We performed spectral analyses on the ages of 89 well-dated major geological events of the last 260 Myr from the recent geologic literature. These events include times of marine and non-marine extinctions,major ocean-...We performed spectral analyses on the ages of 89 well-dated major geological events of the last 260 Myr from the recent geologic literature. These events include times of marine and non-marine extinctions,major ocean-anoxic events, continental flood-basalt eruptions, sea-level fluctuations, global pulses of intraplate magmatism, and times of changes in seafloor-spreading rates and plate reorganizations. The aggregate of all 89 events shows ten clusters in the last 260 Myr, spaced at an average interval of ~ 26.9 Myr, and Fourier analysis of the data yields a spectral peak at 27.5 Myr at the ≥96% confidence level. A shorter period of ~ 8.9 Myr may also be significant in modulating the timing of geologic events.Our results suggest that global geologic events are generally correlated, and seem to come in pulses with an underlying ~ 27.5-Myr cycle. These cyclic pulses of tectonics and climate change may be the result of geophysical processes related to the dynamics of plate tectonics and mantle plumes, or might alternatively be paced by astronomical cycles associated with the Earth’s motions in the Solar System and the Galaxy.展开更多
Cyclic pressure pulsing with nitrogen is studied for hydraulically fractured wells in depleted reservoirs.A compositional simulation model is constructed to represent the hydraulic fractures through local-grid refinem...Cyclic pressure pulsing with nitrogen is studied for hydraulically fractured wells in depleted reservoirs.A compositional simulation model is constructed to represent the hydraulic fractures through local-grid refinement.The process is analyzed from both operational and reservoir/hydraulic-fracture perspectives.Key sensitivity parameters for the operational component are chosen as the injection rate,lengths of injection and soaking periods and the economic rate limit to shut-in the well.For the reservoir/hydraulic fracturing components,reservoir permeability,hydraulic fracture permeability,effective thickness and half-length are used.These parameters are varied at five levels.A full-factorial experimental design is utilized to run 1250 cases.The study shows that within the ranges studied,the gas-injection process is applied successfully for a 20-year project period with net present values based on the incremental recoveries greater than zero.It is observed that the cycle rate limit,injection and soaking periods must be optimized to maximize the efficiency.The simulation results are used to develop a neural network based proxy model that can be used as a screening tool for the process.The proxy model is validated with blind-cases with a correlation coefficient of 0.96.展开更多
In this paper, the problem of parameter estimation of the combined radar signal adopting chaotic pulse position modulation (CPPM) and linear frequency modulation (LFM), which can be widely used in electronic count...In this paper, the problem of parameter estimation of the combined radar signal adopting chaotic pulse position modulation (CPPM) and linear frequency modulation (LFM), which can be widely used in electronic countermeasures, is addressed. An approach is proposed to estimate the initial frequency and chirp rate of the combined signal by exploiting the second-order cyclostationarity of the intra-pulse signal. In addition, under the condition of the equal pulse width, the pulse repetition interval (PRI) of the combined signal is predicted using the low-order Volterra adaptive filter. Simulations demonstrate that the proposed cyclic autocorrelation Hough transform (CHT) algorithm is theoretically tolerant to additive white Gaussian noise. When the value of signal noise to ratio (SNR) is less than 4 dB, it can still estimate the intra-pulse parameters well. When SNR = 3 dB, a good prediction of the PRI sequence can be achieved by the Volterra adaptive filter algorithm, even only 100 training samples.展开更多
基金Research was partly funded by an NYU Research Challenge Fund Grant。
文摘We performed spectral analyses on the ages of 89 well-dated major geological events of the last 260 Myr from the recent geologic literature. These events include times of marine and non-marine extinctions,major ocean-anoxic events, continental flood-basalt eruptions, sea-level fluctuations, global pulses of intraplate magmatism, and times of changes in seafloor-spreading rates and plate reorganizations. The aggregate of all 89 events shows ten clusters in the last 260 Myr, spaced at an average interval of ~ 26.9 Myr, and Fourier analysis of the data yields a spectral peak at 27.5 Myr at the ≥96% confidence level. A shorter period of ~ 8.9 Myr may also be significant in modulating the timing of geologic events.Our results suggest that global geologic events are generally correlated, and seem to come in pulses with an underlying ~ 27.5-Myr cycle. These cyclic pulses of tectonics and climate change may be the result of geophysical processes related to the dynamics of plate tectonics and mantle plumes, or might alternatively be paced by astronomical cycles associated with the Earth’s motions in the Solar System and the Galaxy.
文摘Cyclic pressure pulsing with nitrogen is studied for hydraulically fractured wells in depleted reservoirs.A compositional simulation model is constructed to represent the hydraulic fractures through local-grid refinement.The process is analyzed from both operational and reservoir/hydraulic-fracture perspectives.Key sensitivity parameters for the operational component are chosen as the injection rate,lengths of injection and soaking periods and the economic rate limit to shut-in the well.For the reservoir/hydraulic fracturing components,reservoir permeability,hydraulic fracture permeability,effective thickness and half-length are used.These parameters are varied at five levels.A full-factorial experimental design is utilized to run 1250 cases.The study shows that within the ranges studied,the gas-injection process is applied successfully for a 20-year project period with net present values based on the incremental recoveries greater than zero.It is observed that the cycle rate limit,injection and soaking periods must be optimized to maximize the efficiency.The simulation results are used to develop a neural network based proxy model that can be used as a screening tool for the process.The proxy model is validated with blind-cases with a correlation coefficient of 0.96.
基金supported by the National Natural Science Foundation of China under Grant 61172116
文摘In this paper, the problem of parameter estimation of the combined radar signal adopting chaotic pulse position modulation (CPPM) and linear frequency modulation (LFM), which can be widely used in electronic countermeasures, is addressed. An approach is proposed to estimate the initial frequency and chirp rate of the combined signal by exploiting the second-order cyclostationarity of the intra-pulse signal. In addition, under the condition of the equal pulse width, the pulse repetition interval (PRI) of the combined signal is predicted using the low-order Volterra adaptive filter. Simulations demonstrate that the proposed cyclic autocorrelation Hough transform (CHT) algorithm is theoretically tolerant to additive white Gaussian noise. When the value of signal noise to ratio (SNR) is less than 4 dB, it can still estimate the intra-pulse parameters well. When SNR = 3 dB, a good prediction of the PRI sequence can be achieved by the Volterra adaptive filter algorithm, even only 100 training samples.