期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
Enhancing capacitive deionization performance and cyclic stability of nitrogen-doped activated carbon by the electro-oxidation of anode materials
1
作者 Xiaona Liu Baohua Zhao +6 位作者 Yanyun Hu Luyue Huang Jingxiang Ma Shuqiao Xu Zhonglin Xia Xiaoying Ma Shuangchen Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期23-33,共11页
Electrode materials with high desalination capacity and long-term cyclic stability are the focus of capacitive deionization(CDI) community. Understanding the causes of performance decay in traditional carbons is cruci... Electrode materials with high desalination capacity and long-term cyclic stability are the focus of capacitive deionization(CDI) community. Understanding the causes of performance decay in traditional carbons is crucial to design a high-performance material. Based on this, here, nitrogen-doped activated carbon(NAC) was prepared by pyrolyzing the blend of activated carbon powder(ACP) and melamine for the positive electrode of asymmetric CDI. By comparing the indicators changes such as conductivity, salt adsorption capacity, pH, and charge efficiency of the symmetrical ACP-ACP device to the asymmetric ACP-NAC device under different CDI cycles, as well as the changes of the electrochemical properties of anode and cathode materials after long-term operation, the reasons for the decline of the stability of the CDI performance were revealed. It was found that the carboxyl functional groups generated by the electro-oxidation of anode carbon materials make the anode zero-charge potential(E_(pzc)) shift positively,which results in the uneven distribution of potential windows of CDI units and affects the adsorption capacity. Furthermore, by understanding the electron density on C atoms surrounding the N atoms, we attribute the increased cyclic stability to the enhanced negativity of the charge of carbon atoms adjacent to quaternary-N and pyridinic-oxide-N. 展开更多
关键词 Anodic oxidation Capacitive deionization cyclic stability N-DOPING
下载PDF
Highly improved cyclic stability of Ni-rich/Li batteries with succinic anhydride as electrolyte additive and underlying mechanism
2
作者 Shu Yang Guanjie Li +7 位作者 Xiaoyan Lin Changyong Mo Xianggui Zhou Lijiao Quan Kuan Zhou Suli Li Hai Wang Weishan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期80-90,I0003,共12页
Lithium-metal battery based on Ni-rich cathode provides high energy density but presents poor cyclic stability due to the unstable electrode/electrolyte interfaces on both cathode and anode.In this work,we report a ne... Lithium-metal battery based on Ni-rich cathode provides high energy density but presents poor cyclic stability due to the unstable electrode/electrolyte interfaces on both cathode and anode.In this work,we report a new strategy to address this issue.It is found that the cyclic stability of Ni-rich/Li battery can be significantly improved by using succinic anhydride(SA) as an electrolyte additive.Specifically,the capacity retention of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)/Li cell is improved from 14% to 83% after 200cycles at 1 C between 3.0 and 4.35 V by applying 5% SA.The underlying mechanism of SA contribution is understood by comparing the effects of malic anhydride(MA) and citraconic anhydride(CA), both of which share a similar molecular structure to SA but show different effects.On anode side,SA can but MA and CA cannot form a protective solid electrolyte interphase(SEI) on Li anode.On cathode side,three anhydrides can suppress the formation of hydrogen fluoride from electrolyte oxidation decomposition,but SA behaves best.Typically,MA shows adverse effects on the interface stability of Li anode and NCM811 cathode,which originates from its high acidity.Though the acidity of MA can be mitigated by substituting a methyl for one H atom at its C=C bond,the substituent CA cannot compete with SA in cyclic stability improvement of the cell,because the SEI resulting from CA is not as robust as that from SA,which is related to the binding energy of the SEI components.This understanding reveals the importance of the electrolyte acidity on the Ni-rich cathode and the robustness of the SEI on Li anode,which is helpful for rationally designing new electrolyte additives to further improve the cyclic stability of high-energydensity Ni-rich/Li batteries. 展开更多
关键词 Lithium-metal battery Ni-rich cathode Electrolyte additives Succinic Anhydride cyclic stability
下载PDF
Pseudo-Static Elasto-Plastic Cyclic Creep Model and Cyclic Stability of Offshore Soft Foundation 被引量:4
3
作者 王建华 刘振纹 秦崇仁 《China Ocean Engineering》 SCIE EI 1999年第3期247-256,共10页
The accumulative shear deformation of soft clays under cyclic loads is considered as pseudo-static creep. A pseudo-static elasto-plastic cyclic creep model is developed based on the visco-elasto-plastic theory. The pa... The accumulative shear deformation of soft clays under cyclic loads is considered as pseudo-static creep. A pseudo-static elasto-plastic cyclic creep model is developed based on the visco-elasto-plastic theory. The parameters in the model are determined by cyclic triaxial soil tests. A method for analyzing the stability of offshore soft foundation under wave loads is given by combining the model with pseudo-static creep analysis. An example is analyzed by the method. The results show that the horizontal and vertical stability of foundations under wave loads can be analyzed by it and the analytical results are qualitatively consistent with the observed failure modes of shallow foundations. 展开更多
关键词 cyclic stability of soft foundation soft constitutive cyclic constitutive relation of soft soils offshore engineering soil dynamics
下载PDF
Cyclic Stability of Superelasticity in[001]‑Oriented Quenched Ni_(44)Fe_(19)Ga_(27)Co_(10)and Ni_(39)Fe_(19)Ga_(27)Co_(15)Single Crystals
4
作者 E.E.Timofeeva E.Yu.Panchenko +7 位作者 A.S.Eftifeeva A.I.Tagiltsev N.Yu.Surikov A.B.Tokhmetova E.I.Yanushonite M.V.Zherdeva I.Karaman Yu.I.Chumlyakov 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2023年第4期650-660,共11页
The study of the influence of the cobalt content on the cyclic stability of superelasticity(SE)was carried out in quenched Ni_(44)Fe_(19)Ga_(27)Co_(10)and Ni_(39)Fe_(19)Ga_(27)Co_(15)(at.%)single crystals under compre... The study of the influence of the cobalt content on the cyclic stability of superelasticity(SE)was carried out in quenched Ni_(44)Fe_(19)Ga_(27)Co_(10)and Ni_(39)Fe_(19)Ga_(27)Co_(15)(at.%)single crystals under compression.It is shown that an increase in the cobalt content leads to embrittlement of the material and a decrease in the cyclic stability of SE.In Ni_(44)Fe_(19)Ga_(27)Co_(10)single crystals,during the first 20 loading/unloading cycles,the elastic energy relaxation occurs along with the formation of dislocations and residual martensite,which leads to a decrease in critical stress of martensite formation and in stress hysteresis.During the next 80 cycles,SE becomes more stable.Stabilization is accompanied by a slight change in the parameters.On the contrary,Ni_(39)Fe_(19)Ga_(27)Co_(15)single crystals are characterized by high-strength characteristics,which lead to high SE stability during the first 20 loading/unloading cycles.However,after 20 cycles,a strong degradation of the SE is observed through the formation of microcracks,which ultimately leads to the destruction of the sample.The results of work are replicable for cycling at different temperatures from all temperature ranges of superelasticity. 展开更多
关键词 Martensitic transformations SUPERELASTICITY Single crystals cyclic stability Microstructure
原文传递
Constructing long-cycling crystalline C_(3)N_(4)-based carbonaceous anodes for sodium-ion battery via N configuration control
5
作者 Ying Wang Hongguan Li +5 位作者 Shuanlong Di Boyin Zhai Ping Niu Antonios Kelarakis Shulan Wang Li Li 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期159-171,共13页
Carbon nitrides with two-dimensional layered structures and high theoretical capacities are attractive as anode materials for sodium-ion batteries while their low crystallinity and insufficient structural stability st... Carbon nitrides with two-dimensional layered structures and high theoretical capacities are attractive as anode materials for sodium-ion batteries while their low crystallinity and insufficient structural stability strongly restrict their practical applications.Coupling carbon nitrides with conductive carbon may relieve these issues.However,little is known about the influence of nitrogen(N)configurations on the interactions between carbon and C_(3)N_(4),which is fundamentally critical for guiding the precise design of advanced C_(3)N_(4)-related electrodes.Herein,highly crystalline C_(3)N_(4)(poly(triazine imide),PTI)based all-carbon composites were developed by molten salt strategy.More importantly,the vital role of pyrrolic-N for enhancing charge transfer and boosting Na+storage of C_(3)N_(4)-based composites,which was confirmed by both theoretical and experimental evidence,was spot-highlighted for the first time.By elaborately controlling the salt composition,the composite with high pyrrolic-N and minimized graphitic-N content was obtained.Profiting from the formation of highly crystalline PTI and electrochemically favorable pyrrolic-N configurations,the composite delivered an unusual reverse growth and record-level cycling stability even after 5000 cycles along with high reversible capacity and outstanding full-cell capacity retention.This work broadens the energy storage applications of C_(3)N_(4) and provides new prospects for the design of advanced all-carbon electrodes. 展开更多
关键词 ANODE highly crystalline C_(3)N_(4) N configuration sodium-ion batteries ultra-long cyclic stability
下载PDF
Improved cyclic stability of LiNi_(0.8)Mn_(0.1)Co_(0.1O2)cathode enabled by a novel CEI forming additive
6
作者 Zulipiya SHADIKE Yiming CHEN +3 位作者 Lin LIU Xinyin CAI Shuiyun SHEN Junliang ZHANG 《Frontiers in Energy》 SCIE EI 2024年第4期535-544,共10页
The undesired side reactions at electrode/electrolyte interface as well as the irreversible phase evolution during electrochemical cycling significantly affect the cyclic performances of nickel-rich NMCs electrode mat... The undesired side reactions at electrode/electrolyte interface as well as the irreversible phase evolution during electrochemical cycling significantly affect the cyclic performances of nickel-rich NMCs electrode materials.Electrolyte optimization is an effective approach to suppress such an adverse side reaction,thereby enhancing the electrochemical properties.Herein,a novel boron-based film forming additive,tris(2,2,2-trifluoroethyl)borate(TTFEB),has been introduced to regulate the interphasial chemistry of LiNi0.8Mn0.1Co0.1O2(NMC811)cathode to improve its long-term cyclability and rate properties.The results of multi-model diagnostic study reveal that formation lithium fluoride(LiF)-rich and boron(B)containing cathode electrolyte interphase(CEI)not only stabilizes cathode surface,but also prevents electrolyte decomposition.Moreover,homogenously distributed B containing species serves as a skeleton to form more uniform and denser CEI,reducing the interphasial resistance.Remarkably,the Li/NMC811 cell with the TTFEB additive delivers an exceptional cycling stability with a high-capacity retention of 72.8%after 350 electrochemical cycles at a 1 C current rate,which is significantly higher than that of the cell cycled in the conventional electrolyte(59.7%).These findings provide a feasible pathway for improving the electrochemical performance of Ni-rich NMCs cathode by regulating the interphasial chemistry. 展开更多
关键词 NMC811 cathode electrolyte interphase film forming additives cyclic stability
原文传递
Layered manganese phosphorus trisulfides for high-performance lithium-ion batteries and the storage mechanism 被引量:1
7
作者 Hailin Shen Yueling Cai +8 位作者 Zhongtao Ma Peng Wang Bingkun Guo Jipeng Cheng Qianqian Li Hongtao Wang Zhongyuan Liu Anmin Nie Jinsong Wu 《Carbon Energy》 SCIE CSCD 2023年第3期160-169,170,171,共12页
Although advanced anode materials for the lithium-ion battery have been investigated for decades,a reliable,high-capacity,and durable material that can enable a fast charge remains elusive.Herein,we report that a meta... Although advanced anode materials for the lithium-ion battery have been investigated for decades,a reliable,high-capacity,and durable material that can enable a fast charge remains elusive.Herein,we report that a metal phosphorous trichalcogenide of MnPS_(3)(manganese phosphorus trisulfide),endowed with a unique and layered van der Waals structure,is highly beneficial for the fast insertion/extraction of alkali metal ions and can facilitate changes in the buffer volume during cycles with robust structural stability.The few-layered MnPS_(3)anodes displayed the desirable specific capacity and excellent rate chargeability owing to their good electronic and ionic conductivities.When assembled as a half-cell lithium-ion battery,a high reversible capacity of 380 mA h g^(−1)was maintained by the MnPS_(3)after 3000 cycles at a high current density of 4 A g^(−1),with a capacity retention of close to or above 100%.In full-cell testing,a reversible capacity of 450 mA h g^(−1)after 200 cycles was maintained as well.The results of in-situ TEM revealed that MnPS_(3)nanoflakes maintained a high structural integrity without exhibiting any pulverization after undergoing large volumetric expansion for the insertion of a large number of lithium ions.Their kinetics of lithium-ion diffusion,stable structure,and high pseudocapacitance contributed to their comprehensive performance,for example,a high specific capacity,rapid charge-discharge,and long cyclability.MnPS_(3)is thus an efficient anode for the next generation of batteries with a fast charge/discharge capability. 展开更多
关键词 cyclic stability in‐situ TEM MnPS3 PSEUDOCAPACITANCE rate performance
下载PDF
Cryoactivated proton-involved redox reactions enable stable-cycling fiber cooper metal batteries operating at-50℃
8
作者 Changyuan Yan Zixuan Chen +2 位作者 Hongzhong Deng Hao Huang Xianyu Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期758-767,I0016,共11页
Fiber-shaped batteries that feature outstanding flexibility,light weight,and wovenability are extremely attractive for powering smart wearable electronic textiles,which further stimulates their demand in extreme envir... Fiber-shaped batteries that feature outstanding flexibility,light weight,and wovenability are extremely attractive for powering smart wearable electronic textiles,which further stimulates their demand in extreme environments.However,there are rare reports on ultralow-temperature fiber batteries to date.This is mainly attributed to the poor conductivity of electrodes and freezing of electrolytes that restrain their satisfactory flexible operation in cold environments.Herein,we propose a fiber cooper metal battery consisting of a conductive polyaniline cathode,an anti-freezing Cu(BF4)2+H3PO4electrolyte and an acidresistant copper wire anode,which can withstand various deformations at ultralow temperatures.Impressively,enhanced capacity and cyclic stability can be achieved by cryoactivated abundant reactive sites in the polyaniline,while benefiting from redox reactions with rapid kinetics involving protons rather than copper ions.Consequently,this well-designed polyaniline/Cu fiber battery delivers excellent flexibility without obvious capacity decay after being bent at-30℃,as well as a remarkable discharge capacity of 120.1 mA h g-1and a capacity retention of 96.8%after 2000 cycles at-50℃.The fiber batteries integrated into wearable textiles can power various electronic devices.These performances greatly outperform those of most reported works.Overall,this work provides a promising strategy toward applications of cryogenic wearable energy storage devices. 展开更多
关键词 Cryoactivated sites Proton-involved redox reactions Fiber cooper metal battery Polyaniline cyclic stability Low temperature
下载PDF
Effect of annealing temperature on microstructure and electrochemical performance of La_(0.75)Mg_(0.25)Ni_(3.5)Co_(0.2) hydrogen storage electrode alloy 被引量:8
9
作者 董小平 吕反修 +2 位作者 张羊换 杨丽颖 王新林 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第1期99-104,共6页
To improve the cyclic stability of La-Mg-Ni system alloy, as-cast La0.75Mg0.25Ni3.5Co0.2 alloy was annealed at 1123, 1223, and 1323 K for 10 h in 0.3 MPa argon. The microstructure and electrochemical performance of di... To improve the cyclic stability of La-Mg-Ni system alloy, as-cast La0.75Mg0.25Ni3.5Co0.2 alloy was annealed at 1123, 1223, and 1323 K for 10 h in 0.3 MPa argon. The microstructure and electrochemical performance of different annealed alloys were investigated systematically by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), X-Ray Photoelectron Spectroscopy (XPS), and electrochemical experiments. The results obtained by XRD and SEM showed that the as-cast and annealed (1123 K) alloys had multiphase structure containing LaNis, (La, Mg)2(Ni, Co)7 and few LaNi2 phases. When annealing temperatures approached 1223 and 1323 K, LaNi2 phase disappeared. The annealed alloys at 1223 and 1323 K were composed of LaNi5, (La, Mg)2(Ni, Co)7 and (La, Mg)(Ni, Co)3 phases. With increasing annealing temperature, the maximum discharge capacity of the alloy decreased monotonously, but the cyclic stability was improved owing to structure homogeneity and grain growth after annealing, as well as the enhancement of anti-oxidation/corrosion ability and the suppression of pulverization during cycling in KOH electrolyte. 展开更多
关键词 annealing temperature A2B7-type La-Mg-Ni based alloy MICROSTRUCTURE cyclic stability rare earths
下载PDF
Tempura-like carbon/carbon composite as advanced anode materials for K-ion batteries 被引量:6
10
作者 Hao-Jie Liang Zhen-Yi Gu +7 位作者 Xue-Ying Zheng Wen-Hao Li Ling-Yun Zhu Zhong-Hui Sun Yun-Feng Meng Hai-Yue Yu Xian-Kun Hou Xing-Long Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期589-598,I0012,共11页
Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To pr... Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To protect the layer structure and further boost performance,tempura-like carbon/carbon nanocomposite of graphite@pitch-derived S-doped carbon(G@PSC)is designed and prepared by a facile and low-temperature modified molten salt method.This robust encapsulation structure makes their respective advantages complementary to each other,showing mutual promotion of electrochemical performances caused by synergy effect.As a result,the G@PSC electrode is applied in KIBs,delivering impressive rate capabilities(465,408,370,332,290,and 227 m A h g^(-1)at 0.05,0.2,0.5,1,2,and 5 A g^(-1))and ultralong cyclic stability(163 m A g^(-1)remaining even after 8000 cycles at 2 A g^(-1)).On basis of ex-situ studies,the sectionalized K-storage mechanism with adsorption(pseudocapacitance caused by S doping)-intercalation(pitch-derived carbon and graphite)pattern is revealed.Moreover,the exact insights into remarkable rate performances are taken by electrochemical kinetics tests and density functional theory calculation.In a word,this study adopts a facile method to synthesize high-performance carbon/carbon nanocomposite and is of practical significance for development of carbonaceous anode in KIBs. 展开更多
关键词 K-ion batteries Anode materials Carbon/carbon composite S doping cyclic stability DFT calculation
下载PDF
Prussian blue and its analogues as advanced supercapacitor electrodes 被引量:3
11
作者 Emad S.Goda Seungho Lee +1 位作者 Muhammad Sohail Kuk Ro Yoon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期206-229,共24页
Remarkable attention has been directed to Prussian blue(PB) and its analogues(PBA) as one of the most widely used metal-organic frameworks(MOFs) especially in the field of energy storage devices due to their fabulous ... Remarkable attention has been directed to Prussian blue(PB) and its analogues(PBA) as one of the most widely used metal-organic frameworks(MOFs) especially in the field of energy storage devices due to their fabulous features such as 3D open framework, high surface area, controllable distribution of pores and the low cost. Nevertheless, their depressed conductivity causes some insulation when being used as an electrode for supercapacitors leading to be restricted in further applications particularly the electronics. To the best of our knowledge, our review aimed primarily to give a total picture of the research that was done on utilizing PB and PBA for fabricating the electrodes of supercapacitor, studying their synthesis approaches in addition to the hybridization with other materials such as graphene, CNTs and conducting polymer. It also addresses the transformation of PB or PBA into other interesting nanostructures such as oxides, sulfides, and bicomponent of graphitic carbon nitride/metal oxides, as well. Furthermore,It exhibits various avenues for overcoming their disadvantages of bad cycle life, retention rate and not achieving the desired values of energy/power densities opening the door for enlarging the number of researches on their application as supercapacitors. 展开更多
关键词 Metal hexacyanoferrates SUPERCAPACITORS ELECTROLYTE Energy density cyclic stability
下载PDF
Improved electrochemical hydrogen storage properties of Mg-Y thin films as a function of substrate temperature 被引量:1
12
作者 Yanyan Wang Gongbiao Xin +4 位作者 Chongyun Wang Huiyu Li Wei Li Jie Zheng Xingguo Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第3期287-290,共4页
Pd-capped Mg78Y22 thin films have been prepared by direct current magnetron co-sputtering system at different substrate temperatures and their electrochemical hydrogen storage properties have been investigated.It is f... Pd-capped Mg78Y22 thin films have been prepared by direct current magnetron co-sputtering system at different substrate temperatures and their electrochemical hydrogen storage properties have been investigated.It is found that rising substrate temperature to 60 ℃ can coarsen the surface of thin film,thus facilitating the diffusion of hydrogen atoms and then enhancing its discharge capacity to 1725 mAh·g-1.Simultaneously,the cyclic stability is effectively improved due to the increased adhesion force between film and substrate as a function of temperature.In addition,the specimen exhibits a very long and flat discharge plateau at about —0.67 V,at which nearly 60%of capacity is maintained.The property is favorable for the application in metal hydride/nickel secondary batteries.The results indicate that rising optimal substrate temperature has a beneficial effect on the electrochemical hydrogen storage of Mg-Y thin films. 展开更多
关键词 Mg-Y thin films substrate temperature electrochemical hydrogen storage discharge capacity cyclic stability metal hydride/nickel secondary batteries
下载PDF
MnO_(2)/carbon nanocomposite based on silkworm excrement for high-performance supercapacitors 被引量:1
13
作者 Pian Zhang Yun-hao Wu +3 位作者 Hao-ran Sun Jia-qi Zhao Zhi-ming Cheng Xiao-hong Kang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第10期1735-1744,共10页
MnO_(2)/biomass carbon nanocomposite was synthesized by a facile hydrothermal reaction.Silkworm excrement acted as a carbon precursor,which was activated by ZnCl_(2) and FeCl_(3) combining chemical agents under Ar atm... MnO_(2)/biomass carbon nanocomposite was synthesized by a facile hydrothermal reaction.Silkworm excrement acted as a carbon precursor,which was activated by ZnCl_(2) and FeCl_(3) combining chemical agents under Ar atmosphere.Thin and flower-like MnO_(2) nanowires were in-situ anchored on the surface of the biomass carbon.The biomass carbon not only offered high conductivity and good structural stability but also relieved the large volume expansion during the charge/discharge process.The obtained MnO_(2)/biomass carbon nanocomposite electrode exhibited a high specific capacitance(238 F·g^(-1) at 0.5 A·g^(-1))and a superior cycling stability with only 7% degradation after 2000 cycles.The observed good electrochemical performance is accredited to the materials’high specific surface area,multilevel hierarchical structure,and good conductivity.This study proposes a promising method that utilizes biological waste and broadens MnO_(2)-based electrode material application for next-generation energy storage and conversion devices. 展开更多
关键词 manganese dioxide specific capacitance cyclic stability biomass carbon silkworm excrement
下载PDF
Direct Synthesis of Al_2O_3-modified Li(Ni_(0.5)Co_(0.2)Mn_(0.3))O_2 Cathode Materials for Lithium Ion Batteries
14
作者 王启岁 ZHANG Changchun +2 位作者 XING Junlong YANG Maoping XIE Jia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第1期97-101,共5页
To improve the cyclic stability at high temperature and thermal stability, the spherical Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 was synthesized by a modified co-precipitation method, and the physical and electrochemic... To improve the cyclic stability at high temperature and thermal stability, the spherical Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 was synthesized by a modified co-precipitation method, and the physical and electrochemical properties were studied. The TEM images showed that Li(Ni0.5Co0.2Mn0.3)O2 was modified successfully with nano-Al2O3. The discharge capacity retention of Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 maintained about 99% after 200 cycles at high temperature(55 ℃), while that of the bare one was only 86%. Also, unlike bare Li(Ni0.5Co0.2Mn0.3)O2, the Al2O3-modified material cathode exhibited good thermal stability. 展开更多
关键词 modified precipitation method layered cathode materials Al2O3- modified cyclic stability DSC
下载PDF
Construction of nitrogen-doped carbon cladding LiMn_(2)O_(4) film electrode with enhanced stability for electrochemically selective extraction of lithium ions
15
作者 Jiahui Ren Yongping He +7 位作者 Haidong Sun Rongzi Zhang Juan Li Wenbiao Ma Zhong Liu Jun Li Xiao Du Xiaogang Hao 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2023年第12期2050-2060,共11页
Reducing the dissolution of Mn from LiMn_(2)O_(4)(LMO)and enhancing the stability of film electrodes are critical and challenging for Li+ions selective extraction via electrochemically switched ion exchange technology... Reducing the dissolution of Mn from LiMn_(2)O_(4)(LMO)and enhancing the stability of film electrodes are critical and challenging for Li+ions selective extraction via electrochemically switched ion exchange technology.In this work,we prepared a nitrogen-doped carbon cladding LMO(C-N@LMO)by polymerization of polypyrrole and high-temperature annealing in the N2 gas to achieve the above purpose.The modified C-N@LMO film electrode exhibited lower Mn dissolution and better cyclic stability than the LMO film electrode.The dissolution ratio of Mn from the C-N@LMO film electrode decreased by 42%compared to the LMO film electrode after 10 cycles.The cladding layer not only acted as a protective layer but also functioned as a conductive shell,accelerating the migration rate of Li+ions.The intercalation equilibrium time of the C-N@LMO film electrode reached within an hour during the extraction of Li+ions,which was 33%less compared to the pure LMO film electrode.Meanwhile,the C-N@LMO film electrode retained evident selectivity toward Li+ions,and the separation factor was 118.38 for Li+toward Mg2+in simulated brine.Therefore,the C-N@LMO film electrode would be a promising candidate for the recovery of Li+ions from salt lakes. 展开更多
关键词 LiMn_(2)O_(4) lithium extraction surface coating cyclic stability Mn dissolution
原文传递
Hollow Multishelled Structure Reviving Lithium Metal Anode for High-energy-density Batteries
16
作者 WANG Haoyu WEI Peng +1 位作者 WANG Jiangyan WANG Dan 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2024年第3期428-436,共9页
Due to its highest theoretical capacity and its lowest redox potential,lithium(Li)metal has been considered as the ultimate anode choice for high-energy-density rechargeable batteries.However,its commercialization is ... Due to its highest theoretical capacity and its lowest redox potential,lithium(Li)metal has been considered as the ultimate anode choice for high-energy-density rechargeable batteries.However,its commercialization is severely hindered by its poor cyclic stability and safety issues.Diverse material structure design concepts have been raised to address these failure models,wherein,hollow structure has shown great power in solving the challenges.Especially,a hollow multishelled structure(HoMs)featured with two or more shells has been proved to be more efficient to improve Li metal anode than their single-shelled counterparts.Herein,this up-to-date review summarizes the recent progress of the application of HoMs in Li metal anode,including their adoption as Li metal host,artificial solid electrolyte interphase film,electrolyte additive,solid state electrolyte,etc.HoMs offers unique advantages,such as suppressing Li dendrite growth,stabilizing electrode-electrolyte interface,and improving overall battery performance.Future research directions are outlined,emphasizing the need for multifunctional integrated smart HoMS design and large-scale fabrication of HoMS through low-cost accurate method to further advance the commercialization of Li metal batteries. 展开更多
关键词 Hollow multishelled structure Lithium metal anode Solid electrolyte interphase Coulombic efficiency cyclic stability
原文传递
Fluorinated pillared-layer metal-organic framework microrods for improved electrochemical cycling stability 被引量:1
17
作者 Shasha Zheng Yue Ru +1 位作者 Huaiguo Xue Huan Pang 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第12期3817-3820,共4页
Developing metal-organic framework(MOF)-based materials with good cyclic stability is the key to their practical application. Fluorinated organic compounds are usually highly chemically stability due to the high elect... Developing metal-organic framework(MOF)-based materials with good cyclic stability is the key to their practical application. Fluorinated organic compounds are usually highly chemically stability due to the high electronegativity of fluorine. Also, the pillared-layer structures based on coordination bonds have better structure and thermal stability than those based on hydrogen bonds. Herein, the fluorinated pillared-layer [Ni(2,3,4,5-tetrafluorobenzoic acid)(4,4-bipyridine)]nMOF([Ni(TFBA)(Bpy)]n) materials were constructed through a facile room-temperature solution reaction and used as electrode materials for supercapacitors. Surprisingly, the size/morphology of Ni(TFBA)(Bpy)nMOFs could be adjusted by varying the synthesis time. Benefting from the short ion diffusion length, unique pillar-layer structure, and strong intercomponent synergy of organic ligands, the Ni(TFBA)(Bpy)nMOF microrods showed a higher electrochemical energy storage capability than bulk MOFs. At the same time, compared to the non-fluorinated [Ni(benzoic acid)(Bpy)]nMOFs(31.5% capacitance decay), the fluorinated Ni(TFBA)(Bpy)n MOFs have a higher cycle stability with only 2.6% capacitance loss after 5000 cycles at 3 m A/cm^(2). 展开更多
关键词 Fluorinated metal-organic framework Pillar-layer structure Microrod cyclic stability Electrochemical energy storage SUPERCAPACITOR
原文传递
CMK-3 modified separator for ultra-high stability performance Cu_(1.8)Se aluminum batteries 被引量:1
18
作者 Xiaoxiao Li Mingxiao Ma +4 位作者 Wenrong Lv Gaohong Wu Ruqian Lian Wenming Zhang Zhanyu Li 《Nano Research》 SCIE EI CSCD 2022年第9期8136-8145,共10页
Rechargeable aluminum batteries(RABs)are a popular energy storage device because of its safety and environmental protection.As cathode materials of RABs,transition metal oxide,sulfide,and selenide have become the rese... Rechargeable aluminum batteries(RABs)are a popular energy storage device because of its safety and environmental protection.As cathode materials of RABs,transition metal oxide,sulfide,and selenide have become the research hotspot.In this work,we have successfully prepared CuO,Cu_(1.8)S,and Cu_(1.8)Se electrode materials.Among them,although Cu_(1.8)Se had a relatively higher initial discharge capacity,all of these products had severe capacity degradation in terms of cycling and rate performance.Furthermore,for solving the problem of capacity decline,CMK-3 modified separator was used to make the Cu_(1.8)Se cathode material more stable,thus improving cycling and rate performance.It can be confirmed by ex situ X-ray photoelectron spectroscopy(XPS)that both Cu and Se elements underwent reversible redox reactions during the charging/discharging process.Density functional theory was implemented to study the energy storage mechanism of CumX(X=O,S,Se).The results showed that Cu_(1.8)S and Cu_(1.8)Se mainly relied on AlCl4−for energy storage,and the intercalation/de-intercalation of Al3+occurred during the charge/discharge process in CuO material.Consequently,the optimized Cu_(1.8)Se/CMK-3@GF/C/Al revealed an outstanding rate capability(977.83 mAh·g^(−1)at 0.5 A·g^(−1))and long cyclic stability(retention of 478.77 mAh·g^(−1)after 500 cycles at 1.0 A·g^(−1)).Compared to previously reported cathode materials of RABs,this type of battery displays great superiority in terms of rate and cycling stability.This research also provides a novel approach to suppress the shuttle effect of active species for advanced clean energy devices. 展开更多
关键词 rechargeable aluminum batteries Cu_(1.8)Se CMK-3 modified density functional theory long cyclic stability
原文传递
Ultra‑Stable Sodium‑Ion Battery Enabled by All‑Solid‑State Ferroelectric‑Engineered Composite Electrolytes
19
作者 Yumei Wang Zhongting Wang +8 位作者 Xiaoyu Xu Sam Jin An Oh Jianguo Sun Feng Zheng Xiao Lu Chaohe Xu Binggong Yan Guangsheng Huang Li Lu 《Nano-Micro Letters》 SCIE EI CAS 2024年第11期704-717,共14页
Symmetric Na-ion cells using the NASICON-structured electrodes could simplify the manufacturing process,reduce the cost,facilitate the recycling post-process,and thus attractive in the field of large-scale stationary ... Symmetric Na-ion cells using the NASICON-structured electrodes could simplify the manufacturing process,reduce the cost,facilitate the recycling post-process,and thus attractive in the field of large-scale stationary energy storage.However,the long-term cycling performance of such batteries is usually poor.This investigation reveals the unavoidable side reactions between the NASICON-type Na_(3)V_(2)(PO_(4))_(3)(NVP)anode and the commercial liquid electrolyte,leading to serious capacity fading in the symmetric NVP//NVP cells.To resolve this issue,an all-solid-state composite electrolyte is used to replace the liquid electrolyte so that to overcome the side reaction and achieve high anode/electrolyte interfacial stability.The ferroelectric engineering could further improve the interfacial ion conduction,effectively reducing the electrode/electrolyte interfacial resistances.The NVP//NVP cell using the ferroelectric-engineered composite electrolyte can achieve a capacity retention of 86.4%after 650 cycles.Furthermore,the electrolyte can also be used to match the Prussianblue cathode NaxFeyFe(CN)_(6−z)·nH_(2)O(NFFCN).Outstanding long-term cycling stability has been obtained in the all-solid-state NVP//NFFCN cell over 9000 cycles at a current density of 500 mA g^(-1),with a fading rate as low as 0.005%per cycle. 展开更多
关键词 Sodium-ion battery NVP anode All-solid-state cyclic stability Ferroelectric
下载PDF
Hyperelastic Graphene Aerogels Reinforced by In‑suit Welding Polyimide Nano Fiber with Leaf Skeleton Structure and Adjustable Thermal Conductivity for Morphology and Temperature Sensing 被引量:2
20
作者 Weida Yin Mengmeng Qin +2 位作者 Huitao Yu Jinxu Sun Wei Feng 《Advanced Fiber Materials》 SCIE EI 2023年第3期1037-1049,共13页
Graphene-aerogel-based flexible sensors have heat tolerances and electric-resistance sensitivities superior to those of polymer-based sensors.However,graphene sheets are prone to slips under repeated compression due t... Graphene-aerogel-based flexible sensors have heat tolerances and electric-resistance sensitivities superior to those of polymer-based sensors.However,graphene sheets are prone to slips under repeated compression due to inadequate chemical con-nections.In addition,the heat-transfer performance of existing compression strain sensors under stress is unclear and lacks research,making it difficult to perform real-temperature detections.To address these issues,a hyperelastic polyimide fiber/graphene aerogel(PINF/GA)with a three-dimensional interconnected structure was fabricated by simple one-pot compound-ing and in-situ welding methods.The welding of fiber lap joints promotes in-suit formation of three-dimensional crosslinked networks of polyimide fibers,which can effectively avoid slidings between fibers to form reinforced ribs,preventing graphene from damage during compression.In particular,the inner core of the fiber maintains its macromolecular chain structure and toughness during welding.Thus,PINF/GA has good structural stabilities under a large strain compression(99%).Moreover,the thermal and electrical conductivities of PINF/GA could not only change with various stresses and strains but also keep the change steady at specific stresses and strains,with its thermal-conductivity change ratio reaching up to 9.8.Hyperelastic PINF/GA,with dynamically stable thermal and electrical conductivity,as well as high heat tolerance,shows broad applica-tion prospects as sensors in detecting the shapes and temperatures of unknown objects in extreme environments. 展开更多
关键词 Graphene aerogel Fiber welding Highly compressible High and low temperature resistance cyclic stability Flexible tactile sensor
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部