期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Cyclic Oxidation Resistance of In718 Superalloy Treated by Laser Peening 被引量:1
1
作者 柏玉川 花银群 +4 位作者 RONG Zhen YE Yunxia XUE Qing LIU Haixia CHEN Ruifang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第4期808-812,共5页
The aim of this study was to improve the cyclic oxidation resistance of In718 superalloy by laser peening(LP). Specimens were treated by LP from one to three times, respectively. The cyclic oxidation tests at 900 ℃... The aim of this study was to improve the cyclic oxidation resistance of In718 superalloy by laser peening(LP). Specimens were treated by LP from one to three times, respectively. The cyclic oxidation tests at 900 ℃ for periods up to 2 h were conducted. Changes of the top surface morphology and microstructure were analyzed by scanning electron microscope (SEM), energy-dispersive spectra (EDS), transmission electron microscope (TEM) and X-ray diffraction technique (XRD), respectively. The weights were measured between the oxidation cycles to assess the oxidation of the specimens. The top surface microstructure after LP was characterized by highly tangled and dense dislocation arrangements and a high amount of twins. Protective oxidation layer was generated more quickly on the surface treated by LP. The average oxidation rate was about 50 % lower. A tiny homogeneous oxidation layer containing (Fe,Cr)2O3, NiCrO3 and Ni(A1,Cr)2O4 spinel was generated on the surface. The experimental results of cyclic oxidation tests show that specimens treated by LP have a better high temperature oxidation resistance, and the antistrip performance of the oxidation layer improves. Moreover, the effects of LP are strengthened with the increase of laser peening. 展开更多
关键词 cyclic oxidation resistance laser peening SUPERALLOY MICROSTRUCTURE
下载PDF
Si-Al COATING ON PURE MOLYBDENUM SUBSTRATE AND ITS CYCLIC OXIDATION BEHAVIOR
2
作者 F.S.Liu J.L.Xu C.G.Zhou S.K.Gong H.B.Xu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第5期672-676,共5页
The halide-activated pack cementation method is utilized to codeposit aluminum and silicon on Mo substrate. Emphasis is placed on the microstructure and elevated-temperature oxidation resistance of coatings. The resul... The halide-activated pack cementation method is utilized to codeposit aluminum and silicon on Mo substrate. Emphasis is placed on the microstructure and elevated-temperature oxidation resistance of coatings. The results show that hexagonal Mo(Si, Al)2 as a main phase and a little amount of the lower disilicide Mo5Si3 was formed on Mo substrate through the halide-activated pack cementation method. The resultant Si-Al coating on Mo substrate exhibits excellent cyclic oxidation resistance. The excellent cyclic oxidation resistance of the coatings is attributed to the formation of alumina on the coatings during the oxidation. 展开更多
关键词 Mo(Si Al)2 COATING CO-DEPOSITION cyclic oxidation resistance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部