Electrochemical behavior of layered LiNi0.5Mn0.5O2 in LiNO3 aqueous solution and its cyclic fading mechanism in electrolytes with different pH values were investigated. CV results show that LiNi0.5Mn0.5O2 has good ele...Electrochemical behavior of layered LiNi0.5Mn0.5O2 in LiNO3 aqueous solution and its cyclic fading mechanism in electrolytes with different pH values were investigated. CV results show that LiNi0.5Mn0.5O2 has good electrochemical reversible behaviors in 5 mol/L LiNO3 solution. Meanwhile, the electrode in 5 mol/L LiNO3 with pH value of 12 demonstrates the best electrochemical stability. Based on the electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and scanning electron microscopy (SEM) results, it is proposed that suppressed charge-transfer resistance is the major reason, which is probably ascribed to the more stable electrode surface and less structure change.展开更多
For the challenging nature of the zirconium environment analysis, this study consists to analyze the electrochemical behavior of Zirconium in both aqueous and organic media. To that end first the electrolytic media wa...For the challenging nature of the zirconium environment analysis, this study consists to analyze the electrochemical behavior of Zirconium in both aqueous and organic media. To that end first the electrolytic media was selected on the basis of the Pourbaix potential-pH diagram, which provides informations on the predominance of Zr<sup>(IV) </sup> ion and Zr in aqueous media. In aqueous media, analyzes were first carried out in acidic media then in basic media. Studies have thus revealed that the acidic environment is not favourable for the electrochemical analysis of zirconium. Voltammograms obtained in an acidic environment show no zirconium detection signal;this is due to the strong presence of H<sup>+</sup> ions in the solution. We have also observed in acidic media the phenomenon of passivation of the electrode surface. In aqueous alkaline media (pH = 13), we have drawn in reduction several Intensity-Potential curves by fixingsome technical parameterslike scanning speed, rotation speed of the electrode. The obtained voltammograms show cathodic waves, starting from -1.5 V/DHW and attributed to the reduction of Zr<sup> (IV) </sup> to Zr (0). The last phase of this study focused on the electrochemical analysis of zirconium in an organic media. In this media, several intensity-potential curves were plotted in reduction and in cyclic voltammetry with various parameters. Through several reduction analysis, the Zr<sup> (IV) </sup> was reduced to Zr (0) to the potential of -1.5 V/DHW. The electrochemical analysis of zirconium in organic media seems globally easier to achieve thanks to its large solvent window (i.e. dimethylformamide (DMF) solvent window > 6 V).展开更多
The interaction between DNA and the Eu(Phe) 3+ 3 complex ion has been studied by means of cyclic voltammetry and differential UV spectroscopy The results depicted an obvious decrease of peak current in CV plot...The interaction between DNA and the Eu(Phe) 3+ 3 complex ion has been studied by means of cyclic voltammetry and differential UV spectroscopy The results depicted an obvious decrease of peak current in CV plot after the reaction between the two species studied The observed peak potential separation was increased but the diffusion coefficient of Eu complex ion was decreased Hypochromicity was observed at 226 and 258 nm after the predicted interaction of them A preliminary interpretation is proposed for discussion展开更多
Nano-gold (NG) modified glassy carbon electrodes (GCEs) were used for determination of epinephrine (EP) in the presence of high concentration ascorbic acid (AA) by cyclic voltammetry (CV). This modified electrode can...Nano-gold (NG) modified glassy carbon electrodes (GCEs) were used for determination of epinephrine (EP) in the presence of high concentration ascorbic acid (AA) by cyclic voltammetry (CV). This modified electrode can not only catalytically oxidize EP and AA, but also separate the catalytic peak potentials of EP and AA by about 183.5 mV. In pH = 7.0 ogisogate byffer solution, the linear range of epinephrine was 5 106 ~ 1 ?10-4 mol/L.展开更多
A Pr-doped TiO2-NTs/SnO2-Sb electrode was prepared by a simple method, cyclic voltarnmetry (CV). The methyl orange (MO)aqueous solution was selected as a simulated wastewater. The ordered microstructural TiO2-NTs ...A Pr-doped TiO2-NTs/SnO2-Sb electrode was prepared by a simple method, cyclic voltarnmetry (CV). The methyl orange (MO)aqueous solution was selected as a simulated wastewater. The ordered microstructural TiO2-NTs substrate was synthesized by an electrochemical method to obtain large specific surface area and high space utilization. The phase structure, electrode surface morphology and electrochemical properties of electrodes were characterized by XRD, SEM and electrochemical technology, respectively. The results showed that praseo- dymium oxide was successfully doped into the SnOz-Sb film by CV method. Due to the doped Pr, the oxygen evo- lution potential increased from 2.25 V to 2.40 V. The degradation of MO was investigated by UV-vis. The Ct/C0(φ) was studied as a function to obtain the optimal parameters, such as the amount of doped Pr, current density and initial dye concentration. In addition, the degradation process followed pseudo-first-order reaction kinetics and the rate constant was 0.099 3 min-1. The result indicated that the introduction of Pr reduced the formation of oxygen vacancies or enhanced the formation of adsorbed hydroxyl radical groups on the surface, thus leading to better activity and stability.展开更多
Microwave radiation was applied to the detection of metamizole sodium by cyclic voltammetry. The electrochemical characteristics of metamizole sodium were studied by cyclic voltammetry at GC electrode under microwave ...Microwave radiation was applied to the detection of metamizole sodium by cyclic voltammetry. The electrochemical characteristics of metamizole sodium were studied by cyclic voltammetry at GC electrode under microwave radiation and a considerable current enhancement was observed for metamizole sodium in aqueous 0.05 mol/L H2SO4. Under the optional conditions, metamizole sodium was determined in the absence and presence of microwave activation. In the absence of microwave activation cyclic voltammogram of metamizole sodium shows good linear relationship in a concentration range of 8.0×10^-5-1.0×10^-3 mol/L in aqueous 0.05 mol/L H2SO4 with a detection limit of 6.75× 10^-6 mol/L(S/N=3) and the equation of linear regression is Ip=12.973c-0.1905(R^2=0.9996, n=6); in the presence of 80 W microwave activation cyclic voltammogram of metamizole sodiumin shows good linear relationship in a concentration range of 4.0× 10^-5-1.0×10^-3 mol/L in aqueous 0.05 mol/L H2SO4 with a detection limit of 4,41 × 10^-6 mol/L(S/N=3) and the equation of linear regression is Ip=25.107c-0.1193(R^2=0.9973, n=7). The current in the presence of 80 W microwave activation increases to about 2 orders of magnitude compared with that in the absence of microwave activation. The proposed method in the presence of microwave activation showed high selectivity and sensitivity, and the sampling of the disposal method is simple. The method was verified by the determination of Metamizole Sodium tablet with satisfactory results.展开更多
The mechanism of the cathodic process of Y(Ⅲ) on platinum and molybdenum electrode in molten LiF YF 3 Y 2O 3 was investigated by means of cyclic voltammetry. The number of electron transferred was calculated. Th...The mechanism of the cathodic process of Y(Ⅲ) on platinum and molybdenum electrode in molten LiF YF 3 Y 2O 3 was investigated by means of cyclic voltammetry. The number of electron transferred was calculated. The results show that the electrochemical reduction of Y(Ⅲ) is a reversible one step three electrons reaction and the cathodic process is diffusion controlled. The reductive product easily forms the intermetallic compounds with the platinum electrode, but it is pure yttrium on the molybdenum electrode.展开更多
1,1'-Diacetoacetylferrocene 1 reacted with phenylene-1,3-dioxyactyl hydrazine 2 in absolute ethanol to give the macrocyclic ferrocenyl dipyrazole compound in moderate yield. Determined by X-ray structure analysis, it...1,1'-Diacetoacetylferrocene 1 reacted with phenylene-1,3-dioxyactyl hydrazine 2 in absolute ethanol to give the macrocyclic ferrocenyl dipyrazole compound in moderate yield. Determined by X-ray structure analysis, it crystallizes in monoclinic system, space group P21/c with a = 13.7509(4), b = 8.1277(2), c = 21.7472(6) A, β = 103.1030(10)°, V = 2367.25(11) A^3, Z = 4, Dc = 1.505 g/cm^3, R = 0.0353 and wR = 0.0811. The electrochemical studies reveal that redox of Fe^+/Fe in ferrocene is a reversible one-electron process.展开更多
Superoxide ion was generated by the electrochemical reduction of oxygen at a platinum electrode in dimethylsulphoxide (DMSO). This work was focused on the nucleophilicity and scavenge of electrogenerated\|superoxide ...Superoxide ion was generated by the electrochemical reduction of oxygen at a platinum electrode in dimethylsulphoxide (DMSO). This work was focused on the nucleophilicity and scavenge of electrogenerated\|superoxide ion by cyclic voltammetry. The nucleophilic displacement reactions of superoxide ion with ethyl acetate and diethyl adipate were discussed and the reason for remarkable influence of diethyl adipate was elucidated. The scavenging activity of ascorbic acid was evaluated and the result allowed the conclusion that the scavenging ability of ascorbic acid is much lower in DMSO than in aqueous phase. UV\|spectrum of electrogenerated superoxide ion in DMSO exhibited a single absorption band with λ max at 275 nm, which certified further that the method of electrogeneration was reliable and superoxide ion was stable in DMSO.展开更多
Self-assembly of octadecyl mercaptan on gold was investigated by cyclic voltammetry(CV) and electrochemical impedance spectroscopy (EIS). Results of CV experiments show thatthere are no structUral defects exposed dire...Self-assembly of octadecyl mercaptan on gold was investigated by cyclic voltammetry(CV) and electrochemical impedance spectroscopy (EIS). Results of CV experiments show thatthere are no structUral defects exposed directly to the redox couple in solution, but EISexperiments indicate that collapsed sites exist in the monolayer. A method to estimate the degree ofdisorder in the Au/thiol monolayer surface is proposed by using admittance plane plot.展开更多
Polymer capable of specific binding to Cu-dipyridyl complex was prepared by molecular imprinting technology. The binding specificity of the polymer to the template (Cu-dipyridyl complex) was investigated by cyclic vo...Polymer capable of specific binding to Cu-dipyridyl complex was prepared by molecular imprinting technology. The binding specificity of the polymer to the template (Cu-dipyridyl complex) was investigated by cyclic voltametric scanning using the carbon paste electrode modified by polymer particles in phosphate buffer solution. Factors that influence rebinding of the imprinted polymer were explored. The result demonstrated that the cyclic voltammetry was an efficient approach to explore interactions between template and imprinted polymers.展开更多
Based on the perfect ohmic drop compensation by online electronic positive feedback, ultrafast cyclic voltammetry with asymmetrical potential scan is achieved for the first time, with the reduction of anthracene actin...Based on the perfect ohmic drop compensation by online electronic positive feedback, ultrafast cyclic voltammetry with asymmetrical potential scan is achieved for the first time, with the reduction of anthracene acting as the test system. Compared with the traditional cyclic voltammetry utilizing symmetrical triangular waveform as the excitation one, the new method allows a simpler approach to mechanistic analysis of ultrafast chemical reactions coupled with a charge transfer. And perhaps more important, it also provides a way to eliminate the interference of the adsorbed product in dynamic monitoring. 2007 Zhi Yong Guo. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
Manganese oxides are a promising class of electrocatalysts for renewable energy devices,such as fuel cells.Mn(Ⅲ) ions with e_(g) electron filling of-1 are the active sites for manganese-based electrocatalysts.However...Manganese oxides are a promising class of electrocatalysts for renewable energy devices,such as fuel cells.Mn(Ⅲ) ions with e_(g) electron filling of-1 are the active sites for manganese-based electrocatalysts.However,Mn(Ⅲ) sites may be disproportionated during electrochemical reactions,thus reducing the number of Mn(Ⅲ) active sites and decreasing the catalytic activity of manganese oxides.In this work,we developed a facile cyclic voltammetry method to monitor the evolution of Mn(Ⅲ) sites on a series of manganese oxides under "working" conditions.We proposed a descriptor S_(Mn(Ⅲ)) to describe the stability of Mn(Ⅲ).Our simulated and experimental results show that the higher is S_(Mn(Ⅲ)),the higher the active Mn(Ⅲ)density,and the higher the electrocatalytic activity of the manganese oxide electrocatalyst.展开更多
This paper reports the determination of stability constants for complexes of Cd(Ⅱ)with Gly, Ala,Val,Asp,Gly—Asp,Asp Gly,Gly—Gly and Gly—Gly—Gly using both micro—pH—metric titra- tions and the application of con...This paper reports the determination of stability constants for complexes of Cd(Ⅱ)with Gly, Ala,Val,Asp,Gly—Asp,Asp Gly,Gly—Gly and Gly—Gly—Gly using both micro—pH—metric titra- tions and the application of convolution—deconvolution cyclic voltammetry at 25℃ and I=0.10 mol· dm^(-3)(KNO_3).Stability constants were calculated from pH—metric data using the SUPERQUAD com- puter program and cyclic voltammograms were collected,stored and manipulated using the EG and G CONDECON 300 software.A considerably larger ligand:metal ratio(e,g.50:1)was possible using voltammetry.Evaluation of results from the two techniques suggests that stability constants for the species[CdL_2]and[CdL_3]are reliable when calculated fromvoltammetry while those for[CdL]are more reliable when determined by pH-metric titration.展开更多
A new five-heterocyclic-biphosphine-substituted Fe-only hydrogenase mimic,[(μ-pdt)Fe_2(CO)_5]_2(PTP)(1),has been synthesized at room temperature. 1·H_2O crystallizes in triclinic system,space group P1,wi...A new five-heterocyclic-biphosphine-substituted Fe-only hydrogenase mimic,[(μ-pdt)Fe_2(CO)_5]_2(PTP)(1),has been synthesized at room temperature. 1·H_2O crystallizes in triclinic system,space group P1,with a = 11.5897(4),b = 13.6156(4),c = 18.0333(6) ?,α = 76.306(3),β = 72.742(3),γ = 68.939(3)°,V = 2508.84(14) ?~3,Dc = 1.570 g/cm3,Z = 2,M_r = 1186.37,F(000) = 1204,the final R = 0.0748,and wR = 0.2012. In the tetranuclear complex 1·H_2O,each [2Fe_2S] butterfly unit is attached to one P atom of the diphosphine bridge and exhibits a square-pyramidal geometry. Complex 1 was characterized by elemental analysis,IR spectra,UV-vis absorption spectra,~1H-NMR and ^(31)P-NMR. The cyclic voltammetry behavior of compound 1 was investigated as well.展开更多
Cyclic voltammetry based on an electrochemical technique is one of the current methods that measure the developments of the electrochemical properties in biomaterial samples under conditions. Biomaterial structure was...Cyclic voltammetry based on an electrochemical technique is one of the current methods that measure the developments of the electrochemical properties in biomaterial samples under conditions. Biomaterial structure was changed by conductive material while these materials caused a connective network in whole of them and was able to transfer electrons inside of biomaterials. These changes in physical and chemical properties are investigated by analysis tools such as cyclic voltammetry (CV), X-radiation (XRF) and Ultraviolet-visible spectroscopy (UV-Vis). Bacterial cellulose is biodegradable, biosynthesis of A. xylinum which is a three-dimensional nano-network structure with a distinct tunnel and pore structure. In this study, the composite process produced electrically conducting bacterial cellulose pellicles containing well-dispersed and embedded multi-walled carbon nanotubes (MWCNTs) Ionic liquids (ILs), as observed in cyclic voltammetry (CV). For this purpose, we used a special tool, called OriginLab which is an industry-leading scientific graphing and data analysis software. The cyclic voltammetry graph presents the behavior of this composite which consists of a relationship between CNT dispersion, conductivity rate and changes in bacterial cellulose structure. The electrical conductivity of the cellulose/MWCNT composite was found different with respect to CNT dispersion. It was found that the incorporation process was a useful method not only for dispersing MWCNTs-ILs in an ultrafine fibrous network structure, but also for enhancing the electrical conductivity of the polymeric membranes.展开更多
Over the last two decades,extensive study has been done on two-dimensional Molybdenum Sulphide(MoS_(2))due to its outstanding features in energy storage applications.Although MoS_(2)has a lot of active sulphur edges,t...Over the last two decades,extensive study has been done on two-dimensional Molybdenum Sulphide(MoS_(2))due to its outstanding features in energy storage applications.Although MoS_(2)has a lot of active sulphur edges,the presence of inactive surfaces leads to limit conductivity and efficiency.Hence,in this article,we aimed to promote the additional active sites by doping various weight percentages(2%,4%,6%,8%and 10%)of Nickel(Ni)into the MoS_(2)matrix by simple hydrothermal technique,and their doping effects were investigated with the help of Physio-chemical analyses.X-ray diffraction(XRD)pattern,Raman,and chemical composition(XPS)analyses were used to confirm the Ni incorporation in MoS_(2)nanosheets.Microscopic investigations demonstrated that Ni-doped MoS_(2)nanosheets were vertically aligned with enhanced interlayer spacing.Cyclic voltammetry,Galvanostatic charge-discharge,and electrochemical impedance spectroscopy investigations were used to characterize the electrochemical characteristics.The 6%Ni-doped MoS_(2)electrode material showed better CSPof 528.7 F/g@1 A/g and excellent electrochemical stability(85%of capacitance retention after 10,000 cycles at 5 A/g)compared to other electrode materials.Furthermore,the solid-state asymmetric supercapacitor was assembled using Nidoped MoS_(2)and graphite as anode and cathode materials and analysed the electrochemical properties in the two-electrode system.To determine the impact of the Ni-atom on the MoS_(2)surface,firstprinciples computations were performed.Further,it was examined for electronic band structure,the projected density of states(PDOS)and Bader charge transfer analyses.展开更多
Cyclic voltammetry and chronopotentiometry were used to study the reaction mechanism of Pb(Ⅱ) and the co-deposition of Pb,Mg and Li on molybdenum electrodes in LiCl-KCl-PbCl2-MgCl2 melts.The diffusion coefficient o...Cyclic voltammetry and chronopotentiometry were used to study the reaction mechanism of Pb(Ⅱ) and the co-deposition of Pb,Mg and Li on molybdenum electrodes in LiCl-KCl-PbCl2-MgCl2 melts.The diffusion coefficient of lead ions in the melts was determined by different electrochemical techniques.The results obtained by cyclic voltammetry and chronopotentiometry indicated that the underpotential deposition of lithium on pre-deposited Pb leads to the formation of a liquid Li-Pb alloy,and the Mg-Li-Pb alloys are formed after the addition of MgCl2.X-ray diffraction confirmed that in the Mg-Li-Pb alloy,PbLi3,Mg2Pb and Li7Pb2 phases exist by galvanostatic electrolysis at 6.21 A/cm2 for 2 h at 873 K and the phases can be controlled by changing the concentration of PbCl2 and MgCl2.展开更多
In order to effectively separate galena and jamesonite and improve the recovery during the mixing flotation, the interaction mechanisms between the minerals and the collector of diethyl dithiocarbamate (DDTC) were i...In order to effectively separate galena and jamesonite and improve the recovery during the mixing flotation, the interaction mechanisms between the minerals and the collector of diethyl dithiocarbamate (DDTC) were investigated. Single mineral flotation test was organized to research the effect of pulp pH value on the flotation behavior of galena and jamesonite. Electrochemistry property of the interaction of these two minerals with DDTC was investigated by cyclic voltammetry and Tafel tests. Flotation test shows that the recovery of jamesonite in high alkaline pulp is strongly depressed by lime (Ca(OH)2). The cyclic voltammetry and Tafel tests results show that the interaction between galena and DDTC is an electrochemical process. High pH value has little influence on the interaction between galena and DDTC, while it has great effect on jamesonite due to self-oxidation and specific adsorption of OH^- and CaOH^+ on jamesonite surface. Non-electroactive hydroxyl compound and low-electroconductive calcium compounds cover the surface of jamesonite, which impedes electron transfer and DDTC adsorption, thus leads to very low floatability of jamesonite.展开更多
基金Project(21301193)supported by the National Nature Science Foundation of ChinaProject(2013M530356)supported by the China Postdoctoral Science Foundation Funded+1 种基金Project(CUSZC201303)supported by the Scientific Research Foundation of Central South Universitythe Open-End Found for Valuable and Precision Instruments of Central South University
文摘Electrochemical behavior of layered LiNi0.5Mn0.5O2 in LiNO3 aqueous solution and its cyclic fading mechanism in electrolytes with different pH values were investigated. CV results show that LiNi0.5Mn0.5O2 has good electrochemical reversible behaviors in 5 mol/L LiNO3 solution. Meanwhile, the electrode in 5 mol/L LiNO3 with pH value of 12 demonstrates the best electrochemical stability. Based on the electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and scanning electron microscopy (SEM) results, it is proposed that suppressed charge-transfer resistance is the major reason, which is probably ascribed to the more stable electrode surface and less structure change.
文摘For the challenging nature of the zirconium environment analysis, this study consists to analyze the electrochemical behavior of Zirconium in both aqueous and organic media. To that end first the electrolytic media was selected on the basis of the Pourbaix potential-pH diagram, which provides informations on the predominance of Zr<sup>(IV) </sup> ion and Zr in aqueous media. In aqueous media, analyzes were first carried out in acidic media then in basic media. Studies have thus revealed that the acidic environment is not favourable for the electrochemical analysis of zirconium. Voltammograms obtained in an acidic environment show no zirconium detection signal;this is due to the strong presence of H<sup>+</sup> ions in the solution. We have also observed in acidic media the phenomenon of passivation of the electrode surface. In aqueous alkaline media (pH = 13), we have drawn in reduction several Intensity-Potential curves by fixingsome technical parameterslike scanning speed, rotation speed of the electrode. The obtained voltammograms show cathodic waves, starting from -1.5 V/DHW and attributed to the reduction of Zr<sup> (IV) </sup> to Zr (0). The last phase of this study focused on the electrochemical analysis of zirconium in an organic media. In this media, several intensity-potential curves were plotted in reduction and in cyclic voltammetry with various parameters. Through several reduction analysis, the Zr<sup> (IV) </sup> was reduced to Zr (0) to the potential of -1.5 V/DHW. The electrochemical analysis of zirconium in organic media seems globally easier to achieve thanks to its large solvent window (i.e. dimethylformamide (DMF) solvent window > 6 V).
文摘The interaction between DNA and the Eu(Phe) 3+ 3 complex ion has been studied by means of cyclic voltammetry and differential UV spectroscopy The results depicted an obvious decrease of peak current in CV plot after the reaction between the two species studied The observed peak potential separation was increased but the diffusion coefficient of Eu complex ion was decreased Hypochromicity was observed at 226 and 258 nm after the predicted interaction of them A preliminary interpretation is proposed for discussion
基金The authors gratefully acknowledge financial support from the Natural Science Foundation of Anhui Province and the Natural Science Foundation of Anhui Education Committee.
文摘Nano-gold (NG) modified glassy carbon electrodes (GCEs) were used for determination of epinephrine (EP) in the presence of high concentration ascorbic acid (AA) by cyclic voltammetry (CV). This modified electrode can not only catalytically oxidize EP and AA, but also separate the catalytic peak potentials of EP and AA by about 183.5 mV. In pH = 7.0 ogisogate byffer solution, the linear range of epinephrine was 5 106 ~ 1 ?10-4 mol/L.
基金Supported by the National Natural Science Foundation of China(No.20706041)the Natural Science Foundation of Tianjin(No.09JCYBJC06500)
文摘A Pr-doped TiO2-NTs/SnO2-Sb electrode was prepared by a simple method, cyclic voltarnmetry (CV). The methyl orange (MO)aqueous solution was selected as a simulated wastewater. The ordered microstructural TiO2-NTs substrate was synthesized by an electrochemical method to obtain large specific surface area and high space utilization. The phase structure, electrode surface morphology and electrochemical properties of electrodes were characterized by XRD, SEM and electrochemical technology, respectively. The results showed that praseo- dymium oxide was successfully doped into the SnOz-Sb film by CV method. Due to the doped Pr, the oxygen evo- lution potential increased from 2.25 V to 2.40 V. The degradation of MO was investigated by UV-vis. The Ct/C0(φ) was studied as a function to obtain the optimal parameters, such as the amount of doped Pr, current density and initial dye concentration. In addition, the degradation process followed pseudo-first-order reaction kinetics and the rate constant was 0.099 3 min-1. The result indicated that the introduction of Pr reduced the formation of oxygen vacancies or enhanced the formation of adsorbed hydroxyl radical groups on the surface, thus leading to better activity and stability.
基金Supported by the National Natural Science Foundation of China(No.20665001)the Natural Science Foundation of Guangxi Province,China(No.0832062)
文摘Microwave radiation was applied to the detection of metamizole sodium by cyclic voltammetry. The electrochemical characteristics of metamizole sodium were studied by cyclic voltammetry at GC electrode under microwave radiation and a considerable current enhancement was observed for metamizole sodium in aqueous 0.05 mol/L H2SO4. Under the optional conditions, metamizole sodium was determined in the absence and presence of microwave activation. In the absence of microwave activation cyclic voltammogram of metamizole sodium shows good linear relationship in a concentration range of 8.0×10^-5-1.0×10^-3 mol/L in aqueous 0.05 mol/L H2SO4 with a detection limit of 6.75× 10^-6 mol/L(S/N=3) and the equation of linear regression is Ip=12.973c-0.1905(R^2=0.9996, n=6); in the presence of 80 W microwave activation cyclic voltammogram of metamizole sodiumin shows good linear relationship in a concentration range of 4.0× 10^-5-1.0×10^-3 mol/L in aqueous 0.05 mol/L H2SO4 with a detection limit of 4,41 × 10^-6 mol/L(S/N=3) and the equation of linear regression is Ip=25.107c-0.1193(R^2=0.9973, n=7). The current in the presence of 80 W microwave activation increases to about 2 orders of magnitude compared with that in the absence of microwave activation. The proposed method in the presence of microwave activation showed high selectivity and sensitivity, and the sampling of the disposal method is simple. The method was verified by the determination of Metamizole Sodium tablet with satisfactory results.
文摘The mechanism of the cathodic process of Y(Ⅲ) on platinum and molybdenum electrode in molten LiF YF 3 Y 2O 3 was investigated by means of cyclic voltammetry. The number of electron transferred was calculated. The results show that the electrochemical reduction of Y(Ⅲ) is a reversible one step three electrons reaction and the cathodic process is diffusion controlled. The reductive product easily forms the intermetallic compounds with the platinum electrode, but it is pure yttrium on the molybdenum electrode.
基金Supported by the National Natural Science Foundation of China (20672091)
文摘1,1'-Diacetoacetylferrocene 1 reacted with phenylene-1,3-dioxyactyl hydrazine 2 in absolute ethanol to give the macrocyclic ferrocenyl dipyrazole compound in moderate yield. Determined by X-ray structure analysis, it crystallizes in monoclinic system, space group P21/c with a = 13.7509(4), b = 8.1277(2), c = 21.7472(6) A, β = 103.1030(10)°, V = 2367.25(11) A^3, Z = 4, Dc = 1.505 g/cm^3, R = 0.0353 and wR = 0.0811. The electrochemical studies reveal that redox of Fe^+/Fe in ferrocene is a reversible one-electron process.
文摘Superoxide ion was generated by the electrochemical reduction of oxygen at a platinum electrode in dimethylsulphoxide (DMSO). This work was focused on the nucleophilicity and scavenge of electrogenerated\|superoxide ion by cyclic voltammetry. The nucleophilic displacement reactions of superoxide ion with ethyl acetate and diethyl adipate were discussed and the reason for remarkable influence of diethyl adipate was elucidated. The scavenging activity of ascorbic acid was evaluated and the result allowed the conclusion that the scavenging ability of ascorbic acid is much lower in DMSO than in aqueous phase. UV\|spectrum of electrogenerated superoxide ion in DMSO exhibited a single absorption band with λ max at 275 nm, which certified further that the method of electrogeneration was reliable and superoxide ion was stable in DMSO.
文摘Self-assembly of octadecyl mercaptan on gold was investigated by cyclic voltammetry(CV) and electrochemical impedance spectroscopy (EIS). Results of CV experiments show thatthere are no structUral defects exposed directly to the redox couple in solution, but EISexperiments indicate that collapsed sites exist in the monolayer. A method to estimate the degree ofdisorder in the Au/thiol monolayer surface is proposed by using admittance plane plot.
基金supported by the National Nalural Science Foundation of China(29975001)
文摘Polymer capable of specific binding to Cu-dipyridyl complex was prepared by molecular imprinting technology. The binding specificity of the polymer to the template (Cu-dipyridyl complex) was investigated by cyclic voltametric scanning using the carbon paste electrode modified by polymer particles in phosphate buffer solution. Factors that influence rebinding of the imprinted polymer were explored. The result demonstrated that the cyclic voltammetry was an efficient approach to explore interactions between template and imprinted polymers.
基金We are grateful to the National Natural Science Foundation of China (No. 20173054);the Natural Science Foundation of Ningbo City (No. 2006A610044).
文摘Based on the perfect ohmic drop compensation by online electronic positive feedback, ultrafast cyclic voltammetry with asymmetrical potential scan is achieved for the first time, with the reduction of anthracene acting as the test system. Compared with the traditional cyclic voltammetry utilizing symmetrical triangular waveform as the excitation one, the new method allows a simpler approach to mechanistic analysis of ultrafast chemical reactions coupled with a charge transfer. And perhaps more important, it also provides a way to eliminate the interference of the adsorbed product in dynamic monitoring. 2007 Zhi Yong Guo. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
基金supported by the National Natu-ral Science Foundation of China(Nos.52071231,51722103)the Natural Science Foundation of Tianjin(19JCJQJC61900).
文摘Manganese oxides are a promising class of electrocatalysts for renewable energy devices,such as fuel cells.Mn(Ⅲ) ions with e_(g) electron filling of-1 are the active sites for manganese-based electrocatalysts.However,Mn(Ⅲ) sites may be disproportionated during electrochemical reactions,thus reducing the number of Mn(Ⅲ) active sites and decreasing the catalytic activity of manganese oxides.In this work,we developed a facile cyclic voltammetry method to monitor the evolution of Mn(Ⅲ) sites on a series of manganese oxides under "working" conditions.We proposed a descriptor S_(Mn(Ⅲ)) to describe the stability of Mn(Ⅲ).Our simulated and experimental results show that the higher is S_(Mn(Ⅲ)),the higher the active Mn(Ⅲ)density,and the higher the electrocatalytic activity of the manganese oxide electrocatalyst.
文摘This paper reports the determination of stability constants for complexes of Cd(Ⅱ)with Gly, Ala,Val,Asp,Gly—Asp,Asp Gly,Gly—Gly and Gly—Gly—Gly using both micro—pH—metric titra- tions and the application of convolution—deconvolution cyclic voltammetry at 25℃ and I=0.10 mol· dm^(-3)(KNO_3).Stability constants were calculated from pH—metric data using the SUPERQUAD com- puter program and cyclic voltammograms were collected,stored and manipulated using the EG and G CONDECON 300 software.A considerably larger ligand:metal ratio(e,g.50:1)was possible using voltammetry.Evaluation of results from the two techniques suggests that stability constants for the species[CdL_2]and[CdL_3]are reliable when calculated fromvoltammetry while those for[CdL]are more reliable when determined by pH-metric titration.
基金supported by the NNSFC(Nos.21231003 and 21203195)
文摘A new five-heterocyclic-biphosphine-substituted Fe-only hydrogenase mimic,[(μ-pdt)Fe_2(CO)_5]_2(PTP)(1),has been synthesized at room temperature. 1·H_2O crystallizes in triclinic system,space group P1,with a = 11.5897(4),b = 13.6156(4),c = 18.0333(6) ?,α = 76.306(3),β = 72.742(3),γ = 68.939(3)°,V = 2508.84(14) ?~3,Dc = 1.570 g/cm3,Z = 2,M_r = 1186.37,F(000) = 1204,the final R = 0.0748,and wR = 0.2012. In the tetranuclear complex 1·H_2O,each [2Fe_2S] butterfly unit is attached to one P atom of the diphosphine bridge and exhibits a square-pyramidal geometry. Complex 1 was characterized by elemental analysis,IR spectra,UV-vis absorption spectra,~1H-NMR and ^(31)P-NMR. The cyclic voltammetry behavior of compound 1 was investigated as well.
文摘Cyclic voltammetry based on an electrochemical technique is one of the current methods that measure the developments of the electrochemical properties in biomaterial samples under conditions. Biomaterial structure was changed by conductive material while these materials caused a connective network in whole of them and was able to transfer electrons inside of biomaterials. These changes in physical and chemical properties are investigated by analysis tools such as cyclic voltammetry (CV), X-radiation (XRF) and Ultraviolet-visible spectroscopy (UV-Vis). Bacterial cellulose is biodegradable, biosynthesis of A. xylinum which is a three-dimensional nano-network structure with a distinct tunnel and pore structure. In this study, the composite process produced electrically conducting bacterial cellulose pellicles containing well-dispersed and embedded multi-walled carbon nanotubes (MWCNTs) Ionic liquids (ILs), as observed in cyclic voltammetry (CV). For this purpose, we used a special tool, called OriginLab which is an industry-leading scientific graphing and data analysis software. The cyclic voltammetry graph presents the behavior of this composite which consists of a relationship between CNT dispersion, conductivity rate and changes in bacterial cellulose structure. The electrical conductivity of the cellulose/MWCNT composite was found different with respect to CNT dispersion. It was found that the incorporation process was a useful method not only for dispersing MWCNTs-ILs in an ultrafine fibrous network structure, but also for enhancing the electrical conductivity of the polymeric membranes.
文摘Over the last two decades,extensive study has been done on two-dimensional Molybdenum Sulphide(MoS_(2))due to its outstanding features in energy storage applications.Although MoS_(2)has a lot of active sulphur edges,the presence of inactive surfaces leads to limit conductivity and efficiency.Hence,in this article,we aimed to promote the additional active sites by doping various weight percentages(2%,4%,6%,8%and 10%)of Nickel(Ni)into the MoS_(2)matrix by simple hydrothermal technique,and their doping effects were investigated with the help of Physio-chemical analyses.X-ray diffraction(XRD)pattern,Raman,and chemical composition(XPS)analyses were used to confirm the Ni incorporation in MoS_(2)nanosheets.Microscopic investigations demonstrated that Ni-doped MoS_(2)nanosheets were vertically aligned with enhanced interlayer spacing.Cyclic voltammetry,Galvanostatic charge-discharge,and electrochemical impedance spectroscopy investigations were used to characterize the electrochemical characteristics.The 6%Ni-doped MoS_(2)electrode material showed better CSPof 528.7 F/g@1 A/g and excellent electrochemical stability(85%of capacitance retention after 10,000 cycles at 5 A/g)compared to other electrode materials.Furthermore,the solid-state asymmetric supercapacitor was assembled using Nidoped MoS_(2)and graphite as anode and cathode materials and analysed the electrochemical properties in the two-electrode system.To determine the impact of the Ni-atom on the MoS_(2)surface,firstprinciples computations were performed.Further,it was examined for electronic band structure,the projected density of states(PDOS)and Bader charge transfer analyses.
基金Projects(50871033,21173060,21103033) supported by the National Natural Science Foundation of ChinaProject supported by the Fundamental Research Funds for the Central Universities,ChinaProjects(2011AA03A409,2009AA050702,2007CB200906) supported by the Basic Research Foundation of Harbin Engineering University,China
文摘Cyclic voltammetry and chronopotentiometry were used to study the reaction mechanism of Pb(Ⅱ) and the co-deposition of Pb,Mg and Li on molybdenum electrodes in LiCl-KCl-PbCl2-MgCl2 melts.The diffusion coefficient of lead ions in the melts was determined by different electrochemical techniques.The results obtained by cyclic voltammetry and chronopotentiometry indicated that the underpotential deposition of lithium on pre-deposited Pb leads to the formation of a liquid Li-Pb alloy,and the Mg-Li-Pb alloys are formed after the addition of MgCl2.X-ray diffraction confirmed that in the Mg-Li-Pb alloy,PbLi3,Mg2Pb and Li7Pb2 phases exist by galvanostatic electrolysis at 6.21 A/cm2 for 2 h at 873 K and the phases can be controlled by changing the concentration of PbCl2 and MgCl2.
基金Projects(5110417951374247)supported by the National Natural Science Foundation of China
文摘In order to effectively separate galena and jamesonite and improve the recovery during the mixing flotation, the interaction mechanisms between the minerals and the collector of diethyl dithiocarbamate (DDTC) were investigated. Single mineral flotation test was organized to research the effect of pulp pH value on the flotation behavior of galena and jamesonite. Electrochemistry property of the interaction of these two minerals with DDTC was investigated by cyclic voltammetry and Tafel tests. Flotation test shows that the recovery of jamesonite in high alkaline pulp is strongly depressed by lime (Ca(OH)2). The cyclic voltammetry and Tafel tests results show that the interaction between galena and DDTC is an electrochemical process. High pH value has little influence on the interaction between galena and DDTC, while it has great effect on jamesonite due to self-oxidation and specific adsorption of OH^- and CaOH^+ on jamesonite surface. Non-electroactive hydroxyl compound and low-electroconductive calcium compounds cover the surface of jamesonite, which impedes electron transfer and DDTC adsorption, thus leads to very low floatability of jamesonite.