期刊文献+
共找到803篇文章
< 1 2 41 >
每页显示 20 50 100
Cyclic shear behavior of en-echelon joints under constant normal stiffness conditions 被引量:1
1
作者 Bin Wang Yujing Jiang +3 位作者 Qiangyong Zhang Hongbin Chen Richeng Liu Yuanchao Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3419-3436,共18页
To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)condit... To reveal the mechanism of shear failure of en-echelon joints under cyclic loading,such as during earthquakes,we conducted a series of cyclic shear tests of en-echelon joints under constant normal stiffness(CNS)conditions.We analyzed the evolution of shear stress,normal stress,stress path,dilatancy characteristics,and friction coefficient and revealed the failure mechanisms of en-echelon joints at different angles.The results show that the cyclic shear behavior of the en-echelon joints is closely related to the joint angle,with the shear strength at a positive angle exceeding that at a negative angle during shear cycles.As the number of cycles increases,the shear strength decreases rapidly,and the difference between the varying angles gradually decreases.Dilation occurs in the early shear cycles(1 and 2),while contraction is the main feature in later cycles(310).The friction coefficient decreases with the number of cycles and exhibits a more significant sensitivity to joint angles than shear cycles.The joint angle determines the asperities on the rupture surfaces and the block size,and thus determines the subsequent shear failure mode(block crushing and asperity degradation).At positive angles,block size is more greater and asperities on the rupture surface are smaller than at nonpositive angles.Therefore,the cyclic shear behavior is controlled by block crushing at positive angles and asperity degradation at negative angles. 展开更多
关键词 En-echelon joint cyclic shear tests shear stress Normal displacement Constant normal stiffness(CNS)
下载PDF
On the calibration of a shear stress criterion for rock joints to represent the full stress-strain profile
2
作者 Akram Deiminiat Jonathan D.Aubertin Yannic Ethier 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期379-392,共14页
Conventional numerical solutions developed to describe the geomechanical behavior of rock interfaces subjected to differential load emphasize peak and residual shear strengths.The detailed analysis of preand post-peak... Conventional numerical solutions developed to describe the geomechanical behavior of rock interfaces subjected to differential load emphasize peak and residual shear strengths.The detailed analysis of preand post-peak shear stress-displacement behavior is central to various time-dependent and dynamic rock mechanic problems such as rockbursts and structural instabilities in highly stressed conditions.The complete stress-displacement surface(CSDS)model was developed to describe analytically the pre-and post-peak behavior of rock interfaces under differential loads.Original formulations of the CSDS model required extensive curve-fitting iterations which limited its practical applicability and transparent integration into engineering tools.The present work proposes modifications to the CSDS model aimed at developing a comprehensive and modern calibration protocol to describe the complete shear stressdisplacement behavior of rock interfaces under differential loads.The proposed update to the CSDS model incorporates the concept of mobilized shear strength to enhance the post-peak formulations.Barton’s concepts of joint roughness coefficient(JRC)and joint compressive strength(JCS)are incorporated to facilitate empirical estimations for peak shear stress and normal closure relations.Triaxial/uniaxial compression test and direct shear test results are used to validate the updated model and exemplify the proposed calibration method.The results illustrate that the revised model successfully predicts the post-peak and complete axial stressestrain and shear stressedisplacement curves for rock joints. 展开更多
关键词 Full shear profile Post-peak shear behavior Rock joint Joint roughness coefficient(JRC) Axial stress-strain curve
下载PDF
Experimental investigation on shear strength deterioration at the interface between different rock types under cyclic loading
3
作者 Qiong Wu Zhiqi Liu +6 位作者 Huiming Tang Liangqing Wang Xiaoxue Huo Zhen Cui Shiyu Li Bo Zhang Zhiwei Lin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3063-3079,共17页
The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake... The shear strength deterioration of bedding planes between different rock types induced by cyclic loading is vital to reasonably evaluate the stability of soft and hard interbedded bedding rock slopes under earthquake;however,rare work has been devoted to this subject due to lack of attention.In this study,experimental investigations on shear strength weakening of discontinuities with different joint wall material(DDJM)under cyclic loading were conducted by taking the interface between siltstone and mudstone in the Shaba slope of Yunnan Province,China as research objects.A total of 99 pairs of similar material samples of DDJM(81 pairs)and discontinuities with identical joint wall material(DIJM)(18 pairs)were fabricated by inserting plates,engraved with typical surface morphology obtained by performing three-dimensional laser scanning on natural DDJMs sampled from field,into mold boxes.Cyclic shear tests were conducted on these samples to study their shear strength changes with the cyclic number considering the effects of normal stress,joint surface morphology,shear displacement amplitude and shear rate.The results indicate that the shear stress vs.shear displacement curves under each shear cycle and the peak shear strength vs.cyclic number curves of the studied DDJMs are between those of DIJMs with siltstone and mudstone,while closer to those of DIJMs with mudstone.The peak shear strengths of DDJMs exhibit an initial rapid decline followed by a gradual decrease with the cyclic number and the decrease rate varies from 6%to 55.9%for samples with varied surface morphology under different testing conditions.The normal stress,joint surface morphology,shear displacement amplitude and shear rate collectively influence the shear strength deterioration of DDJM under cyclic shear loading,with the degree of influence being greater for larger normal stress,rougher surface morphology,larger shear displacement amplitude and faster shear rate. 展开更多
关键词 Discontinuities with different joint wall material(DDJM) Discontinuities with identical joint wall material(DIJM) cyclic shear test shear strength deterioration Joint surface morphology shear displacement amplitude shear rate Normal stress
下载PDF
Failure transition of shear-to-dilation band of rock salt under triaxial stresses 被引量:3
4
作者 Jianfeng Liu Xiaosong Qiu +3 位作者 Jianxiong Yang Chao Liang Jingjing Dai Yu Bian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期56-64,共9页
Great potential of underground gas/energy storage in salt caverns seems to be a promising solution to support renewable energy.In the underground storage method,the operating cycle unfortunately may reach up to daily ... Great potential of underground gas/energy storage in salt caverns seems to be a promising solution to support renewable energy.In the underground storage method,the operating cycle unfortunately may reach up to daily or even hourly,which generates complicated pressures on the salt cavern.Furthermore,the mechanical behavior of rock salt may change and present distinct failure characteristics under different stress states,which affects the performance of salt cavern during the time period of full service.To reproduce a similar loading condition on the cavern surrounding rock mass,the cyclic triaxial loading/unloading tests are performed on the rock salt to explore the mechanical transition behavior and failure characteristics under different confinement.Experimental results show that the rock salt samples pre-sent a diffused shear failure band with significant bulges at certain locations in low confining pressure conditions(e.g.5 MPa,10 MPa and 15 MPa),which is closely related to crystal misorientation and grain boundary sliding.Under the elevated confinement(e.g.20 MPa,30 MPa and 40 MPa),the dilation band dominates the failure mechanism,where the large-size halite crystals are crushed to be smaller size and new pores are developing.The failure transition mechanism revealed in the paper provides additional insight into the mechanical performance of salt caverns influenced by complicated stress states. 展开更多
关键词 Rock salt cyclic mechanical loading shear band Dilation band Underground gas storage(UGS)
下载PDF
Experimental Studies on Cyclic Shear Behavior of Steel-Clay Interface Under Constant Normal Load
5
作者 YU Shi-wen WANG Jie +1 位作者 LIU Jun-wei WANG Teng 《China Ocean Engineering》 SCIE EI CSCD 2023年第3期519-524,共6页
The degradation of the shear stress between pile-clay interface caused by undrained cyclic jacking affects the jacking force.A series of large displacement monotonic shear,cyclic shear and post-cyclic monotonic steel ... The degradation of the shear stress between pile-clay interface caused by undrained cyclic jacking affects the jacking force.A series of large displacement monotonic shear,cyclic shear and post-cyclic monotonic steel plate-clay interface shear te sts were performed under the constant normal load(CNL)condition to inve stigate the effects of normal stre ss,cyclic amplitude,and number of cycles on a steel plate-clay interface using the GDS multi-function interface shear tester.Based on the experimental results,in monotonic shear tests,change of shear stress took place in the specimen,the shear stress rapidly reached the peak value at shear displacement of 1 mm,and then abruptly decreased to the residual value.In cyclic shear te sts,accumulated displacement was a better parameter to describe the soil degradation characteristics,and the degradation degree of shear stress became greater with the increasing of normal stress and accumulated displacement.Shear stress in post-cyclic monotonic shear tests did not generate a peak value and was lower than that in monotonic shear tests under the same normal stress.The soil was completely disturbed and reached the residual strength when the cumulative displacement approached 6 m.An empirical equation to evaluate shear stress degradation mechanism was formulated and the procedure of parameter identification was presented. 展开更多
关键词 cyclic shear steel-clay interface constant normal load cumulative displacement residual strength
下载PDF
Assessment of liquefaction potential based on shear wave velocity:Strain energy approach
6
作者 Mohammad Hassan Baziar Mahdi Alibolandi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3733-3745,共13页
Liquefaction assessment based on strain energy is significantly superior to conventional stress-based methods.The main purpose of the present study is to investigate the correlation between shear wave velocity and str... Liquefaction assessment based on strain energy is significantly superior to conventional stress-based methods.The main purpose of the present study is to investigate the correlation between shear wave velocity and strain energy capacity of silty sands.The dissipated energy until liquefaction occurs was calculated by analyzing the results of three series of comprehensive cyclic direct simple shear and triaxial tests on Ottawa F65,Nevada,and Firoozkuh sands with varying silt content by weight and relative densities.Additionally,the shear wave velocity of each series was obtained using bender element or resonant column tests.Consequently,for the first time,a liquefaction triggering criterion,relating to effective overburden normalized liquefaction capacity energy(WL=s’c)to effective overburden stresscorrected shear wave velocity(eVs1)has been introduced.The accuracy of the proposed criteria was evaluated using in situ data.The results confirm the ability of shear wave velocity as a distinguishing parameter for separating liquefied and non-liquefied soils when it is calculated against liquefaction capacity energy(WL=s’c).However,the proposed WL=s’c-Vs1 curve,similar to previously proposed cyclic resistance ratio(CRR)-Vs1 relationships,should be used conservatively for fields vulnerable to liquefaction-induced lateral spreading. 展开更多
关键词 LIQUEFACTION Strain energy capacity shear wave velocity cyclic triaxial test cyclic direct simple shear test Resonant column test Bender element test
下载PDF
The Effect of Preloading on the Cyclic Liquefaction Strength Measured in the Laboratory
7
作者 Konstantinos Stamatopoulos 《Journal of Civil Engineering and Architecture》 2024年第6期269-275,共7页
The effect of preloading on the liquefaction cyclic strength was investigated by cyclic shear tests where horizontal shear stress oscillated about a zero mean value on sands with varying fines content and at varying p... The effect of preloading on the liquefaction cyclic strength was investigated by cyclic shear tests where horizontal shear stress oscillated about a zero mean value on sands with varying fines content and at varying prestress ratios, densities and verticalstresses. Test results showed a marked increase of the cyclic soil strength with the prestress ratio. The effect is more pronounced for the looser specimens. An empirical expression predicting this effect is proposed. This expression is validated from results of a field test. 展开更多
关键词 cyclic liquefaction shear stress field test
下载PDF
Effect of rock joint roughness on its cyclic shear behavior 被引量:16
8
作者 S.M.Mahdi Niktabar K.Seshagiri Rao Amit Kumar Shrivastava 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第6期1071-1084,共14页
Rock joints are often subjected to dynamic loads induced by earthquake and blasting during mining and rock cutting. Hence, cyclic shear load can be induced along the joints and it is important to evaluate the shear be... Rock joints are often subjected to dynamic loads induced by earthquake and blasting during mining and rock cutting. Hence, cyclic shear load can be induced along the joints and it is important to evaluate the shear behavior of rock joint under this condition. In the present study, synthetic rock joints were prepared with plaster of Paris(Po P). Regular joints were simulated by keeping regular asperity with asperity angles of 15°-15° and 30°-30°, and irregular rock joints which are closer to natural joints were replicated by keeping the asperity angles of 15°-30° and 15°-45°. The sample size and amplitude of roughness were kept the same for both regular and irregular joints which were 298 mm×298 mm×125 mm and 5 mm, respectively. Shear test was performed on these joints using a large-scale direct shear testing machine by keeping the frequency and amplitude of shear load under constant cyclic condition with different normal stress values. As expected, the shear strength of rock joints increased with the increases in the asperity angle and normal load during the first cycle of shearing or static load. With the increase of the number of shear cycles, the shear strength decreased for all the asperity angles but the rate of reduction was more in case of high asperity angles. Test results indicated that shear strength of irregular joints was higher than that of regular joints at different cycles of shearing at low normal stress. Shearing and degradation of joint asperities on regular joints were the same between loading and unloading, but different for irregular joints. Shear strength and joint degradation were more significant on the slope of asperity with higher angles on the irregular joint until two angles of asperities became equal during the cycle of shearing and it started behaving like regular joints for subsequent cycles. 展开更多
关键词 cyclic shear test shear behavior shear strength Regular joint Irregular joint Joint dilation Asperity degradation
下载PDF
Post-fire cyclic behavior of reinforced concrete shear walls 被引量:5
9
作者 刘桂荣 宋玉普 曲福来 《Journal of Central South University》 SCIE EI CAS 2010年第5期1103-1108,共6页
The effects of fire exposure,reinforcement ratio and the presence of axial load under fire on the seismic behavior of reinforced concrete(RC) shear walls were investigated.Five RC shear walls were tested under low cyc... The effects of fire exposure,reinforcement ratio and the presence of axial load under fire on the seismic behavior of reinforced concrete(RC) shear walls were investigated.Five RC shear walls were tested under low cyclic loading.Prior to the cyclic test,three specimens were exposed to fire and two of them were also subjected to a constant axial load.Test results indicate that the ultimate load of the specimen with lower reinforcement ratio is reduced by 15.8%after exposure to elevated temperatures.While the reductions in the energy dissipation and initial stiffness are 59.2%and 51.8%,respectively,which are much higher than those in the ultimate load.However,this deterioration can be slowed down by properly increasing reinforcement due to the strength and stiffness recovery of steel bars after cooling.In addition,the combined action of elevated temperatures and axial load results in more energy dissipation than the action of fire exposure alone. 展开更多
关键词 shear wall reinforced concrete post-fire seismic behavior low cyclic loading
下载PDF
Probabilistic characterization of cyclic shear modulus reduction for normally to moderately over-consolidated clays 被引量:3
10
作者 Iok-Tong Ng Ka-Veng Yuen Ngai-Kuan Lao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第3期495-508,共14页
Evaluation of the cyclic shear modulus of soils is a crucial but challenging task for many geotechnical earthquake engineering and soil dynamic issues. Improper determination of this property unnecessarily drives up d... Evaluation of the cyclic shear modulus of soils is a crucial but challenging task for many geotechnical earthquake engineering and soil dynamic issues. Improper determination of this property unnecessarily drives up design and maintenance costs or even leads to the construction of unsafe structures. Due to the complexities involved in the direct measurement, empirical curves for estimating the cyclic shear modulus have been commonly adopted in practice for simplicity and economical considerations. However, a systematic and robust approach for formulating a reliable model and empirical curve for cyclic shear modulus prediction for clayey soils is still lacking. In this study, the Bayesian model class selection approach is utilized to identify the most significant soil parameters affecting the normalized cyclic shear modulus and a reliable predictive model for normally to moderately over-consolidated clays is proposed. Results show that the predictability and reliability of the proposed model out performs the well-known empirical models. Finally, a new design chart is established for practical usage. 展开更多
关键词 Bayesian analysis cyclic shear modulus empirical model geotechnical earthquake engineering normally tomoderately over-consolidated clays
下载PDF
Experimental study of coal fracture dynamics under the influence of cyclic freezing-thawing using shear elastic waves 被引量:3
11
作者 Petr V.Nikolenko Svetlana A.Epshtein +1 位作者 Vladimir L.Shkuratnik Polina S.Anufrenkova 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第4期562-574,共13页
Cyclic freezing-thawing can lead to fracture development in coal,affecting its mechanical and consumer properties.To study crack formations in coal,an ultrasonic sounding method using shear polarized waves was propose... Cyclic freezing-thawing can lead to fracture development in coal,affecting its mechanical and consumer properties.To study crack formations in coal,an ultrasonic sounding method using shear polarized waves was proposed.Samples of three coal types(anthracite,lignite and hard coal)were tested.The research results show that,in contrast to the shear wave velocity,the shear wave amplitude is extremely sensitive to the formation of new cracks at the early stages of cyclic freezing-thawing.Tests also show an inverse correlation between coal compressive strength and its tendency to form cracks under temperature impacts;shear wave attenuation increases more sharply in high-rank coals after the first freezing cycle.Spectral analysis of the received signals also confirmed significant crack formation in anthracite after the first freeze-thaw cycle.The initial anisotropy was determined,and its decrease with an increase in the number of freeze-thaw cycles was shown.The data obtained forms an experimental basis for the development of new approaches to preserve coal consumer properties during storage and transportation under severe natural and climatic conditions. 展开更多
关键词 COAL cyclic freezing-thawing ULTRASONIC shear wave Fracture dynamics
下载PDF
Numerical analysis of loess and weak intercalated layer failure behavior under direct shearing and cyclic loading 被引量:3
12
作者 ZHANG Ze-lin WANG Tao 《Journal of Mountain Science》 SCIE CSCD 2020年第11期2796-2815,共20页
The mechanical behavior of the joints inside a loess layer is greatly important in weak intercalation studies owing to its involvement in a wide range of landslides in the loess region in China.The shear behavior of t... The mechanical behavior of the joints inside a loess layer is greatly important in weak intercalation studies owing to its involvement in a wide range of landslides in the loess region in China.The shear behavior of the joints in the loess stratum during direct shear and cyclic loadings was investigated using the PFC2D discrete element software.Loess mudstone and mudstone with weak intercalated layer materials were subjected to direct testing,and cyclic shear tests were conducted with consideration to the influence of normal stress and shear velocity.The macroscopic properties and damage patterns were obtained for six numerical configurations;namely,loess-weathered mudstone with 0°,10°,and-10°joints and weathered mudstone with 0°,10°,and-10°weak intercalated layers.The numerical test results revealed that,in the direct shear tests,the shear stress and shear displacement of the samples increased with the normal stress.In the cyclic shear tests with a total cycle number N=20,the shear stress-shear strain curve of the six different configurations exhibited a hysteresis loop.The numerical tests also revealed that,under cyclic shear,the normal stress and shear velocity affected the shear strength.The degree of damage increased as the shear velocity decreased from 0.1 mm/s to 0.005 mm/s for all six numerical configurations.Compared with the damage pattern of the direct shear tests,the damage of the cyclic shear tests mainly comprised shear cracks and fractures,some shaking consolidation settlement and fewer shear strain occurred around the joints.In the direct shear tests,more compression cracks and fractures occurred in the samples.The damage mainly developed along the joints,and shearing-off damage occurred.The results obtained by this study further elucidate the failure mechanism and microscopic damage response of the joints in the loess stratum in Northwest China. 展开更多
关键词 LOESS MUDSTONE Weak intercalated layer Direct shear test cyclic shear test PFC2D
下载PDF
Cyclic Shearing Deformation Behavior of Saturated Clays 被引量:2
13
作者 QI Jianfeng LUAN Maotian +2 位作者 FENG Xiuli MA Tailei NIE Ying 《Journal of Ocean University of China》 SCIE CAS 2007年第4期413-420,共8页
The apparatus for static and dynamic universal triaxial and torsional shear soil testing is employed to perform stress-controlled cyclic single-direction torsional shear tests and two-direction coupled shear tests und... The apparatus for static and dynamic universal triaxial and torsional shear soil testing is employed to perform stress-controlled cyclic single-direction torsional shear tests and two-direction coupled shear tests under unconsolidated-undrained conditions. Through a series of tests on saturated clay, the effects of initial shear stress and stress reversal on the clay’s strain-stress behavior are examined, and the behavior of pore water pressure is studied. The experimental results indicate that the patterns of stress-strain relations are distinctly influenced by the initial shear stress in the cyclic single-direction shear tests. When the initial shear stress is large and no stress reversal occurs, the predominant deformation behavior is characterized by an accumulative effect. When the initial shear stress is zero and symmetrical cyclic stress occurs, the predominant deformation behavior is characterized by a cyclic effect. The pore water pressure fluctuates around the confining pressure with the increase of cycle number. It seems that the fluctuating amplitude increases with the increase of the cyclic stress. But a buildup of pore water pressure does not occur. The de- formations of clay samples under the complex initial and the cyclic coupled stress conditions include the normal deviatoric deforma- tion and horizontal shear deformation, the average deformation and cyclic deformation. A general strain failure criterion taking into account these deformations is recommended and is proved more stable and suitable compared to the strain failure criteria currently used. 展开更多
关键词 cyclic stress complex stress state saturated clay stress-strain relations failure criterion
下载PDF
Experimental study of seismic cyclic loading effects on small strain shear modulus of saturated sands
14
作者 周燕国 陈云敏 黄博 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第3期229-236,共8页
The seismic loading on saturated soil deposits induces a decrease in effective stress and a rearrangement of the soil-particle structure, which may both lead to a degradation in undrained stiffness and strength of soi... The seismic loading on saturated soil deposits induces a decrease in effective stress and a rearrangement of the soil-particle structure, which may both lead to a degradation in undrained stiffness and strength of soils. Only the effective stress influence on small strain shear modulus Gmax is considered in seismic response analysis nowadays, and the cyclic shearing induced fabric changes of the soil-particle structure are neglected. In this paper, undrained cyclic triaxial tests were conducted on saturated sands with the shear wave velocity measured by bender element, to study the influences of seismic loading on Gmax. And Gmax of samples without cyclic loading effects was also investigated for comparison. The test results indicated that Gmax under cyclic loading effects is lower than that without such effects at the same effective stress, and also well correlated with the effective stress variation. Hence it is necessary to reinvestigate the determination of Gmax in seismic response analysis carefully to predict the ground responses during earthquake more reasonably. 展开更多
关键词 cyclic loading Seismic response analysis Undrained cyclic triaxial test Small strain shear modulus Effective stress Bender element Soil-particle structure
下载PDF
Cyclic testing of moment-shear force interaction in reinforced concrete shear wall substructures
15
作者 Ke Du Huan Luo Jingjiang Sun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第2期465-481,共17页
Previous quasi-static cyclic tests of shear walls,which routinely used an incremental lateral displacement test protocol with a constant axial load,failed to reflect the character of moment-shear force interaction of ... Previous quasi-static cyclic tests of shear walls,which routinely used an incremental lateral displacement test protocol with a constant axial load,failed to reflect the character of moment-shear force interaction of prototype buildings.To study the effect of the moment-shear force interaction on the seismic performance of shear walls,three identical 2-story shear wall specimens with different loading patterns were constructed at 1/2 scale,to represent the lower portion of an 11-story high-rise building,and were tested under reversed cyclic loads.The axial force,shear force and bending moment were simultaneously applied to simulate the effects of gravity loads and earthquake excitations on the prototype.The axial force and bending moment delivered from the upper structure were applied to the top of the specimens by two vertical actuators,and the shear force was applied to the specimens by two horizontal actuators.A mixed force-displacement control test program was adopted to ensure that the bending moment and the lateral shear were increased proportionally.The experimental results show that the moment-shear force interaction had a significant effect on the failure pattern,hysteretic characteristics,ductility and energy dissipation of the specimens.It is recommended that moment-shear force interaction should be considered in the loading condition of RC shear wall substructures cyclic tests. 展开更多
关键词 shear walls QUASI-STATIC cyclic TEST moment-shear force INTERACTION COLLAPSE TEST hysteretic curves forcedisplacement mixed control TEST
下载PDF
Shear Behavior of Novel Prestressed Concrete Beam Subjected to Monotonic and Cyclic Loading
16
作者 余芳 姚大立 +1 位作者 贾金青 吴锋 《Transactions of Tianjin University》 EI CAS 2014年第4期257-265,共9页
Prestressed steel ultrahigh-strength reinforced concrete(PSURC) beam is a new type of prestressed concrete beam, which not only has a considerable compressive strength attributed to the ultrahigh strength concrete, bu... Prestressed steel ultrahigh-strength reinforced concrete(PSURC) beam is a new type of prestressed concrete beam, which not only has a considerable compressive strength attributed to the ultrahigh strength concrete, but also ensures a certain degree of ductility at failure due to the existence of structural steel. Five of these beams were monotonically tested until shear failure to investigate the static shear performance including the failure pattern, loaddeflection behavior, shear capacity, shear crack width and shear ductility. The experimental results show that these beams have superior shear capacity, crack control ability and shear ductility. To study the shear performance under repeated overloading, seven PSURC beams were loaded in cyclic test simultaneously. The overall shear performance of cycled beams is similar to that of uncycled beams at low load level but different at high load level. The shear capacity and crack control ability of cycled beams at high load level are reduced, whereas the shear ductility is improved. In addition, the influences of variables including the degree of prestress, stirrup ratio and load level on the shear performance of both uncycled and cycled beams were also discussed and compared, respectively. 展开更多
关键词 prestressed concrete beam structural steel ultrahigh strength concrete shear behavior cyclic loading
下载PDF
Cyclic Shear Tests on Key Connection Joints of Modularized Constructions
17
作者 Deshen Chen Xiaofei Jin +3 位作者 Huajie Wang Hongliang Qian Deci Chang Feng Fan 《Journal of Harbin Institute of Technology(New Series)》 CAS 2022年第3期13-20,共8页
Modularized construction is a new type of prefabricated building system with green environmental protection and excellent performance. There are few studies on the seismic performance of its key connection joint. This... Modularized construction is a new type of prefabricated building system with green environmental protection and excellent performance. There are few studies on the seismic performance of its key connection joint. This paper presents a new type of assembled connection joint for the high-rise modularized construction. Cyclic shear tests of full-scale joints were carried out, and the key indexes of their seismic performances including the hysteretic performance, ductility, and energy dissipation capacity were analyzed and obtained. The results show that the hysteresis loops of longitudinal and lateral cyclic shear tests were both plump in shapes. The ductility coefficients were 4.54 and 4.98, and the energy dissipation coefficients were 1.83 and 1.43, respectively. The test joint had good ductility and energy dissipation capacity. The positions of yield failure of specimens were mainly concentrated in the connection areas between the column and short beam or end-plate. The research can provide the technical reference for the seismic design and engineering application of related modularized constructions. 展开更多
关键词 modularized construction assembled connection joint cyclic shear test seismic performance
下载PDF
纤维织物增强高延性混凝土加固RC短柱抗剪性能试验研究 被引量:2
18
作者 邓明科 雷恒 +2 位作者 张雨顺 郭莉英 张伟 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期79-89,共11页
为研究纤维织物增强高延性混凝土(TR-HDC)加固钢筋混凝土短柱的抗剪性能,设计了6根钢筋混凝土柱,包括2个对比柱和4个TR-HDC加固柱.通过低周反复荷载试验,对比分析剪跨比、纤维织物层数对试件破坏形态、变形、承载力和耗能能力的影响.结... 为研究纤维织物增强高延性混凝土(TR-HDC)加固钢筋混凝土短柱的抗剪性能,设计了6根钢筋混凝土柱,包括2个对比柱和4个TR-HDC加固柱.通过低周反复荷载试验,对比分析剪跨比、纤维织物层数对试件破坏形态、变形、承载力和耗能能力的影响.结果表明:采用TR-HDC加固钢筋混凝土短柱,可显著提高其抗剪承载力;TR-HDC与原混凝土柱协同工作性能良好,加固后的混凝土柱的变形、承载力和耗能能力明显提高;增加纤维织物的层数对钢筋混凝土短柱的抗剪承载力提高幅度较小,但可大幅增强柱的耗能和变形能力;剪跨比较大时,更有利于发挥TR-HDC加固材料的力学性能.基于桁架-拱模型,提出TR-HDC加固钢筋混凝土短柱的抗剪承载力计算方法,计算结果较准确. 展开更多
关键词 低周反复荷载 纤维织物增强高延性混凝土 加固 RC短柱 抗剪承载力
下载PDF
装配式轻钢框架-轻钢骨架轻混凝土墙板结构抗震性能 被引量:4
19
作者 曹万林 杨兆源 《北京工业大学学报》 CAS CSCD 北大核心 2024年第2期165-179,共15页
为研究装配式轻钢框架-轻钢骨架轻混凝土墙板结构抗震性能,对1个足尺轻钢框架结构试件和3个足尺轻钢框架-轻钢骨架轻混凝土墙板结构试件进行了低周反复荷载下的抗震性能试验及理论分析,试件变量包括:2种装配构造,即内嵌式装配墙板、外... 为研究装配式轻钢框架-轻钢骨架轻混凝土墙板结构抗震性能,对1个足尺轻钢框架结构试件和3个足尺轻钢框架-轻钢骨架轻混凝土墙板结构试件进行了低周反复荷载下的抗震性能试验及理论分析,试件变量包括:2种装配构造,即内嵌式装配墙板、外贴式装配墙板;2种轻钢骨架轻混凝土墙板,即框架式轻钢骨架轻混凝土墙板、桁架式轻钢骨架轻混凝土墙板。研究了各试件的破坏特征和损伤演化过程,分析了结构滞回特性、承载力、变形能力、刚度退化、耗能性能和应变。结果表明:装配式轻钢框架-轻钢骨架轻混凝土墙板结构共同工作性能良好,其水平承载力相比轻钢框架提高了204.7%~210.4%,抗侧刚度提高了257.3%~512.5%,结构变形及耗能能力有显著提高;内嵌墙板的自攻钉连接构造以及外贴墙板的螺栓连接构造传力性能可靠,结构具备2道抗震防线的受力特征;基于简化塑性分析模型以及拉压杆软化桁架模型,对试件承载力进行了计算,计算结果与试验符合较好。 展开更多
关键词 装配式组合结构 轻钢框架 轻钢骨架轻混凝土墙板 抗震性能 低周反复荷载试验 承载力计算
下载PDF
水平双轴加载下带翼缘RC 剪力墙抗震性能试验研究
20
作者 王斌 吴梦臻 +2 位作者 史庆轩 蔡文哲 弓欢学 《振动工程学报》 EI CSCD 北大核心 2024年第4期588-600,共13页
为了揭示双轴耦合效应对不同截面形式带翼缘RC剪力墙多维抗震性能的影响,对3个T形截面和2个L形截面RC剪力墙分别沿其主轴方向进行了低周往复加载试验,对比分析了水平单、双轴加载下带翼缘RC剪力墙的破坏特征、滞回特性、承载力、延性、... 为了揭示双轴耦合效应对不同截面形式带翼缘RC剪力墙多维抗震性能的影响,对3个T形截面和2个L形截面RC剪力墙分别沿其主轴方向进行了低周往复加载试验,对比分析了水平单、双轴加载下带翼缘RC剪力墙的破坏特征、滞回特性、承载力、延性、极限位移角、耗能能力与钢筋应变。研究表明:T形墙和L形墙的破坏均呈现出明显的非对称性,即破坏集中于墙肢自由端,双轴加载加重了带翼缘RC剪力墙的开裂和损伤程度,且易引起剪力墙局部损伤集中;与单轴加载相比,双轴加载不仅削弱了带翼缘RC剪力墙各受力方向的承载力与变形能力、增大了腹板塑性铰区弯曲变形在总变形中的占比、加速了耗能进程、降低了单个方向的耗能能力,并且增大了腹板与翼缘竖向钢筋的应变以及翼缘的剪力滞后效应;双轴耦合效应对L形墙损伤的影响较T形墙更为显著,并导致双轴加载下L形墙各抗震性能指标的衰减程度大于T形墙。考虑双轴受力后,中国抗震规范关于RC剪力墙层间位移角的限值仍较为安全,但安全冗余度降低。 展开更多
关键词 剪力墙 抗震性能 双轴加载 低周往复加载试验 损伤机理
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部