期刊文献+
共找到360篇文章
< 1 2 18 >
每页显示 20 50 100
Numerical Analysis of Fiber Reinforced Polymer-Confined Concrete under Cyclic Compression Using Cohesive Zone Models
1
作者 Mingxu Zhang Mingliang Wang Wei Zhang 《Structural Durability & Health Monitoring》 EI 2024年第5期599-622,共24页
This paper examines the mechanical behavior offiber reinforced polymer(FRP)-confined concrete under cyclic compression using the 3D cohesive zone model(CZM).A numerical modeling method was developed,employing zero-thick... This paper examines the mechanical behavior offiber reinforced polymer(FRP)-confined concrete under cyclic compression using the 3D cohesive zone model(CZM).A numerical modeling method was developed,employing zero-thickness cohesive elements to represent the stress-displacement relationship of concrete potential fracture surfaces and FRP-concrete interfaces.Additionally,mixed-mode damage plastic constitutive models were pro-posed for the concrete potential fracture surfaces and FRP-concrete interface,considering interfacial friction.Furthermore,an anisotropic plastic constitutive model was developed for the FRP composite jacket.The CZM model proposed in this study was validated using experimental data from plain concrete and large rupture strain(LRS)FRP-confined concrete subjected to cyclic compression.The simulation results demonstrate that the pro-posed model accurately predicts the mechanical response of both concrete and FRP-confined concrete under cyc-lic compression.Lastly,various parametric studies were conducted to investigate the internal failure mechanism of FRP-confined concrete under cyclic loading to analyze the influence of the inner friction plasticity of different components. 展开更多
关键词 cyclic compression CZM FRP wrapped concrete constitutive model fracture behavior
下载PDF
Compressive and Sealing Characteristics of PTFE under Cyclic Loading-unloading
2
作者 张宁 LI Qiang +1 位作者 HU Kang 李青 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第1期181-184,共4页
Compressive and sealing characteristics of PTFE under cyclic loading-unloading at room temperature are studied in order to evaluate the cyclic sealing performance of control valve comprehensively. The unloading charac... Compressive and sealing characteristics of PTFE under cyclic loading-unloading at room temperature are studied in order to evaluate the cyclic sealing performance of control valve comprehensively. The unloading characteristics are different from the loading ones, therefore there is hysteresis between the unloading and loading curves. Compressive hysteresis is the main factor that causes sealing hysteresis. The leakage rate of PTFE complies with the power law before it enters the relatively stable region. Lastly, the effect of working pressure on the compressive and sealing characteristics is discussed. The experimental results show that the working pressure has little effect on compressive deformation but has a great influence on leakage rate. 展开更多
关键词 PTFE compression SEALING cyclic loading-unloading working pressure
下载PDF
Finite element analysis of strain distribution in ZK60 Mg alloy during cyclic extrusion and compression 被引量:9
3
作者 林金保 王渠东 +2 位作者 刘满平 陈勇军 Hans J.ROVEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1902-1906,共5页
Finite element method was used to study the strain distribution in ZK60 Mg alloy during multi-pass cyclic extrusion and compression (CEC). In order to optimize the CEC processing, the effects of friction condition a... Finite element method was used to study the strain distribution in ZK60 Mg alloy during multi-pass cyclic extrusion and compression (CEC). In order to optimize the CEC processing, the effects of friction condition and die geometry on the distribution of total equivalent plastic strain were investigated. The results show that the strain distributions in the workpieces are inhomogeneous after CEC deformation. The strains of the both ends of the workpieces are lower than that of the center region. The process parameters have significant effects on the strain distribution. The friction between die and workpiece is detrimental to strain homogeneity, thus the friction should be decreased. In order to improve the strain homogeneity, a large corner radius and a low extrusion angle should be used. 展开更多
关键词 cyclic extrusion and compression finite element method FRICTION ZK60 magnesium alloy strain homogeneity
下载PDF
Microstructure and mechanical properties of AM60B magnesium alloy prepared by cyclic extrusion compression 被引量:4
4
作者 王丽萍 陈添 +3 位作者 姜文勇 冯义成 曹国剑 朱岩 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3200-3205,共6页
The cyclic extrusion compression (CEC) process was introduced into the AM60B magnesium alloy. The use of the CEC process was favorable for producing finer microstructures. The results show that the microstructure ca... The cyclic extrusion compression (CEC) process was introduced into the AM60B magnesium alloy. The use of the CEC process was favorable for producing finer microstructures. The results show that the microstructure can be effectively refined with increasing the number of CEC passes. Once a critical minimum grain size was achieved, subsequent passes did not have any noticeable refining effect. As expected, the fine-grained alloy has excellent mechanical properties. The micro-hardness, yield strength, ultimate tensile strength and elongation to failure of two-pass CEC formed alloy are 72.2, 183.7 MPa, 286.3 MPa and 14.0%, but those of as-cast alloy are 62.3, 64 MPa, 201 MPa and 11%, respectively. However, there is not a clear improvement of mechanical properties with further increase in number of CEC passes in AM60B alloy. The micro-hardness, yield strength, ultimate tensile strength and elongation to failure of four-pass CEC formed alloy are 73.5, 196 MPa, 297 MPa and 16%, respectively. 展开更多
关键词 magnesium alloy cyclic extrusion compression MICROSTRUCTURE mechanical properties
下载PDF
Processing and characterization of AZ91 magnesium alloys via a novel severe plastic deformation method:Hydrostatic cyclic extrusion compression(HCEC) 被引量:13
5
作者 Armin SIAHSARANI Ghader FARAJI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第5期1303-1321,共19页
Capability of a novel severe plastic deformation(SPD)method of hydrostatic cyclic extrusion compression(HCEC)for processing of hcp metallic rods with high length to diameter ratios was investigated.The process was con... Capability of a novel severe plastic deformation(SPD)method of hydrostatic cyclic extrusion compression(HCEC)for processing of hcp metallic rods with high length to diameter ratios was investigated.The process was conducted in two consecutive cycles on the AZ91 magnesium alloy,and microstructural evolution,mechanical properties and corrosion behavior were investigated.The results showed that the HCEC process was successively capable of producing ultrafine-grained long magnesium rods.Its ability in improving strength and ductility simultaneously was also shown.The ultimate tensile strength and elongation to failure of the sample after the second cycle of the process were improved to be 2.46 and 3.8 times those of the as-cast specimen,respectively.Distribution of the microhardness after the second cycle was uniform and its average value was increased by 116%.The potentials derived from the polarization curves were high and the currents were much low for the processed samples.Also,the diameter of the capacitive arcs derived from the Nyquist curves was large in the HCEC processed samples.The finite element analysis indicated the independency of HCEC load from the length in comparison to the conventional CEC.HCEC is a unique SPD method,which can produce long ultrafine-grained rods with a combination of superior mechanical and corrosion properties. 展开更多
关键词 severe plastic deformation cyclic extrusion compression corrosion behavior mechanical properties hydrostatic pressure
下载PDF
Properties inhomogeneity of AM60 magnesium alloy processed by cyclic extrusion compression angular pressing followed by extrusion 被引量:9
6
作者 Siroos AHMADI Vali ALIMIRZALOO +1 位作者 Ghader FARAJI Ali DONIAVI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第3期655-665,共11页
A new severe plastic deformation(SPD)technique for improvement of the metallurgical properties of the magnesium alloys is presented.In this process,a cyclic extrusion compression angular pressing(CECAP)process is foll... A new severe plastic deformation(SPD)technique for improvement of the metallurgical properties of the magnesium alloys is presented.In this process,a cyclic extrusion compression angular pressing(CECAP)process is followed by an extrusion step in the outlet playing the role of additional back pressure.Therefore,more uniform and enhanced mechanical properties are expected in comparison with equal channel angular pressing(ECAP).In order to evaluate the effectiveness and capabilities of this new method,an AM60 magnesium alloy was processed.Finite element results exhibited a significant increase in strain values as well as uniform strain distribution for the new method.In addition,~110%increase in compressive stress was observed in new method compared to the conventional ECAP.Experimental results revealed a noticeable increase in the hardness and strength of the specimens processed by the new technique as a result of the formation of finer grains and more homogeneous microstructure with good distribution of refinedβ-phase along the boundaries.It may be concluded that the new process is very promising for future magnesium alloy products. 展开更多
关键词 cyclic extrusion compression angular pressing AM60 alloy strain distribution mechanical properties grain refinement
下载PDF
Microstructure and texture characteristics of ZK60 Mg alloy processed by cyclic extrusion and compression 被引量:3
7
作者 林金保 王渠东 +2 位作者 陈勇军 刘满平 H.J.ROVEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第11期2081-2085,共5页
The microstructure and crystallographic texture characteristics of an extruded ZK60 Mg alloy subjected to cyclic extrusion and compression(CEC) up to 8 passes at 503 K were investigated.The local crystallographic text... The microstructure and crystallographic texture characteristics of an extruded ZK60 Mg alloy subjected to cyclic extrusion and compression(CEC) up to 8 passes at 503 K were investigated.The local crystallographic texture,grain size and distribution,and grain boundary character distributions were analyzed using high-resolution electron backscatter diffraction(EBSD).The results indicate that the microstructure is refined significantly by the CEC processing and the distributions of grain size tend to be more uniform with increasing CEC pass number.The fraction of low angle grain boundaries(LAGBs) decreases after CEC deformation,and a high fraction of high angle grain boundaries(HAGBs) is revealed after 8 passes of CEC.Moreover,the initial fiber texture becomes random during CEC processing and develops a new texture. 展开更多
关键词 ZK60 Mg alloy cyclic extrusion and compression electron back scatter diffraction (EBSD) microstructure texture
下载PDF
Fatigue Properties of Plain Concrete under Triaxial Constant-Amplitude Tension-Compression Cyclic Loading 被引量:1
8
作者 宋玉普 曹伟 孟宪宏 《Journal of Shanghai University(English Edition)》 CAS 2005年第2期127-133,共7页
Fatigue tests were conducted on tapered plain concrete prism specimens under tri axial constant-amplitude tension-compression cyclic loading. The low stress of the cyclic loading was taken as 0.2f c and the upper st... Fatigue tests were conducted on tapered plain concrete prism specimens under tri axial constant-amplitude tension-compression cyclic loading. The low stress of the cyclic loading was taken as 0.2f c and the upper stress ranged from 0. 20f t to 0.65f t. Three constant lateral pressures were 0.1f c, 0.2f c and 0.3f c respec tively. Based on the results, the th ree-stage evolution rule of the fatigue stiffness, maximum(minimum) longitudina l strain and damage were analyzed, and a unified S-N curve to calculate fati gue strength factors was worked out. The results show that the fatigue strength and fa tigue life under triaxial constant-amplitude tension-compression cyclic loadin g are smaller than those under uniaxial fatigue condition. Moreover, the secondary strain creep rate is related to the fatigue life, a formula for describing thei r relation was derived. The investigation of this paper can provide information for the fatigue design of concrete structures. 展开更多
关键词 CONCRETE triaxial constant-amplitude tension-compression cyclic loading fati gue strength fatigue life.
下载PDF
Investigating the Damaging Effects of the Cyclic Discharge in the Uni-Axial Compression of <i>Raphia vinifera</i>L. Arecacea
9
作者 Brice Poumegne Kouam Didier Fokwa +1 位作者 Dieunedort Ndapeu Médard Fogue 《World Journal of Engineering and Technology》 2021年第1期15-25,共11页
The bamboo stem, when mature 5 to 6 years, serves as a building material for modest houses and its marrow as packaging purposes. One of the strains related to the uses of bamboo stem is most often the compression towa... The bamboo stem, when mature 5 to 6 years, serves as a building material for modest houses and its marrow as packaging purposes. One of the strains related to the uses of bamboo stem is most often the compression towards the axial direction. The phenomenon of damage is very often observed during such loading. The present study on raffia aims to analyze this phenomenon through cyclical stresses as usual. From the results obtained, it was observed in the stress-strain plane, that the area of <span><span><span style="font-family:;" "="">the </span></span></span><span><span><span style="font-family:;" "="">hysteresis loops and the residual strain evolve with two parameters: the number of cycles and the stress peaks. The study of energy dissipation has shown that it evolves according to an exponential law as a function of the number of cycles. The distribution of the energy rate along a stem shows that the samples from the zone close to the base store twice (0.0412 MJ/m<sup>3</sup>) more energy than the samples taken from the top of the foliage (0.019 MJ/m<sup>3</sup>).</span></span></span> 展开更多
关键词 BAMBOO Raphia cyclic compression Energy Dissipation
下载PDF
Experimental Study on Performance of Plain Concrete Due to Triaxial Variable-Amplitude Tension-Compression Cyclic Loading
10
作者 曹伟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第3期104-109,共6页
An experimental study on performance of plain concrete under triaxial constant-amplitude and variable amplitude tension- compression cyclic loadings was carded out. The low level of the cyclic stress is 0. 2f and the ... An experimental study on performance of plain concrete under triaxial constant-amplitude and variable amplitude tension- compression cyclic loadings was carded out. The low level of the cyclic stress is 0. 2f and the upper level ranges between 0. 20f and 0. 55f., while the constant lateral pressure is 0. 3 f . The specimen failure mode, the three-stage evolution rule of the longitudinal strains and the damage evolution law under cyclic loading were analyzed. Furthermore, Miner's rule is proved not to be applicable to the cyclic loading conditions, hereby, a nonlinear cumulative damage model was established. Based on the model the remaining fatigue life was evaluated. The comparison whh the experiment resuhs shaws that the model is of better precision and applicability. 展开更多
关键词 CONCRETE triaxial tension-compression cyclic loading three-stage evolution rule nonlinear cumulative damage model
下载PDF
Experimental study on energy storage and dissipation characteristics of granite under two-dimensional compression with constant confining pressure 被引量:17
11
作者 SU You-qiang GONG Feng-qiang +1 位作者 LUO Song LIU Zhi-xiang 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期848-865,共18页
To study the energy storage and dissipation characteristics of deep rock under two-dimensional compression with constant confining pressure,the single cyclic loading-unloading two-dimensional compression tests were pe... To study the energy storage and dissipation characteristics of deep rock under two-dimensional compression with constant confining pressure,the single cyclic loading-unloading two-dimensional compression tests were performed on granite specimens with two height-to-width(H/W)ratios under five confining pressures.Three energy density parameters(input energy density,elastic energy density and dissipated energy density)in the axial and lateral directions of granite specimens under different confining pressures were calculated using the area integral method.The experimental results show that,for the specimens with a specific H/W ratio,these three energy density parameters in the axial and lateral directions increase nonlinearly with the confining pressure as quadratic polynomial functions.Under constant confining pressure compression,the linear energy storage law of granite specimens in the axial and lateral directions was founded.Using the linear energy storage law in different directions,the elastic energy density in various directions(axial elastic energy density,lateral elastic energy density and total elastic energy density)of granite under any specific confining pressures can be calculated.When the H/W ratio varies from 1:1 to 2:1,the lateral compression energy storage coefficient increases and the corresponding axial compression energy storage coefficient decreases,while the total compression energy storage coefficient is almost independent of the H/W ratio. 展开更多
关键词 rock mechanics two-dimensional compression linear energy storage law single cyclic loading-unloading height-to-width ratio
下载PDF
Study on one-dimensional consolidation of soil under cyclic loading and with varied compressibility 被引量:3
12
作者 庄迎春 谢康和 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第2期141-147,共7页
This paper presents a semi-analytical method to solve one dimensional consolidation problem by taking consideration of varied compressibility of soil under cyclic loading. In the method, soil stratum is divided equall... This paper presents a semi-analytical method to solve one dimensional consolidation problem by taking consideration of varied compressibility of soil under cyclic loading. In the method, soil stratum is divided equally into n layers while load and consolidation time are also divided into small parts and time intervals accordingly. The problem of one-dimensional consolidation of soil stratum under cyclic loading can then be dealt with at each time interval as one-dimensional linear consolidation of multi-layered soils under constant loading. The compression or rebounding of each soil layer can be judged by the effective stress of the layer. When the effective stress is larger than that in the last time interval, the soil layer is compressed, and when it is smaller, the soil layer rebounds. Thus, appropriate compressibility can be chosen and the consolidation of the layered system can be analyzed by the available analytical linear consolidation theory. Based on the semi-analytical method, a computer program was developed and the behavior of one-dimensional consolidation of soil with varied compressibility under cyclic loading was investigated, and compared with the available consolidation theory which takes no consideration of varied compressibility of soil under cyclic loading. The results showed that by taking the variable compressibility into account, the rate of consolidation of soil was greater than the one predicted by conventional consolidation theory. 展开更多
关键词 cyclic loading One-dimensional consolidation Semi-analytical solution Varied compressibility of soil
下载PDF
Fatigue behavior and cumulative damage rule of concrete under cycli ccompression with constant confined stress 被引量:1
13
作者 朱劲松 高嫦娥 宋玉普 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第5期528-535,共8页
The effects of different lateral confinement stress on the fatigue behavior and cumulative damage of plain concrete were investigated experimentally. Eighty 100mm×100mm×100mm specimens of ordinary strength c... The effects of different lateral confinement stress on the fatigue behavior and cumulative damage of plain concrete were investigated experimentally. Eighty 100mm×100mm×100mm specimens of ordinary strength concrete were tested with constant-or variable-amplitude cyclic compression and lateral confinement pressure in two orthogonal directions. A fatigue equation was gained by modifying the classical Aas-Jakobsen S-N equation and used for taking into account the effect of the confined stress on fatigue strength of plain concrete. The present study indicates that the fatigue failure is greatly influenced by the sequence of applied variable-amplitude fatigue loading, and Miner’s rule is inapplicable to predict the residual fatigue life, especially in the sequence of low to high. The present research also shows that the exponent d of the Corten-Dolan’s damage formula is a constant depending on the materials and the levels of load spectrum, and d can be determined through the two-stage fatigue tests. The residual fatigue lives predicted by Corten-Dolan’s damage formula are found to be in good agreement with the results of the experiments. 展开更多
关键词 CONCRETE FATIGUE strength cyclic compression constant confined stress damage cumulative life predicting
下载PDF
Deformation and damage properties of rock-like materials subjected to multi-level loading-unloading cycles
14
作者 Zhizhen Liu Ping Cao +2 位作者 Qingxiong Zhao Rihong Cao Fei Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1768-1776,共9页
In the process of engineering construction such as tunnels and slopes,rock mass is frequently subjected to multiple levels of loading and unloading,while previous research ignores the impact of unloading rate on the s... In the process of engineering construction such as tunnels and slopes,rock mass is frequently subjected to multiple levels of loading and unloading,while previous research ignores the impact of unloading rate on the stability of rock mass.A number of uniaxial multi-level cyclic loading-unloading experiments were conducted to better understand the effect of unloading rate on the deformation behavior,energy evolution,and damage properties of rock-like material.The experimental results demonstrated that the unloading rate and relative cyclic number clearly influence the deformation behavior and energy evo-lution of rock-like samples.In particular,as the relative cyclic number rises,the total strain and reversible strain both increase linearly,while the total energy density,elastic energy density,and dissipated energy density all rise nonlinearly.In contrast,the irreversible strain first decreases quickly,then stabilizes,and finally rises slowly.As the unloading rate increases,the total strain and reversible strain both increase,while the irreversible strain decreases.The dissipated energy damage was examined in light of the aforementioned experimental findings.The accuracy of the proposed damage model,which takes into account the impact of the unloading rate and relative cyclic number,is then confirmed by examining the consistency between the model predicted and the experimental results.The proposed damage model will make it easier to foresee how the multi-level loading-unloading cycles will affect the rock-like materials. 展开更多
关键词 Incremental cyclic loading-unloading Unloading rate Strain characteristics Energy evolution Damage model
下载PDF
Effect of thermal treatment on energy dissipation of granite under cyclic impact loading 被引量:19
15
作者 Rong-hua SHU Tu-bing YIN +2 位作者 Xi-bing LI Zhi-qiang YIN Li-zhong TANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第2期385-396,共12页
High temperature treatment causes thermal damage to rocks in deep mining.To study the thermal effect on the energy dissipation of rocks during the dynamic cyclic loading,cyclic impact loading experiments of heat-treat... High temperature treatment causes thermal damage to rocks in deep mining.To study the thermal effect on the energy dissipation of rocks during the dynamic cyclic loading,cyclic impact loading experiments of heat-treated rocks were carried out using the splitting Hopkinson pressure bar(SHPB)experimental system.The correlations among the energy dissipation,energy dissipation rate,impact times,accumulated absorbed energy per volume,failure mode and temperature were analyzed.The results show that the reflected energy under the first impact increases and finally exceeds the absorbed energy when the temperature increases;however,the total reflected energy decreases above 200℃.The absorbed energy under the first impact and the total absorbed energy all decrease as the temperature increases,the rates of which decrease accordingly.And the same phenomenon appears for the transmitted energy and the rate of the transmitted energy.On the contrary,the rate of the reflected energy increases with the rising temperature.When the temperature increases,the fewer impact times are needed to destroy the sample.In addition,the failure modes are different when the rock is treated at different temperatures;that is,when the temperature is high,even though the absorbed energy is low,the sample breaks into powder after several impacts. 展开更多
关键词 energy dissipation GRANITE cyclic impact compression thermal treatment
下载PDF
DELAMINATION FORMATION AND DELAMINATION PROPAGATION OF COMPOSITE LAMINATES UNDER COMPRESSIVE FATIGUE LOADING 被引量:2
16
作者 熊峻江 《Chinese Journal of Aeronautics》 SCIE EI CSCD 2000年第1期8-13,共6页
Fatigue tests of the smooth composite laminates and the notched composite laminates under compressive cyclic loading have been carried out. The damage mechanism is discussed and analyzed. Damage evolution is monitored... Fatigue tests of the smooth composite laminates and the notched composite laminates under compressive cyclic loading have been carried out. The damage mechanism is discussed and analyzed. Damage evolution is monitored using stiffness decay. From these tests, it is found that the initial delamination occurs at the free boundary of smooth specimens, or the notch boundary of notched specimens, subjected to the compression-compression cyclic load. A point of view in relation to two-phases of compression fatigue delamination of composites is proposed, namely, compression-compression delamination consists of the delamination formation phase and the delamination propagation, and there is a 'damage transition point' to separate this two-phases. Furthermore, an empirical modulus degradation formula and its parameters fitting method are presented. According to the test data handling results, it is shown that this formula is univocal and can fit the test data conveniently. In addition, two kinds of new anti-buckling devices are designed for these tests. At last, the E-N curves, the D-N curves and the S-N curve of the smooth carbon fiber reinforced composite laminates of T300/648C are determined to predict the fatigue life of the notched composite laminate. And the E-N curve of the notched specimens at the given load ratio R = 10 and minimum load Pmin = -0.45 kN is also measured to verify the estimated result of fatigue life. 展开更多
关键词 Carbon fiber reinforced plastics Composite micromechanics compressive strength Crack propagation cyclic loads DELAMINATION Elastic moduli Fatigue testing Laminated composites STIFFNESS
下载PDF
Static compressive properties and damage constitutive model of rubber cement mortar with dry-and wet-curing conditions 被引量:1
17
作者 YANG Rong-zhou XU Ying +1 位作者 CHEN Pei-yuan GONG Jiu 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第7期2158-2178,共21页
To investigate the static compressive properties and mechanical damage evolution of rubber cement-based materials(RCBMs) with dry-and wet-curing conditions, uniaxial compression and cyclic loading-unloading tests were... To investigate the static compressive properties and mechanical damage evolution of rubber cement-based materials(RCBMs) with dry-and wet-curing conditions, uniaxial compression and cyclic loading-unloading tests were carried out on rubber cement mortar(RCM). The mechanical properties of the uniaxial compression specimens cured at 95%(wet-curing) and 50%(dry-curing) relative humidities and cyclic loading-unloading specimens cured at wet-curing were analyzed. Under uniaxial compression, the peak stress loss ratio is higher for dry-curing than for wet-curing. The peak strain decreases with the increase of rubber content, and the peak strain increases with the decrease of curing humidity. Under cyclic loading-unloading, the variation trends of residual strain differences of the normal cement mortar and RCM at each cyclic level with the number of cycles are basically the same, but the failure modes are different. The analysis of the internal mesostructure by a scanning electron microscope(SEM) shows that initial damage is further enhanced by reducing curing humidity and adding rubber aggregate. The damage constitutive model based on strain equivalence principle and statistical theories was used to describe the uniaxial compression characteristics of RCM, and the law of mechanical damage evolution was predicted. 展开更多
关键词 curing humidity rubber cement mortar uniaxial compression cyclic loading-unloading mesoscopic damage constitutive model
下载PDF
各向异性层状千枚岩渗透率及有效孔隙率试验研究 被引量:1
18
作者 王伟 陈超维 +3 位作者 刘世藩 曹亚军 段雪雷 聂文俊 《岩土工程学报》 EI CAS CSCD 北大核心 2024年第2期445-451,共7页
采用岩石全自动三轴伺服仪和气体渗透装置,对一种致密的各向异性层状千枚岩开展了气体渗透率及有效孔隙率试验,研究常规三轴压缩和围压循环加卸载2种应力路径下,气体渗透率、有效孔隙率随层理倾角及偏应力的演化规律。结果表明:围压相同... 采用岩石全自动三轴伺服仪和气体渗透装置,对一种致密的各向异性层状千枚岩开展了气体渗透率及有效孔隙率试验,研究常规三轴压缩和围压循环加卸载2种应力路径下,气体渗透率、有效孔隙率随层理倾角及偏应力的演化规律。结果表明:围压相同时,岩样的初始气体渗透率k0随着层理倾角β的增大呈“W”型变化,在β=45°时取最大值;在围压循环加卸载过程中,气体渗透率先随围压的加载而减小,后随围压的卸载而增大,卸载时的气体渗透率小于加载时的渗透率;层状千枚岩有效孔隙率和气体渗透率呈指数关系;平行于层理方向的气体渗透率远大于垂直于层理方向的气体渗透率;岩样有效孔隙率和气体渗透率随偏应力变化经历初始压密阶段、线弹性阶段和塑性变形阶段,随着偏应力的增大,岩样有效孔隙率和气体渗透率先减小,接着保持稳定,最后快速增大,并在岩样应力-应变曲线斜率接近于0时达到最大值。 展开更多
关键词 层状岩石 各向异性 气体渗透率 有效孔隙率 常规三轴压缩 围压循环加卸载
下载PDF
双层圆钢管混凝土长柱压扭滞回性能试验
19
作者 周中一 庞新龙 +2 位作者 王涛 靳宇航 罗诒红 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第1期117-129,共13页
为研究双层圆钢管混凝土长柱在压、扭荷载作用下的力学性能,利用研制的Stewart六自由度加载平台,进行了两个普通圆钢管混凝土长柱和两个双层圆钢管混凝土长柱试件在纯扭、压扭作用下的低周往复试验。对比分析了各试件的承载力、扭转变... 为研究双层圆钢管混凝土长柱在压、扭荷载作用下的力学性能,利用研制的Stewart六自由度加载平台,进行了两个普通圆钢管混凝土长柱和两个双层圆钢管混凝土长柱试件在纯扭、压扭作用下的低周往复试验。对比分析了各试件的承载力、扭转变形、耗能、滞回性能,进行了有限元参数分析。研究表明:普通圆钢管混凝土长柱和双层圆钢管混凝土长柱均具有较好的抗扭能力;与普通圆钢管混凝土长柱相比,双层圆钢管混凝土长柱的初始刚度和承载力略有提升,滞回曲线更饱满,耗能能力和延性大幅提升;参数分析表明含钢率一定时,内层钢管径厚比越大,对抗扭越有利;一定范围内的轴向荷载,可提高钢管混凝土柱的抗扭能力。 展开更多
关键词 钢管混凝土 纯扭 压扭 拟静力往复加载 STEWART平台
下载PDF
SMA碟簧群的循环受压性能及简化模型
20
作者 赵秋红 孙泽旺 谭志伦 《工程力学》 EI CSCD 北大核心 2024年第7期163-175,共13页
该研究提出将多个形状记忆合金(SMA)碟簧片并联排列形成碟簧组,然后在碟簧组间加入垫片分隔、串联排列形成碟簧群,以提供更高的承载力及变形能力。采用有限元软件ABAQUS建立了一系列SMA碟簧群的三维精细化有限元模型,并进行非线性循环... 该研究提出将多个形状记忆合金(SMA)碟簧片并联排列形成碟簧组,然后在碟簧组间加入垫片分隔、串联排列形成碟簧群,以提供更高的承载力及变形能力。采用有限元软件ABAQUS建立了一系列SMA碟簧群的三维精细化有限元模型,并进行非线性循环受压分析。结果表明:与钢碟簧的“三角形”荷载-位移曲线相比,SMA碟簧群的荷载-位移曲线呈现鲜明的“旗帜形”特性,具有明显的正向及反向转变平台。随着碟簧片数的增加,碟簧组的总可恢复变形量基本不变,极限承载力及割线刚度近似成比例增加,而随着碟簧组数的增加,碟簧群的总可恢复变形量增加,极限承载力不变,割线刚度近似成比例降低。因此,可根据碟簧群总极限承载力及变形能力的需要,灵活调整碟簧片及碟簧组的数量及布置方式。碟簧组的各层碟簧片由于边界条件不同,应力分布存在明显差异,而变形量亦呈现两端大中间小的哑铃形分布模式,其中加载端碟簧片变形量最大,若超过极限变形量可能发生翻转失效,值得注意。提出了SMA碟簧群的简化模型,通过简化及精细模型的非线性循环受压分析,发现该简化模型的循环受压荷载-位移曲线与精细模型吻合良好,而计算效率提高约38倍。将SMA碟簧群应用于自复位NZ梁柱节点中,并对自复位钢框架进行了验证性的滞回分析。结果表明:采用SMA碟簧群的自复位钢框架最大侧移为4%时可完全复位,且二次刚度相比采用预应力钢绞线的传统自复位钢框架提高近100%,极限承载力提高70%。 展开更多
关键词 SMA碟簧 碟簧群 循环受压性能 简化模型 自复位钢框架
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部