The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enh...The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.展开更多
At 8 weeks after intragastric administration of icariin to senescence-accelerated mice (P8 strain), Morris water maze results showed that escape latency was shortened, and the number of platform crossings was increa...At 8 weeks after intragastric administration of icariin to senescence-accelerated mice (P8 strain), Morris water maze results showed that escape latency was shortened, and the number of platform crossings was increased. Immunohistochemical staining and western blot assay detected significantly increased levels of cyclic adenosine monophosphate response element binding protein These results suggest that icariin upregulates phosphorylated cyclic adenosine monophosphate response element binding protein levels and improves learning and memory functions in hippocampus of the senescence-accelerated mouse.展开更多
BACKGROUND: Neuronal necrosis and apoptosis play important roles in the pathophysiology of cerebral ischemia and resulting cognitive impairment. However, inhibition of neuronal necrosis and apoptosis has been shown t...BACKGROUND: Neuronal necrosis and apoptosis play important roles in the pathophysiology of cerebral ischemia and resulting cognitive impairment. However, inhibition of neuronal necrosis and apoptosis has been shown to attenuate cognitive impairment following cerebral ischemia. OBJECTIVE: To investigate the effects of sevoflurane on cyclic adenosine monophosphate response element binding protein (CREB), phosphorylated CREB (pCREB), and Livin expression in the cortex and hippocampus of a rat model of vascular cognitive impairment.DESIGN, TIME AND SETTING: A randomized, controlled experiment was performed in the Chongqing Key Laboratory of Neurology between June 2007 and July 2008.MATERIALS: Sevoflurane was provided by Abbott Laboratory, UK; Morris water maze was provided by Chinese Academy of Medical Sciences, China; goat anti-rat CREB, goat anti-rat pCREB and goat anti-rat Livin antibodies were provided by Biosource International, USA. METHODS: A total of 42 female, Wistar rats were randomly assigned to the following groups: sham operation, vascular cognitive impairment, and sevoflurane treatment. The vascular cognitive impairment rat model was established by permanent bilateral occlusion of both common carotid arteries, and 1.0 MAC sevoflurane was immediately administered by inhalation for 2 hours. MAIN OUTCOME MEASURES: CREB, pCREB, and Livin expression was measured in the cortex and hippocampus by Western blot and reverse transcription-polymerase chain reaction. Behavior was evaluated with Morris water maze. RESULTS: CREB, pCREB, and Livin expression in the sevoflurane treatment group was significantly greater than the vascular cognitive impairment group (P 〈 0.01). However, expression of CREB and pCREB was significantly less in the sevoflurane treatment and vascular cognitive impairment groups, compared with the sham operation group (P 〈 0.01). Livin expression in the sevoflurane treatment and vascular cognitive impairment groups was significantly greater than the sham operation group (P 〈 0.01). Learning, memory, and behavior disorders were observed in the vascular cognitive impairment group. Sevoflurane treatment significantly improved these observed disorders. CONCLUSION: Sevoflurane improved cognitive impairment due to permanent bilateral occlusion of both common carotid arteries. Improved function was associated with increased CREB, pCREB, and Livin expression in the cortex and hippocampus.展开更多
Aim: To further investigate the relaxation mechanism of neferine (NED, a bis-benzylisoquinoline alkaloid extracted (isolated) from the green seed embryo of Nelumbo nucifera Gaertn in China, on rabbit corpus cavern...Aim: To further investigate the relaxation mechanism of neferine (NED, a bis-benzylisoquinoline alkaloid extracted (isolated) from the green seed embryo of Nelumbo nucifera Gaertn in China, on rabbit corpus cavernosum tissue in vitro. Methods: The effects of Nef on the concentrations of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) in isolated and incubated rabbit corpus cavernosum tissue were recorded using ^125I radioimmunoassay. Results: The basal concentration of cAMP in corpus cavernosum tissue was 5.67 ± 0.97 pmol/mg. Nef increased the cAMP concentration in a dose-dependent manner (P 〈 0.05), but this effect was not inhibited by an adenylate cyclase inhibitor (cis-N-[2-phenylcyclopentyl]azacyclotridec-1-en-2-amine, MDL-12, 330A) (P 〉 0.05). The accumulation of cAMP induced by prostaglandin Et (PGEt, a stimulator of cAMP production) was also augmented by Nef in a dose-dependent manner (P 〈 0.05). The basal concentration of cGMP in corpus cavernosum tissue is 0.44 ± 0.09 pmol/mg. Nef did not affect this concentration of cGMP, either in the presence or in the absence of a guanyl cyclase inhibitor (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, ODQ) (P 〉 0.05). Also, sodium nitroprusside (SNP, a stimulator of cGMP production)-induced cGMP production was not enhanced by Nef (P 〉 0.05). Conclusion: Nef, with its relaxation mechanism, can enhance the concentration of cAMP in rabbit corpus cavernosum tissue, probably by inhibiting phosphodiesterase activity. (Asian JAndro12008 Mar; 10: 307-312)展开更多
Retaining or improving periodontal ligament (PDL) function is crucial for restoring periodontal defects. The aim of this study was to evaluate the physiological effects of low-power laser irradiation (LPLI) on the...Retaining or improving periodontal ligament (PDL) function is crucial for restoring periodontal defects. The aim of this study was to evaluate the physiological effects of low-power laser irradiation (LPLI) on the proliferation and osteogenic differentiation of human PDL (hPDL) cells. Cultured hPDL cel Is were irradiated (660 nm) daily with doses of O, 1, 2 or 4 J .cm-2. Cell proliferation was evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and the effect of LPLI on osteogenic differentiation was assessed by Alizarin Red S staining and alkaline phosphatase (ALP) activity. Additionally, osteogenic marker gene expression was confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR). Our data showed that LPLI at a dose of 2 J.cm-2 significantly promoted hPDL cell proliferation at days 3 and 5. In addition, LPLI at energy doses of 2 and 4 J.cm-2 showed potential osteogenic capacity, as it stimulated ALP activity, calcium deposition, and osteogenic gene expression. We also showed that cyclic adenosine monophosphate (cAMP) is a critical regulator of the LPLI-mediated effects on hPDL cells. This study shows that LPLI can promote the proliferation and osteogenic differentiation of hPDL cells. These results suggest the potential use of LPLI in clinical applications for periodontal tissue regeneration.展开更多
In this study,we aimed at developing an efficient biocatalytic process for bio-production of cyclic adenosine monophosphate(c AMP)from adenosine triphosphate(ATP).First,adenylate cyclase from Escherichia coli MG1655(E...In this study,we aimed at developing an efficient biocatalytic process for bio-production of cyclic adenosine monophosphate(c AMP)from adenosine triphosphate(ATP).First,adenylate cyclase from Escherichia coli MG1655(EAC)and Bordetella Pertussis(BAC)were expressed in E.coli BL21(DE3)and comparatively analyzed for their activities.As a result,EAC from E.coli MG1655 exhibited a higher activity.However,amount of EAC were obtained in an insoluble form.Therefore,we expressed the first 446 amino acids of EAC(EAC446)to avoid the inclusion body.The effects of induction temperature,incubation time,and incubation p H were further evaluated to improve the expression of EAC446.Subsequently,the reaction process for the production of c AMP with ATP as a starting material was investigated.As none of c AMP was detected in the whole-cell based biocatalytic process,the reaction catalyzed by the crude enzyme was determined for c AMP production.What's more,the reaction temperature,reaction p H,metal ion additives and substrate concentration was optimized,and the maximum c AMP production of 18.45 g·L^-1was achieved with a yield of 95.4%after bioconversion of 6 h.展开更多
The unicellular green alga,Chlamydomonas reinhardtii is a model organism for studying various biological processes,such as photosynthesis,flagellar motility,and lipid metabolism.To find some novel genes regulating the...The unicellular green alga,Chlamydomonas reinhardtii is a model organism for studying various biological processes,such as photosynthesis,flagellar motility,and lipid metabolism.To find some novel genes regulating the lipid metabolism under various stress conditions,the paromomycin resistance gene aphVIII was transferred into the genome of C.reinhardtii to establish a mutant library.Two genes mutated in two of the TAG-reduced mutants(Cre06.g278111 in M2 mutant,Cre06.g278110 in M6 mutants)were neighboring in the genome,and their expression levels were down-regulated in their corresponding mutants in parallel with their reduced TAG levels following N deprivation.The proteins encoded by these two genes(KCN11 by Cre06.g278111,ACYC3 by Cre06.g278110)contained a conversed cyclic mononucleotide phosphate(cNMP)binding protein and an adenylate domain,respectively.Since cNMP binding protein and adenylate domain have been known as important components of cyclic adenosine monophosphate(cAMP)signaling pathway,suggesting that these two genes might af fect cellular TAG biosynthesis through cAMP signal pathway.展开更多
BACKGROUND Matrix metalloproteinases(MMPs),including MMP-9,are an integral part of the immune response and are upregulated in response to a variety of stimuli.New details continue to emerge concerning the mechanistic ...BACKGROUND Matrix metalloproteinases(MMPs),including MMP-9,are an integral part of the immune response and are upregulated in response to a variety of stimuli.New details continue to emerge concerning the mechanistic and regulatory pathways that mediate MMP-9 secretion.There is significant evidence for regulation of inflammation by dimethyl sulfoxide(DMSO)and 3',5'-cyclic adenosine monophosphate(cAMP),thus investigation of how these two molecules may regulate both MMP-9 and tumor necrosis factorα(TNFα)secretion by human monocytes was of high interest.The hypothesis tested in this study was that DMSO and cAMP regulate MMP-9 and TNFαsecretion by distinct mechanisms.AIM To investigate the regulation of lipopolysaccharide(LPS)-stimulated MMP-9 and tumor necrosis factorαsecretion in THP-1 human monocytes by dimethyl sulfoxide and cAMP.METHODS The paper describes a basic research study using THP-1 human monocyte cells.All experiments were conducted at the University of Missouri-St.Louis in the Department of Chemistry and Biochemistry.Human monocyte cells were grown,cultured,and prepared for experiments in the University of Missouri-St.Louis Cell Culture Facility as per accepted guidelines.Cells were treated with LPS for selected exposure times and the conditioned medium was collected for analysis of MMP-9 and TNFαproduction.Inhibitors including DMSO,cAMP regulators,and anti-TNFαantibody were added to the cells prior to LPS treatment.MMP-9 secretion was analyzed by gel electrophoresis/western blot and quantitated by ImageJ software.TNFαsecretion was analyzed by enzyme-linked immuno sorbent assay.All data is presented as the average and standard error for at least 3 trials.Statistical analysis was done using a two-tailed paired Student t-test.P values less than 0.05 were considered significant and designated as such in the Figures.LPS and cAMP regulators were from Sigma-Aldrich,MMP-9 standard and antibody and TNFαantibodies were from R&D Systems,and amyloid-βpeptide was from rPeptide.RESULTS In our investigation of MMP-9 secretion from THP-1 human monocytes,we made the following findings.Inclusion of DMSO in the cell treatment inhibited LPSinduced MMP-9,but not TNFα,secretion.Inclusion of DMSO in the cell treatment at different concentrations inhibited LPS-induced MMP-9 secretion in a dosedependent fashion.A cell-permeable cAMP analog,dibutyryl cAMP,inhibited both LPS-induced MMP-9 and TNFαsecretion.Pretreatment of the cells with the adenylyl cyclase activator forskolin inhibited LPS-induced MMP-9 and TNFαsecretion.Pretreatment of the cells with the general cAMP phosphodiesterase inhibitor IBMX reduced LPS-induced MMP-9 and TNFαin a dose-dependent fashion.Pre-treatment of monocytes with an anti-TNFαantibody blocked LPSinduced MMP-9 and TNFαsecretion.Amyloid-βpeptide induced MMP-9 secretion,which occurred much later than TNFαsecretion.The latter two findings strongly suggested an upstream role for TNFαin mediating LPS-stimulate MMP-9 secretion.CONCLUSION The cumulative data indicated that MMP-9 secretion was a distinct process from TNFαsecretion and occurred downstream.First,DMSO inhibited MMP-9,but not TNFα,suggesting that the MMP-9 secretion process was selectively altered.Second,cAMP inhibited both MMP-9 and TNFαwith a similar potency,but at different monocyte cell exposure time points.The pattern of cAMP inhibition for these two molecules suggested that MMP-9 secretion lies downstream of TNFαand that TNFαmay a key component of the pathway leading to MMP-9 secretion.This temporal relationship fit a model whereby early TNFαsecretion directly led to later MMP-9 secretion.Lastly,antibody-blocking of TNFαdiminished MMP-9 secretion,suggesting a direct link between TNFαsecretion and MMP-9 secretion.展开更多
Jujube contains abundant cyclic adenosine monophosphate(cAMP)and the ultrasonic-assisted pectinase extraction(UAPE)conditions for obtaining the maximum cAMP yield from jujube were optimized.Orthogonal array design was...Jujube contains abundant cyclic adenosine monophosphate(cAMP)and the ultrasonic-assisted pectinase extraction(UAPE)conditions for obtaining the maximum cAMP yield from jujube were optimized.Orthogonal array design was applied to evaluate the effects of 4 variables by UAPE on cAMP yield.The results showed that the optimal cAMP yield(783.0μg/g)was derived at ratio of liquid to solid 5 mL/g,ratio of pectinase to raw material 1.5%,time 60 min and temperature 40℃.Moreover,the effect of cAMP on the anti-allergic function of action induced by immunoglobulin E(IgE)and its meschanism was investigated through establishing the sensitized cell model in rat basophilic leukemia(RBL-2 H3)cells using dinitrophenylated(DNP)-bovine serum albumin(BSA)-IgE.The results showed that cAMP interfered with sensitized cells,effectively inhibited the occurrence of basophil degranulation in dose dependence,and significantly reduced the activity ofβ-hexosamindase(β-hex),at the optimal concentration of 50μg/mL.The level of anti-inflammatory factor interleukin-10(IL-10)was promoted and the content of pro-inflammatory factor tumor necrosis factor-α(TNF-α)was suppressed by cAMP.In addition,influx of intracellular Ca^(2+) was repressed effectively.Our results demonstrate that jujube cAMP regulated the cytokine balance in the allergy pathway through blocking the influx of extracellular Ca^(2+),with the prevention of allergy symptoms.展开更多
Objective To review the role of cyclic adenosine monophosphate (cAMP) signal pathway in the pathogenesis of iymphoma and explore a potential lymphoma therapy targeted on this signaling pathway. Data sources The data...Objective To review the role of cyclic adenosine monophosphate (cAMP) signal pathway in the pathogenesis of iymphoma and explore a potential lymphoma therapy targeted on this signaling pathway. Data sources The data cited in this review were mainly obtained from the articles listed in Medline and PubMed, published from January 1995 to June 2009. The search terms were "cAMP" and "lymphoma". Study selection Articles regarding the role of the cAMP pathway in apoptosis of lymphoma and associated cells and its potential role in targeted therapy of lymphoma. Results In the transformation of lymphocytic malignancies, several signal pathways are involved. Among of them, the cAMP pathway has attracted increasing attention because of its apoptosis-inducing role in several lymphoma cells, cAMP pathway impairment is found to influence the prognosis of lymphoma. Targeted therapy to the cAMP pathway seems to be a new direction for lymphoma treatment, aiming at restoring the cAMP function. Conclusions cAMP signal pathway has different effects on various lymphoma cells, cAMP analogues and phosphodiesterase 4B (PDE4B) inhibitors have potential clinical significance. However, many challenges remain in understandinq the various roles of such agents.展开更多
基金supported by the National Natural Science Foundation of China,No.82003965the Science and Technology Research Project of Sichuan Provincial Administration of Traditional Chinese Medicine,No.2024MS167(to LH)+2 种基金the Xinglin Scholar Program of Chengdu University of Traditional Chinese Medicine,No.QJRC2022033(to LH)the Improvement Plan for the'Xinglin Scholar'Scientific Research Talent Program at Chengdu University of Traditional Chinese Medicine,No.XKTD2023002(to LH)the 2023 National Project of the College Students'Innovation and Entrepreneurship Training Program at Chengdu University of Traditional Chinese Medicine,No.202310633028(to FD)。
文摘The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.
文摘At 8 weeks after intragastric administration of icariin to senescence-accelerated mice (P8 strain), Morris water maze results showed that escape latency was shortened, and the number of platform crossings was increased. Immunohistochemical staining and western blot assay detected significantly increased levels of cyclic adenosine monophosphate response element binding protein These results suggest that icariin upregulates phosphorylated cyclic adenosine monophosphate response element binding protein levels and improves learning and memory functions in hippocampus of the senescence-accelerated mouse.
文摘BACKGROUND: Neuronal necrosis and apoptosis play important roles in the pathophysiology of cerebral ischemia and resulting cognitive impairment. However, inhibition of neuronal necrosis and apoptosis has been shown to attenuate cognitive impairment following cerebral ischemia. OBJECTIVE: To investigate the effects of sevoflurane on cyclic adenosine monophosphate response element binding protein (CREB), phosphorylated CREB (pCREB), and Livin expression in the cortex and hippocampus of a rat model of vascular cognitive impairment.DESIGN, TIME AND SETTING: A randomized, controlled experiment was performed in the Chongqing Key Laboratory of Neurology between June 2007 and July 2008.MATERIALS: Sevoflurane was provided by Abbott Laboratory, UK; Morris water maze was provided by Chinese Academy of Medical Sciences, China; goat anti-rat CREB, goat anti-rat pCREB and goat anti-rat Livin antibodies were provided by Biosource International, USA. METHODS: A total of 42 female, Wistar rats were randomly assigned to the following groups: sham operation, vascular cognitive impairment, and sevoflurane treatment. The vascular cognitive impairment rat model was established by permanent bilateral occlusion of both common carotid arteries, and 1.0 MAC sevoflurane was immediately administered by inhalation for 2 hours. MAIN OUTCOME MEASURES: CREB, pCREB, and Livin expression was measured in the cortex and hippocampus by Western blot and reverse transcription-polymerase chain reaction. Behavior was evaluated with Morris water maze. RESULTS: CREB, pCREB, and Livin expression in the sevoflurane treatment group was significantly greater than the vascular cognitive impairment group (P 〈 0.01). However, expression of CREB and pCREB was significantly less in the sevoflurane treatment and vascular cognitive impairment groups, compared with the sham operation group (P 〈 0.01). Livin expression in the sevoflurane treatment and vascular cognitive impairment groups was significantly greater than the sham operation group (P 〈 0.01). Learning, memory, and behavior disorders were observed in the vascular cognitive impairment group. Sevoflurane treatment significantly improved these observed disorders. CONCLUSION: Sevoflurane improved cognitive impairment due to permanent bilateral occlusion of both common carotid arteries. Improved function was associated with increased CREB, pCREB, and Livin expression in the cortex and hippocampus.
基金Acknowledgment The authors thank Prof. Jia-Ling Wang for kindly supplying the neferine. The technical support from Prof. Bo-Hua Shu is also greatly appreciated. This study was sponsored by the National Natural Science Foundation of China (No. 30471736) and China Postdoctoral Science Foundation (No. 20070410176).
文摘Aim: To further investigate the relaxation mechanism of neferine (NED, a bis-benzylisoquinoline alkaloid extracted (isolated) from the green seed embryo of Nelumbo nucifera Gaertn in China, on rabbit corpus cavernosum tissue in vitro. Methods: The effects of Nef on the concentrations of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) in isolated and incubated rabbit corpus cavernosum tissue were recorded using ^125I radioimmunoassay. Results: The basal concentration of cAMP in corpus cavernosum tissue was 5.67 ± 0.97 pmol/mg. Nef increased the cAMP concentration in a dose-dependent manner (P 〈 0.05), but this effect was not inhibited by an adenylate cyclase inhibitor (cis-N-[2-phenylcyclopentyl]azacyclotridec-1-en-2-amine, MDL-12, 330A) (P 〉 0.05). The accumulation of cAMP induced by prostaglandin Et (PGEt, a stimulator of cAMP production) was also augmented by Nef in a dose-dependent manner (P 〈 0.05). The basal concentration of cGMP in corpus cavernosum tissue is 0.44 ± 0.09 pmol/mg. Nef did not affect this concentration of cGMP, either in the presence or in the absence of a guanyl cyclase inhibitor (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, ODQ) (P 〉 0.05). Also, sodium nitroprusside (SNP, a stimulator of cGMP production)-induced cGMP production was not enhanced by Nef (P 〉 0.05). Conclusion: Nef, with its relaxation mechanism, can enhance the concentration of cAMP in rabbit corpus cavernosum tissue, probably by inhibiting phosphodiesterase activity. (Asian JAndro12008 Mar; 10: 307-312)
基金supported by grants from the Kaohsiung Medical University of Taiwan (KMU-Q099018 and KMU-Q098025)
文摘Retaining or improving periodontal ligament (PDL) function is crucial for restoring periodontal defects. The aim of this study was to evaluate the physiological effects of low-power laser irradiation (LPLI) on the proliferation and osteogenic differentiation of human PDL (hPDL) cells. Cultured hPDL cel Is were irradiated (660 nm) daily with doses of O, 1, 2 or 4 J .cm-2. Cell proliferation was evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and the effect of LPLI on osteogenic differentiation was assessed by Alizarin Red S staining and alkaline phosphatase (ALP) activity. Additionally, osteogenic marker gene expression was confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR). Our data showed that LPLI at a dose of 2 J.cm-2 significantly promoted hPDL cell proliferation at days 3 and 5. In addition, LPLI at energy doses of 2 and 4 J.cm-2 showed potential osteogenic capacity, as it stimulated ALP activity, calcium deposition, and osteogenic gene expression. We also showed that cyclic adenosine monophosphate (cAMP) is a critical regulator of the LPLI-mediated effects on hPDL cells. This study shows that LPLI can promote the proliferation and osteogenic differentiation of hPDL cells. These results suggest the potential use of LPLI in clinical applications for periodontal tissue regeneration.
基金The National Natural Science Foundation of China(Grant No.21576134,Grant No.21606127,Grant No.21390200,Grant No.21706126)the National Key Research and Development Program of China(Grant No.2016YFA0204300)the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions。
文摘In this study,we aimed at developing an efficient biocatalytic process for bio-production of cyclic adenosine monophosphate(c AMP)from adenosine triphosphate(ATP).First,adenylate cyclase from Escherichia coli MG1655(EAC)and Bordetella Pertussis(BAC)were expressed in E.coli BL21(DE3)and comparatively analyzed for their activities.As a result,EAC from E.coli MG1655 exhibited a higher activity.However,amount of EAC were obtained in an insoluble form.Therefore,we expressed the first 446 amino acids of EAC(EAC446)to avoid the inclusion body.The effects of induction temperature,incubation time,and incubation p H were further evaluated to improve the expression of EAC446.Subsequently,the reaction process for the production of c AMP with ATP as a starting material was investigated.As none of c AMP was detected in the whole-cell based biocatalytic process,the reaction catalyzed by the crude enzyme was determined for c AMP production.What's more,the reaction temperature,reaction p H,metal ion additives and substrate concentration was optimized,and the maximum c AMP production of 18.45 g·L^-1was achieved with a yield of 95.4%after bioconversion of 6 h.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2014AA022001)
文摘The unicellular green alga,Chlamydomonas reinhardtii is a model organism for studying various biological processes,such as photosynthesis,flagellar motility,and lipid metabolism.To find some novel genes regulating the lipid metabolism under various stress conditions,the paromomycin resistance gene aphVIII was transferred into the genome of C.reinhardtii to establish a mutant library.Two genes mutated in two of the TAG-reduced mutants(Cre06.g278111 in M2 mutant,Cre06.g278110 in M6 mutants)were neighboring in the genome,and their expression levels were down-regulated in their corresponding mutants in parallel with their reduced TAG levels following N deprivation.The proteins encoded by these two genes(KCN11 by Cre06.g278111,ACYC3 by Cre06.g278110)contained a conversed cyclic mononucleotide phosphate(cNMP)binding protein and an adenylate domain,respectively.Since cNMP binding protein and adenylate domain have been known as important components of cyclic adenosine monophosphate(cAMP)signaling pathway,suggesting that these two genes might af fect cellular TAG biosynthesis through cAMP signal pathway.
基金Supported by The University of Missouri-St.Louis,Alzheimer’s Association,No.NIRG-06-27267the Missouri Alzheimer’s and Related Disorders Research Program.
文摘BACKGROUND Matrix metalloproteinases(MMPs),including MMP-9,are an integral part of the immune response and are upregulated in response to a variety of stimuli.New details continue to emerge concerning the mechanistic and regulatory pathways that mediate MMP-9 secretion.There is significant evidence for regulation of inflammation by dimethyl sulfoxide(DMSO)and 3',5'-cyclic adenosine monophosphate(cAMP),thus investigation of how these two molecules may regulate both MMP-9 and tumor necrosis factorα(TNFα)secretion by human monocytes was of high interest.The hypothesis tested in this study was that DMSO and cAMP regulate MMP-9 and TNFαsecretion by distinct mechanisms.AIM To investigate the regulation of lipopolysaccharide(LPS)-stimulated MMP-9 and tumor necrosis factorαsecretion in THP-1 human monocytes by dimethyl sulfoxide and cAMP.METHODS The paper describes a basic research study using THP-1 human monocyte cells.All experiments were conducted at the University of Missouri-St.Louis in the Department of Chemistry and Biochemistry.Human monocyte cells were grown,cultured,and prepared for experiments in the University of Missouri-St.Louis Cell Culture Facility as per accepted guidelines.Cells were treated with LPS for selected exposure times and the conditioned medium was collected for analysis of MMP-9 and TNFαproduction.Inhibitors including DMSO,cAMP regulators,and anti-TNFαantibody were added to the cells prior to LPS treatment.MMP-9 secretion was analyzed by gel electrophoresis/western blot and quantitated by ImageJ software.TNFαsecretion was analyzed by enzyme-linked immuno sorbent assay.All data is presented as the average and standard error for at least 3 trials.Statistical analysis was done using a two-tailed paired Student t-test.P values less than 0.05 were considered significant and designated as such in the Figures.LPS and cAMP regulators were from Sigma-Aldrich,MMP-9 standard and antibody and TNFαantibodies were from R&D Systems,and amyloid-βpeptide was from rPeptide.RESULTS In our investigation of MMP-9 secretion from THP-1 human monocytes,we made the following findings.Inclusion of DMSO in the cell treatment inhibited LPSinduced MMP-9,but not TNFα,secretion.Inclusion of DMSO in the cell treatment at different concentrations inhibited LPS-induced MMP-9 secretion in a dosedependent fashion.A cell-permeable cAMP analog,dibutyryl cAMP,inhibited both LPS-induced MMP-9 and TNFαsecretion.Pretreatment of the cells with the adenylyl cyclase activator forskolin inhibited LPS-induced MMP-9 and TNFαsecretion.Pretreatment of the cells with the general cAMP phosphodiesterase inhibitor IBMX reduced LPS-induced MMP-9 and TNFαin a dose-dependent fashion.Pre-treatment of monocytes with an anti-TNFαantibody blocked LPSinduced MMP-9 and TNFαsecretion.Amyloid-βpeptide induced MMP-9 secretion,which occurred much later than TNFαsecretion.The latter two findings strongly suggested an upstream role for TNFαin mediating LPS-stimulate MMP-9 secretion.CONCLUSION The cumulative data indicated that MMP-9 secretion was a distinct process from TNFαsecretion and occurred downstream.First,DMSO inhibited MMP-9,but not TNFα,suggesting that the MMP-9 secretion process was selectively altered.Second,cAMP inhibited both MMP-9 and TNFαwith a similar potency,but at different monocyte cell exposure time points.The pattern of cAMP inhibition for these two molecules suggested that MMP-9 secretion lies downstream of TNFαand that TNFαmay a key component of the pathway leading to MMP-9 secretion.This temporal relationship fit a model whereby early TNFαsecretion directly led to later MMP-9 secretion.Lastly,antibody-blocking of TNFαdiminished MMP-9 secretion,suggesting a direct link between TNFαsecretion and MMP-9 secretion.
基金supported by grant from the National Key Research and Development Program of China(2018YFC1602201)the Open Research Fund Program of Beijing Key Lab of Plant Resource Research and Development,Beijing Technology and Business University(PRRD-2021-YB8)+1 种基金the National Natural Science Fund(31601395)the Key Program for Shaanxi Science and Technology(2020NY-146)。
文摘Jujube contains abundant cyclic adenosine monophosphate(cAMP)and the ultrasonic-assisted pectinase extraction(UAPE)conditions for obtaining the maximum cAMP yield from jujube were optimized.Orthogonal array design was applied to evaluate the effects of 4 variables by UAPE on cAMP yield.The results showed that the optimal cAMP yield(783.0μg/g)was derived at ratio of liquid to solid 5 mL/g,ratio of pectinase to raw material 1.5%,time 60 min and temperature 40℃.Moreover,the effect of cAMP on the anti-allergic function of action induced by immunoglobulin E(IgE)and its meschanism was investigated through establishing the sensitized cell model in rat basophilic leukemia(RBL-2 H3)cells using dinitrophenylated(DNP)-bovine serum albumin(BSA)-IgE.The results showed that cAMP interfered with sensitized cells,effectively inhibited the occurrence of basophil degranulation in dose dependence,and significantly reduced the activity ofβ-hexosamindase(β-hex),at the optimal concentration of 50μg/mL.The level of anti-inflammatory factor interleukin-10(IL-10)was promoted and the content of pro-inflammatory factor tumor necrosis factor-α(TNF-α)was suppressed by cAMP.In addition,influx of intracellular Ca^(2+) was repressed effectively.Our results demonstrate that jujube cAMP regulated the cytokine balance in the allergy pathway through blocking the influx of extracellular Ca^(2+),with the prevention of allergy symptoms.
基金This study was supported by the grants from the Natural Science Foundation of Shandong Province, China (No. Y2007C053) and the Project of Scientific and Technological Development of Shandong Province, China (No. 2007GG10002008).
文摘Objective To review the role of cyclic adenosine monophosphate (cAMP) signal pathway in the pathogenesis of iymphoma and explore a potential lymphoma therapy targeted on this signaling pathway. Data sources The data cited in this review were mainly obtained from the articles listed in Medline and PubMed, published from January 1995 to June 2009. The search terms were "cAMP" and "lymphoma". Study selection Articles regarding the role of the cAMP pathway in apoptosis of lymphoma and associated cells and its potential role in targeted therapy of lymphoma. Results In the transformation of lymphocytic malignancies, several signal pathways are involved. Among of them, the cAMP pathway has attracted increasing attention because of its apoptosis-inducing role in several lymphoma cells, cAMP pathway impairment is found to influence the prognosis of lymphoma. Targeted therapy to the cAMP pathway seems to be a new direction for lymphoma treatment, aiming at restoring the cAMP function. Conclusions cAMP signal pathway has different effects on various lymphoma cells, cAMP analogues and phosphodiesterase 4B (PDE4B) inhibitors have potential clinical significance. However, many challenges remain in understandinq the various roles of such agents.