Tunnelling-induced long-term consolidation settlement attracts a great interest of engineering practice. The distribution and magnitude of tunnelling-induced initial excess pore water pressure have significant effects...Tunnelling-induced long-term consolidation settlement attracts a great interest of engineering practice. The distribution and magnitude of tunnelling-induced initial excess pore water pressure have significant effects on the long-term consolidation settlement. A simple and reliable method for predicting the tunnel-induced initial excess pore water pressure calculation in soft clay is proposed. This method is based on the theory of elasticity and SKEMPTON's excess pore water pressure theory. Compared with the previously published field measurements and the finite-element modelling results, it is found that the suggested initial excess pore water pressure theory is in a good agreement with the measurements and the FE results. A series of parametric analyses are also carried out to investigate the influences of different factors on the distribution and magnitude of the initial excess pore water pressure in soft ground.展开更多
The characteristics of dynamic stress in the seabed under wave loading are constant principal stress and continuous rotation of the principal stress direction. Cyclic triaxial-torsional coupling shear tests were peffo...The characteristics of dynamic stress in the seabed under wave loading are constant principal stress and continuous rotation of the principal stress direction. Cyclic triaxial-torsional coupling shear tests were pefformed on saturated silt by the hollow cylinder apparatus under different relative densities, deviator stress ratios and vibration frequencies to study the development of pore water pressure of the saturated silt under wave loading. It was found that the development of pore water pressure follows the trend of "fast - steady - drastic". The turning point from fast to steady stage is not affected by relative density and deviator stress ratio. However, the turning point from steady to drastic stage relies on relative density and deviator stress ratio. The vibration cycle for the liquefaction of saturated silt decreases with increasing deviator stress ratio and increases with relative density. The vibration cycle for the liquefaction of the saturated silt increases with vibration frequency and reaches a peak value, after which it decreases with increasing vibration frequency for the relative density of 70%. But the vibration cycle for the liquefaction of saturated silt increases with vibration frequency for the relative density of 30%. The development of pore water pressure of the saturated silt is influenced by relative density and vibration frequency.展开更多
Deep-seated gas in seabed sediments migrates upwards from effect of external factors,which easily accumulates to form gasbags at interface of shallow coarse-fine sediments.Real-time monitoring of this process is impor...Deep-seated gas in seabed sediments migrates upwards from effect of external factors,which easily accumulates to form gasbags at interface of shallow coarse-fine sediments.Real-time monitoring of this process is important to predict disaster.However,there is still a lack of effective monitoring methods,so we attempt to apply multi-points pore water pressure monitoring technology when simulating forming and dissipation of gasbags in sediments through laboratory experiment.This study focuses on discussion of sensitivity of pore water pressure monitoring data,as well as typical changing characteristics and mechanisms of excess pore water pressure corresponding to crack generation,gasbag formation and gas release.It was found that the value of excess pore water pressure in sediments is negatively correlated with vertical distance between sensors and gas source,and the evolution of gasbag forming and dissipation has a good corresponding relationship with the change of excess pore water pressure.Gasbag formation process is divided into three stages:transverse crack development,longitudinal cavity expansion,and oblique crack development.Formation of gasbag begins with the transverse crack at the interface of coarse-fine sediments while excess pore water pressure attenuates rapidly and then drops,pressure remains almost unchanged when cavity expanses longitudinally,oblique crack appeared in final stage of gasbag evolution while excess pore water pressure accumulated and dissipated again.The variation curve of excess pore water pressure in gas release stage has saw-tooth fluctuation characteristics,and the value and time of pressure accumulation are also fluctuating,indicating the uncertainty and non-uniqueness of gas migration channels in sediments.展开更多
Based on a series of cyclic triaxial tests, the effect of cyclic frequency on the undrained behaviors of undisturbed marine clay is investigated. For a given dynamic stress ratio, the accumulated pore water pressure a...Based on a series of cyclic triaxial tests, the effect of cyclic frequency on the undrained behaviors of undisturbed marine clay is investigated. For a given dynamic stress ratio, the accumulated pore water pressure and dynamic strain increase with the number of cycles. There exists a threshold value for both the accumulated pore water pressure and dynamic strain, below which the effect of cyclic frequency is very small, but above which the accumulated pore water pressure and dynamic strain increase intensely with the decrease of cyclic frequency for a given number of cycles. The dynamic strength increases with the increase of cyclic frequency, whereas the effect of cyclic frequency on it gradually diminishes to zero when the number of cycles is large enough, and the dynamic strengths at different frequencies tend to the same limiting minimum dynamic strength. The test results demonstrate that the reasons for the frequency effect on the undrained soil behaviors are both the creep effect induced by the loading rate and the decrease of sample effective confining pressure caused by the accumulated pore water pressure.展开更多
基金Projects(41472284U1234204)supported by the National Natural Science Foundation of China
文摘Tunnelling-induced long-term consolidation settlement attracts a great interest of engineering practice. The distribution and magnitude of tunnelling-induced initial excess pore water pressure have significant effects on the long-term consolidation settlement. A simple and reliable method for predicting the tunnel-induced initial excess pore water pressure calculation in soft clay is proposed. This method is based on the theory of elasticity and SKEMPTON's excess pore water pressure theory. Compared with the previously published field measurements and the finite-element modelling results, it is found that the suggested initial excess pore water pressure theory is in a good agreement with the measurements and the FE results. A series of parametric analyses are also carried out to investigate the influences of different factors on the distribution and magnitude of the initial excess pore water pressure in soft ground.
基金supported by The Key Project of National Natural Science Foundation of China(Grant Nos.50639010 and 50909039)
文摘The characteristics of dynamic stress in the seabed under wave loading are constant principal stress and continuous rotation of the principal stress direction. Cyclic triaxial-torsional coupling shear tests were pefformed on saturated silt by the hollow cylinder apparatus under different relative densities, deviator stress ratios and vibration frequencies to study the development of pore water pressure of the saturated silt under wave loading. It was found that the development of pore water pressure follows the trend of "fast - steady - drastic". The turning point from fast to steady stage is not affected by relative density and deviator stress ratio. However, the turning point from steady to drastic stage relies on relative density and deviator stress ratio. The vibration cycle for the liquefaction of saturated silt decreases with increasing deviator stress ratio and increases with relative density. The vibration cycle for the liquefaction of the saturated silt increases with vibration frequency and reaches a peak value, after which it decreases with increasing vibration frequency for the relative density of 70%. But the vibration cycle for the liquefaction of saturated silt increases with vibration frequency for the relative density of 30%. The development of pore water pressure of the saturated silt is influenced by relative density and vibration frequency.
基金The National Key Research and Development Program of China under contract No.2017YFC0307701the National Natural Science Foundation of China under contract No.41977234。
文摘Deep-seated gas in seabed sediments migrates upwards from effect of external factors,which easily accumulates to form gasbags at interface of shallow coarse-fine sediments.Real-time monitoring of this process is important to predict disaster.However,there is still a lack of effective monitoring methods,so we attempt to apply multi-points pore water pressure monitoring technology when simulating forming and dissipation of gasbags in sediments through laboratory experiment.This study focuses on discussion of sensitivity of pore water pressure monitoring data,as well as typical changing characteristics and mechanisms of excess pore water pressure corresponding to crack generation,gasbag formation and gas release.It was found that the value of excess pore water pressure in sediments is negatively correlated with vertical distance between sensors and gas source,and the evolution of gasbag forming and dissipation has a good corresponding relationship with the change of excess pore water pressure.Gasbag formation process is divided into three stages:transverse crack development,longitudinal cavity expansion,and oblique crack development.Formation of gasbag begins with the transverse crack at the interface of coarse-fine sediments while excess pore water pressure attenuates rapidly and then drops,pressure remains almost unchanged when cavity expanses longitudinally,oblique crack appeared in final stage of gasbag evolution while excess pore water pressure accumulated and dissipated again.The variation curve of excess pore water pressure in gas release stage has saw-tooth fluctuation characteristics,and the value and time of pressure accumulation are also fluctuating,indicating the uncertainty and non-uniqueness of gas migration channels in sediments.
文摘Based on a series of cyclic triaxial tests, the effect of cyclic frequency on the undrained behaviors of undisturbed marine clay is investigated. For a given dynamic stress ratio, the accumulated pore water pressure and dynamic strain increase with the number of cycles. There exists a threshold value for both the accumulated pore water pressure and dynamic strain, below which the effect of cyclic frequency is very small, but above which the accumulated pore water pressure and dynamic strain increase intensely with the decrease of cyclic frequency for a given number of cycles. The dynamic strength increases with the increase of cyclic frequency, whereas the effect of cyclic frequency on it gradually diminishes to zero when the number of cycles is large enough, and the dynamic strengths at different frequencies tend to the same limiting minimum dynamic strength. The test results demonstrate that the reasons for the frequency effect on the undrained soil behaviors are both the creep effect induced by the loading rate and the decrease of sample effective confining pressure caused by the accumulated pore water pressure.