operation of electrochemical capacitors(supercapacitors)is hindered by the flammability of commercial organic electrolytes.Non-flammable Water-in-Salt(WIS)electrolytes are promising alternatives;however,they are plagued by the limited operation voltage window(typically≤2.3 V)and inherent corrosion of current collectors.Herein,a novel deep eutectic solvent(DES)-based electrolyte which uses formamide(FMD)as hydrogen-bond donor and sodium nitrate(NaNO_(3))as hydrogen-bond acceptor is demonstrated.The electrolyte exhibits the wide electrochemical stability window(3.14 V),high electrical conductivity(14.01 mScm^(-1)),good flame-retardance,anticorrosive property,and ultralow cost(7%of the commercial electrolyte and 2%of WIS).Raman spectroscopy and Density Functional Theory calculations reveal that the hydrogen bonds between the FMD molecules and NO_(3)^(-)ions are primarily responsible for the superior stability and conductivity.The developed NaNO_(3)/FMD-based coin cell supercapacitor is among the best-performing state-of-art DES and WIS devices,evidenced by the high voltage window(2.6 V),outstanding energy and power densities(22.77 Wh kg^(-1)at 630 W kg^(-1)and 17.37 kW kg^(-1)at 12.55 Wh kg^(-1)),ultralong cyclic stability(86%after 30000 cycles),and negligible current collector corrosion.The NaNO_(3)/FMD industry adoption potential is demonstrated by fabricating 100 F pouch cell supercapacitors using commercial aluminum current collectors. 展开更多
关键词 cyclic stability deep eutectic solvents electrical conductivity electrochemical stability window SUPERCAPACITORS
下载PDF
Effect of cyclic hydraulic stimulation on pore structure and methane sorption characteristics of anthracite coal: A case study in the Qinshui Basin, China
19
作者 Rui-Shuai Ma Ji-Yuan Zhang +2 位作者 Qi-Hong Feng Xue-Ying Zhang Yan-Hui Yang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3271-3287,共17页
The cyclic hydraulic stimulation(CHS) has proven as a prospective technology for enhancing the permeability of unconventional formations such as coalbeds. However, the effects of CHS on the microstructure and gas sorp... The cyclic hydraulic stimulation(CHS) has proven as a prospective technology for enhancing the permeability of unconventional formations such as coalbeds. However, the effects of CHS on the microstructure and gas sorption behavior of coal remain unclear. In this study, laboratory tests including the nuclear magnetic resonance(NMR), low-temperature nitrogen sorption(LTNS), and methane sorption isotherm measurement were conducted to explore changes in the pore structure and methane sorption characteristics caused by CHS on an anthracite coal from Qinshui Basin, China. The NMR and LTNS tests show that after CHS treatment, meso- and macro-pores tend to be enlarged, whereas micropores with larger sizes and transition-pores may be converted into smaller-sized micro-pores. After the coal samples treated with 1, 3, 5 and 7 hydraulic stimulation cycles, the total specific surface area(TSSA)decreased from 0.636 to 0.538, 0.516, 0.505, and 0.491 m^(2)/g, respectively. Fractal analysis based on the NMR and LTNS results show that the surface fractal dimensions increase with the increase in the number of hydraulic stimulation cycles, while the volume fractal dimensions exhibit an opposite trend to the surface fractal dimensions, indicating that the pore surface roughness and pore structure connectivity are both increased after CHS treatment. Methane sorption isothermal measurements show that both the Langmuir volume and Langmuir pressure decrease significantly with the increase in the number of hydraulic stimulation cycles. The Langmuir volume and the Langmuir pressure decrease from 33.47 cm^(3)/g and 0.205 MPa to 24.18 cm^(3)/g and 0.176 MPa after the coal samples treated with 7 hydraulic stimulation cycles, respectively. The increments of Langmuir volume and Langmuir pressure are positively correlated with the increment of TSSA and negatively correlated with the increments of surface fractal dimensions. 展开更多
关键词 Coalbed methane cyclic hydraulic stimulation Pore structure Methane sorption characteristics Fractal analysis
下载PDF
Remote plasma enhanced cyclic etching of a cyclosiloxane polymer thin film
20
作者 Xianglin Wang Xinyu Luo +4 位作者 Weiwei Du Yuanhao Shen Xiaocheng Huang Zheng Yang Junjie Zhao 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第5期239-248,共10页
The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants.With advantageous dielectric and mechanical properties,initiated chemical vapor deposited(iCVD)po... The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants.With advantageous dielectric and mechanical properties,initiated chemical vapor deposited(iCVD)poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane)(pV3D3)emerges as a promising candidate.However,previous works have not explored etching for this cyclosiloxane polymer thin film,which is indispensable for potential applications to the back-end-of-line fabrication.Here,we developed an etching process utilizing O2/Ar remote plasma for cyclic removal of iCVD pV3D3 thin film at sub-nanometer scale.We employed in-situ quartz crystal microbalance to investigate the process parameters including the plasma power,plasma duration and O2 flow rate.X-ray photoelectron spectroscopy and cross-sectional microscopy reveal the formation of an oxidized skin layer during the etching process.This skin layer further substantiates an etching mechanism driven by surface oxidation and sputtering.Additionally,this oxidized skin layer leads to improved elastic modulus and hardness and acts as a barrier layer for protecting the bottom cyclosiloxane polymer from further oxidation. 展开更多
关键词 remote plasma cyclic etching cyclosiloxane polymer initiated chemical vapor deposition in-situ characterization
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部