Colorectal cancer(CRC)ranks third in the number of cancers mainly because of the inability to diagnose it at an early stage.The pathogenesis of CRC is complicated,which is the result of the complex interaction of mult...Colorectal cancer(CRC)ranks third in the number of cancers mainly because of the inability to diagnose it at an early stage.The pathogenesis of CRC is complicated,which is the result of the complex interaction of multiple genetic and environmental factors.Currently,one of the main treatments for CRC is chemotherapy.But the primary cause of CRC treatment failure is drug resistance.The expression of cyclin-dependent kinase 9(CDK9)was correlated with elevated autophagy levels in colon cancer,and high expression of CDK9 indicates a poor prognosis in CRC.The incidence of autophagy and the expressions of Beclin 1 and ATP binding cassette transporter G2 are different in left and right colon cancer,and autophagy may be involved in the occurrence of chemotherapy resistance.In this article,the roles of CDK9,ATP binding cassette transporter G2 and Beclin 1 in CRC were elucidated,emphasizing the linkages among them and providing potential therapeutic targets of CRC.展开更多
This study was designed to investigate the relationship of the expression of cyclin-dependent kinases (CDKs) with theeffects of all-trans retinoic acid (ATRA) on the proliferation of HL-cells. HL-60 cells were treated...This study was designed to investigate the relationship of the expression of cyclin-dependent kinases (CDKs) with theeffects of all-trans retinoic acid (ATRA) on the proliferation of HL-cells. HL-60 cells were treated with ATRA for 1-4 d. Then thecapacity of DNA Synthesis was evaluated with 3H-TdR incorporation and the expression of cyclin E, cyclin D, CDK2 and CDK4protein determined with immunocytochemical staining. In addition, the expression Of CDC2, CDK2 and CDK4 mRNA was deter-mined with in situ hybridization. It was found that ATRA suppressed the proliferation of HL-60 cells and decreased their capacityof DNA synthesis to result in a down-regulation of the expression of cyclin E, cyclin D and CDC2 without comcomittant suppressionon the expression of CDK2 and CDK4. It is concluded that the effects of ATRA on the proliferation of HL-60 cells may be relatedto the down-regulation of the expression of cyclin E, cyclin D and CDC2.展开更多
Diabetic peripheral neuropathy is a common complication of diabetes mellitus.Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies.However,existing limited treatments for diab...Diabetic peripheral neuropathy is a common complication of diabetes mellitus.Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies.However,existing limited treatments for diabetic peripheral neuropathy expose the urgent need for cell metabolism research.Given the lack of comprehensive understanding of energy metabolism changes and related signaling pathways in diabetic peripheral neuropathy,it is essential to explore energy changes and metabolic changes in diabetic peripheral neuropathy to develop suitable treatment methods.This review summarizes the pathophysiological mechanism of diabetic peripheral neuropathy from the perspective of cellular metabolism and the specific interventions for different metabolic pathways to develop effective treatment methods.Various metabolic mechanisms(e.g.,polyol,hexosamine,protein kinase C pathway)are associated with diabetic peripheral neuropathy,and researchers are looking for more effective treatments through these pathways.展开更多
Objective Microcystin-leucine-arginine(MC-LR)exposure induces lipid metabolism disorders in the liver.Secreted frizzled-related protein 5(SFRP5)is a natural antagonist of winglesstype MMTV integration site family,memb...Objective Microcystin-leucine-arginine(MC-LR)exposure induces lipid metabolism disorders in the liver.Secreted frizzled-related protein 5(SFRP5)is a natural antagonist of winglesstype MMTV integration site family,member 5A(Wnt5a)and an anti-inflammatory adipocytokine.In this study,we aimed to investigate whether MC-LR can induce lipid metabolism disorders in hepatocytes and whether SFRP5,which has anti-inflammatory effects,can alleviate the effects of hepatic lipid metabolism by inhibiting the Wnt5a/Jun N-terminal kinase(JNK)pathway.Methods We exposed mice to MC-LR in vivo to induce liver lipid metabolism disorders.Subsequently,mouse hepatocytes that overexpressed SFRP5 or did not express SFRP5 were exposed to MC-LR,and the effects of SFRP5 overexpression on inflammation and Wnt5a/JNK activation by MC-LR were observed.Results MC-LR exposure induced liver lipid metabolism disorders in mice and significantly decreased SFRP5 mRNA and protein levels in a concentration-dependent manner.SFRP5 overexpression in AML12cells suppressed MC-LR-induced inflammation.Overexpression of SFRP5 also inhibited Wnt5a and phosphorylation of JNK.Conclusion MC-LR can induce lipid metabolism disorders in mice,and SFRP5 can attenuate lipid metabolism disorders in the mouse liver by inhibiting Wnt5a/JNK signaling.展开更多
BACKGROUND: The p25-activated cyclin-dependent protein kinase 5 (Cdk5) may induce neuronal cell death and cause the development of dementia following cerebral ischemia and reperfusion. OBJECTIVE: To observe change...BACKGROUND: The p25-activated cyclin-dependent protein kinase 5 (Cdk5) may induce neuronal cell death and cause the development of dementia following cerebral ischemia and reperfusion. OBJECTIVE: To observe changes in the expression of Cdk5 and p25 in hippocampal tissue of vascular dementia mice at different time points following cerebral ischemia and reperfusion. DESIGN, TIME AND SETTING: A randomized, controlled animal experiment was performed in the clinical trial center of Hebei Provincial People's Hospital between September 2007 and October 2008. MATERIALS: Cdk5 rabbit anti-mouse polyclonal antibody, p35 rabbit anti-mouse polyclonal antibody, and β-actin mouse monoclonal antibody were purchased from Santa Cruz Biotechnology, Inc., USA; horseradish peroxidase-labeled goat anti-rabbit IgG and horseradish peroxidase-labeled goat anti-mice IgG were offered by Beijing Zhongshan Geldenbridye Biotechnology Co.,Ltd., China; the protein quantitative kit was produced by Applygen Gene Technology Corp., Beijing, China; cDNA reverse transcription and PCR amplification reagents were products of TianGen& Biotech (Beijing) Co.,Ltd., China. METHODS: One hundred and sixty male Kunming mice were randomly divided into two groups: a sham-operated group (n = 65) and a model group (n = 95). Vascular dementia was induced with three periods of transient ischemia and reperfusion of the bilateral common carotid arteries. In the sham-operated group, the bilateral common carotid arteries were not blocked. MAIN OUTCOME MEASURES: Behavioral tests were done at four and six weeks post surgery. Pathological changes in the hippocampal CA1 region were observed with hematoxylin-eosin staining Cdk5 mRNA expression was examined by RT-PCR, and Western blots were used to evaluate Cdk5 and p25 expression. Learning and memory performance were assayed using the Morris water maze. RESULTS: Vascular dementia reduced learning and memory performance at 4 and 6 weeks post surgery. Vascular dementia also caused severe, time-dependent neuronal damage and death in the hippocampal CA1 region. Dementia induction also increased mRNA and protein expression of Cdk5 and p25 at both 4 and 6 weeks after surgery. CONCLUSION: Cdk5/p25 is involved in the development of vascular dementia in mice following cerebral ischemia and reperfusion.展开更多
It is known that human papillomavirus (HPV) infection can cause squamous cell neoplasms at several sites, such as cervix uteri carcinoma and oral squamous carcinoma. There is little information on the expression of ...It is known that human papillomavirus (HPV) infection can cause squamous cell neoplasms at several sites, such as cervix uteri carcinoma and oral squamous carcinoma. There is little information on the expression of HPV and its predictive markers in tumours of the major and minor salivary glands of the head and neck. We therefore assessed oral salivary gland neoplasms to identify associations between HPV and infection-related epidermal growth factor receptor (EGFR), cyclin-dependent kinase inhibitor 2A (CDKN2A/p16) and tumour protein p53 (TP53). Formalin-fixed, paraffin-embedded tissue samples from oral salivary gland carcinomas (n=51) and benign tumours (n=26) were analysed by polymerase chain reaction (PCR) analysis for several HPV species, including high-risk types 16 and 18. Evaluation of EGFR, CDKN2A, TP53 and cytomegalovirus (CMV) was performed by immunohistochemistry. Epstein-Barr virus (EBV) was evaluated by EBV-encoded RNA in situ hybridisation. We demonstrated that salivary gland tumours are not associated with HPV infection. The expression of EGFR, CDKN2A and TP53 may be associated with tumour pathology but is not induced by HPV. CMV and EBV were not detectable. In contrast to oral squamous cell carcinomas, HPV, CMV and EBV infections are not associated with malignant or benign neoplastic lesions of the salivary glands.展开更多
OBJECTIVE Previous studies have demonstrated acetylcholine muscarinic 4(M4) receptor regulates DARPP-32 phosphorylation at Thr75 in isolated medium spiny neurons(MSNs),indicating antagonistic mechanism with D1 depende...OBJECTIVE Previous studies have demonstrated acetylcholine muscarinic 4(M4) receptor regulates DARPP-32 phosphorylation at Thr75 in isolated medium spiny neurons(MSNs),indicating antagonistic mechanism with D1 dependent signal cascade,but the exact molecular mechanisms remain unclearly.In this study,we investigated the roles of M4 receptor in modulation D1 dependent signal to integrate striatal DA inputs in isolated MSNs.METHODS(1)Lentivirus technology was employed to genetically knock down the M4 receptor of MSNs;(2) Apomorphine(APO),acts as a dopamine receptor agonist,while SCH23390,acts as a selective antagonist for D1,were used to study the pharmacologically profiles with D1 receptor stimulation or blockade,respectively.Then the no subtype-selective muscarinic agonist oxotremorine M(OX) were used to show that mAchRs activation,in order to dissect the particular function of M4,a selective M4 antagonist,MT3 was used;(3) Intracellular cAMP production of MSNs was measured by using time resolved fluorescence resonance energy transfer detection method;(4) Laser confocal was used to explore the expression of M4 and D1 in MSNs;(5) Immunofluorescence cytochemistry and Western blotting were used to confirm the alteration of signaling molecular including P-CREB,DARPP-32 P-Thr34,DARPP-32 P-Thr75,cyclin-dependent kinase 5(CDK5) as wel as p25/35,which are involved in DA-dependent signaling modulations.RESULTS Firstly,TR-FRET assay revealed APO(10-2 mol·L^(-1))significantly increased the level of intracellular cAMP(vs control,n=3,P<0.01),also Western blotting results showed that APO(10-6 mol · L^(-1))increased DARPP-32 Thr34 phosphorylation(vs control,n=3,P<0.01),and these effect were reversed by D1 receptor antagonist SCH23390(vs APO,n=3,P<0.01).Interestingly,we confirmed that OX(10-6 mol · L^(-1)) down-regulated APO-induced DARPP-32 Thr34 phosphorylation(vs APO,n=3,P<0.01),due to its effects on DARPP-32 phosphorylation at Thr75.The results presented the antagonistic mechanism of mAchRs stimulation with D1 dependent signal cascade in MSNs.Meanwhile,OX(10-7,10-6 and10^(-5) mol·L^(-1)) stimulated DARPP-32 phosphorylation at Thr75,and simultaneously up regulated P25/35 and CDK5 activity(vs control,n=3,P<0.01) by using Western blotting assay.Furthermore,roscovitine(10^(-5) mol · L^(-1)),acts as a CDK5 inhibitor,suppressed CDK5 activity(vs control,n=10,P<0.01),and fully inhibited OX-induced DARPP-32 Thr75 phosphorylation(vs OX,n=10,P<0.01).More important,pretreated with roscovitine(10^(-5) mol·L^(-1)),the effect of APO on DARPP-32 Thr34 phosphorylation was potentiated(vs APO,n=3,P<0.05).The result presented CDK5 is required in suppression of APO on DARPP-32 Thr34 phosphorylation mediated through mAchRs stimulation.In addition,laser confocal results showed that the CDK5 up-regulation was mostly confined to MSNs co-expressing M4,which means that M4 participated in CDK5-mediated phosphorylation of DARPP-32 at Thr75.Consistently,immunofluorescence and Western blotting results confirmed that both genetic knockdown and pharmacologic inhibition of M4 receptors with MT3(10-7 mol · L^(-1)) down-regulated the OX-induced the expression of CDK5(vs OX,n=3,P<0.01) and P25/35(vs OX,n=3,P<0.01)in isolated MSNs.CONCLUSION M4 receptor may play an important role in antagonistic regulation D1 dependent signaling,in which CDK5 is required for suppressing D1-DARPP-32 Thr34 phosphorylation in isolated medium spiny neurons.展开更多
Objective Kidney renal clear cell carcinoma(KIRC)is a common renal malignancy that has a poor prognosis.As a member of the F box family,cyclin F(CCNF)plays an important regulatory role in normal tissues and tumors.How...Objective Kidney renal clear cell carcinoma(KIRC)is a common renal malignancy that has a poor prognosis.As a member of the F box family,cyclin F(CCNF)plays an important regulatory role in normal tissues and tumors.However,the underlying mechanism by which CCNF promotes KIRC proliferation still remains unclear.Methods Bioinformatics methods were used to analyze The Cancer Genome Atlas(TCGA)database to obtain gene expression and clinical prognosis data.The CCK8 assay,EdU assay,and xenograft assay were used to detect cell proliferation.The cell senescence and potential mechanism were assessed by SA-β-gal staining,Western blotting,as well as ELISA.Results Our data showed that CCNF was highly expressed in KIRC patients.Meanwhile,downregulation of CCNF inhibited cell proliferation in vivo and in vitro.Further studies showed that the reduction of CCNF promoted cell senescence by decreasing cyclin-dependent kinase 1(CDK1),increasing the proinflammatory factors interleukin(IL)-6 and IL-8,and then enhancing the expression of p21 and p53.Conclusion We propose that the high expression of CCNF in KIRC may play a key role in tumorigenesis by regulating cell senescence.Therefore,CCNF shows promise as a new biomarker to predict the clinical prognosis of KIRC patients and as an effective therapeutic target.展开更多
BACKGROUND Pathological complete response(pCR) is rare in hormone receptor-positive(HR+)HER2-negative breast cancer(BC) treated with either endocrine therapy(ET) or chemotherapy. Radical resection of locoregional rela...BACKGROUND Pathological complete response(pCR) is rare in hormone receptor-positive(HR+)HER2-negative breast cancer(BC) treated with either endocrine therapy(ET) or chemotherapy. Radical resection of locoregional relapse, although potentially curative in some cases, is challenging when the tumor invades critical structures.The oral cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with ET has obtained a significant increase in objective response rates and progression-free survival in patients with advanced BC and is now being evaluated in the neoadjuvant setting. We present a clinical case of a patient with an inoperable locoregional relapse of HR+ HER2-negative BC who experienced p CR after treatment with palbociclib.CASE SUMMARY We report the clinical case of a 60-year-old patient who presented with an inoperable locoregional relapse of HR+, HER2-negative BC 10 years after the diagnosis of the primary tumor. During a routine follow-up visit, breast magnetic resonance imaging and positron emission tomography/computed tomography revealed a 4-cm lesion in the right subclavicular region, infiltrating the chest wall and extending to the subclavian vessels, but without bone or visceral involvement. Treatment was begun with palbociclib plus letrozole, converting the disease to operability over a period of 6 mo. Surgery was performed and a p CR achieved. Of note, during treatment the patient experienced a very uncommon toxicity characterized by burning tongue and glossodynia associated with dysgeusia, paresthesia, dysesthesia, and xerostomia. A reduction in the dose of palbociclib did not provide relief and treatment with the inhibitor was thus discontinued, resolving the tongue symptoms. Laboratory exams were unremarkable. Given that this was a late relapse, the tumor was classified asendocrine-sensitive, a condition associated with high sensitivity to palbociclib.CONCLUSION This case highlights the potential of the cyclin-dependent kinase 4/6 inhibitor plus ET combination to achieve pCR in locoregional relapse of BC, enabling surgical resection of a lesion initially considered inoperable.展开更多
The adenosine monophosphate-activated protein kinase (AMPK) and p70 ribosomal S6 kinase-1 pathway may serve as a key signaling flow that regulates energy metabolism; thus, this pathway becomes an attractive target for...The adenosine monophosphate-activated protein kinase (AMPK) and p70 ribosomal S6 kinase-1 pathway may serve as a key signaling flow that regulates energy metabolism; thus, this pathway becomes an attractive target for the treatment of liver diseases that result from metabolic derangements. In addition, AMPK emerges as a kinase that controls the redox-state and mitochondrial function, whose activity may be modulated by antioxidants. A close link exists between fuel metabolism and mitochondrial biogenesis. The relationship between fuel metabolism and cell survival strongly implies the existence of a shared signaling network, by which hepatocytes respond to challenges of external stimuli. The AMPK pathway may belong to this network. A series of drugs and therapeutic candidates enable hepatocytes to protect mitochondria from radical stress and increase cell viability, which may be associated with the activation of AMPK, liver kinase B1, and other molecules or components. Consequently, the components downstream of AMPK may contribute to stabilizing mitochondrial membrane potential for hepatocyte survival. In this review, we discuss the role of the AMPK pathway in hepatic energy metabolism and hepatocyte viability. This information may help identify ways to prevent and/or treat hepatic diseases caused by the metabolic syndrome. Moreover, clinical drugs and experimental therapeutic candidates that directly or indirectly modulate the AMPK pathway in distinct manners are discussed here with particular emphasis on their effects on fuel metabolism and mitochondrial function.展开更多
Metabolic syndrome is a pre-diabetic state characterized by several biochemical and physiological alterations,including insulin resistance,visceral fat accumulation,and dyslipidemias,which increase the risk for develo...Metabolic syndrome is a pre-diabetic state characterized by several biochemical and physiological alterations,including insulin resistance,visceral fat accumulation,and dyslipidemias,which increase the risk for developing cardiovascular disease.Metabolic syndrome is associated with augmented sympathetic tone,which could account for the etiology of pre-diabetic cardiomyopathy.This review summarizes the current knowledge of the pathophysiological consequences of enhanced and sustainedβ-adrenergic response in pre-diabetes,focusing on cardiac dysfunction reported in diet-induced experimental models of pre-diabetic cardiomyopathy.The research reviewed indicates that both protein kinase A and Ca^(2+)/calmodulin-dependent protein kinase Ⅱ play important roles in functional responses mediated byβ1-adrenoceptors;therefore,alterations in the expression or function of these kinases can be deleterious.This review also outlines recent information on the role of protein kinase A and Ca^(2+)/calmodulin-dependent protein kinase Ⅱ in abnormal Ca^(2+)handling by cardiomyocytes from diet-induced models of pre-diabetic cardiomyopathy.展开更多
To understand the function of phosphoenolpyruvate carboxylase kinase,we introduced PtPEPCK1 gene under the control of 35S promoter into 84K poplar(Populus alba×P.glandulosa).PtPEPCK1 gene is well-known for its ro...To understand the function of phosphoenolpyruvate carboxylase kinase,we introduced PtPEPCK1 gene under the control of 35S promoter into 84K poplar(Populus alba×P.glandulosa).PtPEPCK1 gene is well-known for its role in gluconeogenesis.However,our data confi rmed that it has signifi cant eff ects on amino acid biosynthesis and nitrogen metabolism.Immunohistochemistry and fl uorescence microscopy indicate that PtPEPCK1 is specifi cally expressed in the cytoplasm of the spongy and palisade tissues.Overexpression of PtPEPCK1 was characterized through transcriptomics and metabolomics.The metabolites concentration of the ornithine cycle and its precursors also increased,of which N-acetylornithine was up-regulated almost 50-fold and ornithine 33.7-fold.These were accompanied by a massive increase in levels of several amino acids.Therefore,overexpression of PtPEPCK1 increases amino acid levels with urea cycle disorder.展开更多
OBJECTIVE To investigate berberine(BBR)attenuates arthritis in adjuvant-induced arthritic(AA)rats associated with regulating the energy metabolism and correcting the polarization of macrophages through activation of A...OBJECTIVE To investigate berberine(BBR)attenuates arthritis in adjuvant-induced arthritic(AA)rats associated with regulating the energy metabolism and correcting the polarization of macrophages through activation of AMP-activated protein kinase(AMPK)and inhibition of hypoxia inducible factor 1α(HIF-1α).METHODS AA rats were treated with BBR(40,80,or 160 mg·kg-1)from days 15 to 29 after immunization.The histopathology of ankle joint was examined through hematoxylin-eosin(HE)staining.The concentrations of tumour necrosis factor-α(TNF-α),interleukin-6(IL-6),IL-1β,IL-2,IL-17A,interferon-gamma(IFN-γ),monocyte chemotactic protein 1(MCP-1),IL-4,IL-10,transforming growth factor-β1(TGF-β1),ATP,and lactic acid were measured by using ELISA kits.The percentage of M1 and M2 macro⁃phage cells in joint tissues were evaluated by immune-fluorescence.The expressions of p-AMPK and HIF-1αin joint of AA rats were determined according to immunohistochemistry analysis.The migration of macrophage was detected by Transwell assays.The expression of inducible nitric oxide synthase(iNOS),Arginase-1(Arg1),p-AMPK,AMPK and HIF-1αwere examined by Western blotting.The labeled macrophages were observed with laser confocal microscopy.RESULTS BBR relieved signs and symptoms of AA rats and reversed pathological changes.BBR treatment group exhibited decreases in pro-inflammatory cytokines(TNF-α,IL-1β,IL-6,IL-2,IL-17A,IFN-γ,and MCP-1)coupled with increases anti-inflammatory cytokines(IL-4,IL-10,TGF-β1)in the serum.The number of M1 macrophage was reduced,while the number of M2 macrophage was increased in BBR group joint tissues.Moreover,BBR showed marked up-regu⁃lation the expression of p-AMPK and down-regulation the expression of HIF-1αin joint of AA rats.Next in vitro study,we found BBR up-regulated the expression of p-AMPK,Arg1(M2 marker)and down-regulated the expression of HIF-1α,iNOS(M1 marker)induced by LPS in peritoneal macrophages from normal SD rat.Furthermore,BBR treatment inhibited the migration of macrophages stimulated by LPS.The level of ATP was elevated and lactic acid was reduced in LPSinduced macrophages after treated by BBR.However,Compound C significantly attenuated the effects of BBR on acti⁃vated macrophages.CONCLUSION BBR alleviates inflammation by regulating energy metabolism and correcting the polarization of macrophage through AMPK-HIF-1αpathway.BBR might have great therapeutic value for RA.展开更多
Obesity is crucially involved in many metabolic diseases,such as type 2 diabetes,cardiovascular disease and cancer.Regulating the number or size of adipocytes has been suggested to be a potential treatment for obesity...Obesity is crucially involved in many metabolic diseases,such as type 2 diabetes,cardiovascular disease and cancer.Regulating the number or size of adipocytes has been suggested to be a potential treatment for obesity.In this study,we investigated the effect of pyrocincholic acid 3β-O-β-D-quinovopyranosyl-28-O-β-D-glucopyranoside(PAQG),a 27-nor-oleanolic acid saponin extracted from Metadina trichotoma,on adipogenesis and lipid metabolism in 3T3-L1 adipocytes.The 3T3-L1 pre-adipocytes were incubated with vehicle or PAQG for 6 days in differentiation process.PAQG significantly reduced the adipogenesis,adiponectin secretion and the expression level of key transcription factors related to adipogenesis,such as PPARc,C/EBPb,C/EBPa,and FABP4.Moreover,PAQG increased the levels of FFA and glycerol in medium and reduced TG level in mature adipocytes.Interestingly,PAQG not only promoted the activation of AMPK and genes involved in fatty oxidation including PDK4 and CPT1a,but also inhibited those genes involved in fatty acid biosynthesis,such as SREBP1c,FAS,ACCa and SCD1.In conclusion,PAQG inhibits the differentiation and regulates lipid metabolism of 3T3-L1 cells via AMPK pathway,suggesting that PAQG may be a novel and promising natural product for the treatment of obesity and hyperlipidemia.展开更多
Background:Metabolic stress has been proposed to contribute to neuronal damage in glaucoma,but the mechanism driving this response is not understood.The adenosine monophosphate-activated protein kinase(AMPK)is a maste...Background:Metabolic stress has been proposed to contribute to neuronal damage in glaucoma,but the mechanism driving this response is not understood.The adenosine monophosphate-activated protein kinase(AMPK)is a master regulator of energy homeostasis that becomes active at the onset of energy stress.AMPK is a potent inhibitor of the mammalian target of rapamycin complex 1(mTORC1),which we showed is essential for the maintenance of retinal ganglion cell(RGC)dendrites,synapses,and survival.Here,we tested the hypothesis that AMPK is an early mediator of metabolic stress in glaucoma.Methods:Unilateral elevation of intraocular pressure was induced by injection of magnetic microbeads into the anterior chamber of mice expressing yellow fluorescent protein in RGCs.Inhibition of AMPK was achieved by administration of siRNA or compound C.RGC dendritic trees were 3D-reconstructed and analyzed with Imaris(Bitplane),and survival was assessed by counting Brn3a or RBPMS-labeled soma and axons in the optic nerve.RGC function was examined by quantification of anterograde axonal transport after intraocular administration of cholera toxinβ-subunit.Retinas from glaucoma patients were analyzed for expression of active AMPK.Results:Ocular hypertension triggered rapid upregulation of AMPK activity in RGCs concomitant with loss of mTORC1 function.AMPK inhibition with compound C or siRNA effectively restored mTORC1 activity and promoted an increase in total dendritic length,surface and complexity relative to control retinas.Attenuation of AMPK activity led to robust RGC soma and axon survival.For example,95%of RGCs(2,983±258 RGCs/mm2,mean±S.E.M.)survived with compound C compared to 77%in vehicle-treated eyes(2,430±233 RGCs/mm2)(ANOVA,P<0.001)at three weeks after glaucoma induction(n=8-10/group).Importantly,blockade of AMPK activity effectively restored anterograde axonal transport.Lastly,RGC-specific upregulation of AMPK activity was detected in human glaucomatous retinas relative to age-matched controls(n=10/group).Conclusions:Metabolic stress in glaucoma involves AMPK activation and mTORC1 inhibition promoting early RGC dendritic pathology,dysfunction and neurodegeneration.展开更多
Diabetic peripheral neuropathy (DPN) is a common and devastating complication of diabetes, for which effective therapies are currently lacking. Disturbed energy status plays a crucial role in DPN pathogenesis. However...Diabetic peripheral neuropathy (DPN) is a common and devastating complication of diabetes, for which effective therapies are currently lacking. Disturbed energy status plays a crucial role in DPN pathogenesis. However, the integrated profile of energy metabolism, especially the central carbohydrate metabolism, remains unclear in DPN. Here, we developed a metabolomics approach by targeting 56 metabolites using high-performance ion chromatography-tandem mass spectrometry (HPIC-MS/MS) to illustrate the integrative characteristics of central carbohydrate metabolism in patients with DPN and streptozotocin-induced DPN rats. Furthermore, JinMaiTong (JMT), a traditional Chinese medicine (TCM) formula, was found to be effective for DPN, improving the peripheral neurological function and alleviating the neuropathology of DPN rats even after demyelination and axonal degeneration. JMT ameliorated DPN by regulating the aberrant energy balance and mitochondrial functions, including excessive glycolysis restoration, tricarboxylic acid cycle improvement, and increased adenosine triphosphate (ATP) generation. Bioenergetic profile was aberrant in cultured rat Schwann cells under high-glucose conditions, which was remarkably corrected by JMT treatment. In-vivo and in-vitro studies revealed that these effects of JMT were mainly attributed to the activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and downstream peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Our results expand the therapeutic framework for DPN and suggest the integrative modulation of energy metabolism using TCMs, such as JMT, as an effective strategy for its treatment.展开更多
The prevalence of metabolic dysfunction-associated steatotic liver disease(MASLD)has increased significantly in recent decades and is projected to increase further due to the rising obesity rates.MASLD patients are at...The prevalence of metabolic dysfunction-associated steatotic liver disease(MASLD)has increased significantly in recent decades and is projected to increase further due to the rising obesity rates.MASLD patients are at higher risk of developing advanced liver diseases“cirrhosis and hepatocellular carcinoma”as well as liver-or cardiovascular-related mortality.Existing lipid-lowering therapies failed to reduce the risk of mortality in these patients.Therefore,there is an urgent need for pharmacotherapies that can control and even reverse this disease.Fanlian Huazhuo Formula(FLHZF)is a combination herbal preparation,and its various individual constituents regulate hepatic lipid metabolism,adipose tissue inflammation,and gut microbiota.Despite,these useful effects,limited information is available on its benefits in diet-induced hepatosteatosis.In this article,we discuss the research findings recently published about the therapeutic effects of FLHZF in suppressing MASLD development and underlying mechanisms.Utilizing a series of in vitro and in vivo experiments,the authors demonstrated for the first time that FLHZF suppresses MASLD in male mice possibly by inhibiting hepatic de novo lipogenesis pathways and reducing hepatocyte death.This study paves the way for future investigations aimed at investigating FLHZF’s role in inhibiting lipogenesis particularly using radioactively-labeled glucose and acetate,and governing hepatocyte mitochondrial function,gut microbiome profile,and its effects in other models of MASLD,and female mice.展开更多
Studies have shown that glycolysis increases during seizures, and that the glycolytic metabolite lactic acid can be used as an energy source. However, how lactic acid provides energy for seizures and how it can partic...Studies have shown that glycolysis increases during seizures, and that the glycolytic metabolite lactic acid can be used as an energy source. However, how lactic acid provides energy for seizures and how it can participate in the termination of seizures remains unclear. We reviewed possible mechanisms of glycolysis involved in seizure onset. Results showed that lactic acid was involved in seizure onset and provided energy at early stages. As seizures progress, lactic acid reduces the pH of tissue and induces metabolic acidosis, which terminates the seizure. The specific mechanism of lactic acid-induced acidosis involves several aspects, which include lactic acid-induced inhibition of the glycolytic enzyme 6-diphosphate kinase-1, inhibition of the N-methyl-D-aspartate receptor, activation of the acid-sensitive 1A ion channel, strengthening of the receptive mechanism of the inhibitory neurotransmitter Y-aminobutyric acid, and changes in the intra- and extracellular environment.展开更多
宰后能量代谢是影响肉嫩度的关键生化途径,其中糖酵解是宰后能量代谢的主导过程,其进程受到众多因素的调控。本文综述了影响宰后糖酵解进程的因素及具体影响机制。一磷酸腺苷活化蛋白激酶(AMP-activated protein kinase,AMPK)和沉默信...宰后能量代谢是影响肉嫩度的关键生化途径,其中糖酵解是宰后能量代谢的主导过程,其进程受到众多因素的调控。本文综述了影响宰后糖酵解进程的因素及具体影响机制。一磷酸腺苷活化蛋白激酶(AMP-activated protein kinase,AMPK)和沉默信息调节因子1(sirtuin 1,SIRT1)是宰后糖酵解的重要上游调控因子,本文重点概括了AMPK/SIRT1信号通路对糖酵解及宰后内源酶系的影响,并解析其作用机制,以期为AMPK/SIRT1信号通路调控肉的嫩度提供新思路。展开更多
背景:巨噬细胞的能量代谢和极化状态在动脉粥样硬化的进展中起关键作用。中医药通过调控巨噬细胞代谢途径展示出防治动脉粥样硬化的潜力。目的:综述腺苷酸活化蛋白激酶调控巨噬细胞能量代谢和极化状态的研究进展,并探讨中医药防治动脉...背景:巨噬细胞的能量代谢和极化状态在动脉粥样硬化的进展中起关键作用。中医药通过调控巨噬细胞代谢途径展示出防治动脉粥样硬化的潜力。目的:综述腺苷酸活化蛋白激酶调控巨噬细胞能量代谢和极化状态的研究进展,并探讨中医药防治动脉粥样硬化的作用机制。方法:计算机检索Web of Science、PubMed及中国知网等数据库,检索时限为各数据库建库至2024年6月。中文检索词为“AMPK,脂肪酸氧化,巨噬细胞极化,中药,动脉粥样硬化,冠心病”等;英文检索词为“AMPK,fatty acid oxidation,macrophage polarization,Traditional Chinese Medicine,atherosclerosis,coronary heart disease”等,最终纳入62篇文献。结果与结论:①巨噬细胞的能量代谢从氧化磷酸化向糖酵解的转变,在动脉粥样硬化进展中起关键作用。在巨噬细胞中腺苷酸活化蛋白激酶激活后,通过促进脂肪酸氧化和M2型极化,发挥抗炎和稳定动脉斑块的作用。②中药单药(如人参、黄芪、黄精等)及复方(如黄连解毒汤、养心舒脉颗粒、调肝导浊方等)通过调控腺苷酸活化蛋白激酶途径干预核因子κB、过氧化物酶体增殖物激活受体γ、哺乳动物雷帕霉素靶蛋白等多条信号通路影响巨噬细胞的代谢方式,改变细胞功能,从而发挥治疗疾病的作用。③未来的研究应关注腺苷酸活化蛋白激酶、代谢与极化途径的相互作用,以及中药如何通过这些途径发挥治疗作用,为动脉粥样硬化的治疗提供新的策略。展开更多
基金Supported by the National Natural Science Foundation of China,No.82272996the Science and Technology Program of Guangzhou,No.202206010081.
文摘Colorectal cancer(CRC)ranks third in the number of cancers mainly because of the inability to diagnose it at an early stage.The pathogenesis of CRC is complicated,which is the result of the complex interaction of multiple genetic and environmental factors.Currently,one of the main treatments for CRC is chemotherapy.But the primary cause of CRC treatment failure is drug resistance.The expression of cyclin-dependent kinase 9(CDK9)was correlated with elevated autophagy levels in colon cancer,and high expression of CDK9 indicates a poor prognosis in CRC.The incidence of autophagy and the expressions of Beclin 1 and ATP binding cassette transporter G2 are different in left and right colon cancer,and autophagy may be involved in the occurrence of chemotherapy resistance.In this article,the roles of CDK9,ATP binding cassette transporter G2 and Beclin 1 in CRC were elucidated,emphasizing the linkages among them and providing potential therapeutic targets of CRC.
文摘This study was designed to investigate the relationship of the expression of cyclin-dependent kinases (CDKs) with theeffects of all-trans retinoic acid (ATRA) on the proliferation of HL-cells. HL-60 cells were treated with ATRA for 1-4 d. Then thecapacity of DNA Synthesis was evaluated with 3H-TdR incorporation and the expression of cyclin E, cyclin D, CDK2 and CDK4protein determined with immunocytochemical staining. In addition, the expression Of CDC2, CDK2 and CDK4 mRNA was deter-mined with in situ hybridization. It was found that ATRA suppressed the proliferation of HL-60 cells and decreased their capacityof DNA synthesis to result in a down-regulation of the expression of cyclin E, cyclin D and CDC2 without comcomittant suppressionon the expression of CDK2 and CDK4. It is concluded that the effects of ATRA on the proliferation of HL-60 cells may be relatedto the down-regulation of the expression of cyclin E, cyclin D and CDC2.
基金supported by the Projects of the National Key R&D Program of China,Nos.2021YFC2400803(to YO),2021YFC2400801(to YQ)the National Natural Science Foundation of China,Nos.82002290(to YQ),82072452(to YO),82272475(to YO)+5 种基金the Young Elite Scientist Sponsorship Program by Cast,No.YESS20200153(to YQ)the Sino-German Mobility Programme,No.M-0699(to YQ)the Excellent Youth Cultivation Program of Shanghai Sixth People’s Hospital,No.ynyq202201(to YQ)the Shanghai Sailing Program,No.20YF1436000(to YQ)the Medical Engineering Co-Project of University of Shanghai for Science and Technology,10-22-310-520(to YO)a grant from Shanghai Municipal Health Commission,No.202040399(to YO).
文摘Diabetic peripheral neuropathy is a common complication of diabetes mellitus.Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies.However,existing limited treatments for diabetic peripheral neuropathy expose the urgent need for cell metabolism research.Given the lack of comprehensive understanding of energy metabolism changes and related signaling pathways in diabetic peripheral neuropathy,it is essential to explore energy changes and metabolic changes in diabetic peripheral neuropathy to develop suitable treatment methods.This review summarizes the pathophysiological mechanism of diabetic peripheral neuropathy from the perspective of cellular metabolism and the specific interventions for different metabolic pathways to develop effective treatment methods.Various metabolic mechanisms(e.g.,polyol,hexosamine,protein kinase C pathway)are associated with diabetic peripheral neuropathy,and researchers are looking for more effective treatments through these pathways.
基金supported by the Natural Science Research Project of colleges and Universities in Anhui Province[2022AH052336]High Level Talent Research Initiation Fund Of Anhui Medical College[2023RC004]。
文摘Objective Microcystin-leucine-arginine(MC-LR)exposure induces lipid metabolism disorders in the liver.Secreted frizzled-related protein 5(SFRP5)is a natural antagonist of winglesstype MMTV integration site family,member 5A(Wnt5a)and an anti-inflammatory adipocytokine.In this study,we aimed to investigate whether MC-LR can induce lipid metabolism disorders in hepatocytes and whether SFRP5,which has anti-inflammatory effects,can alleviate the effects of hepatic lipid metabolism by inhibiting the Wnt5a/Jun N-terminal kinase(JNK)pathway.Methods We exposed mice to MC-LR in vivo to induce liver lipid metabolism disorders.Subsequently,mouse hepatocytes that overexpressed SFRP5 or did not express SFRP5 were exposed to MC-LR,and the effects of SFRP5 overexpression on inflammation and Wnt5a/JNK activation by MC-LR were observed.Results MC-LR exposure induced liver lipid metabolism disorders in mice and significantly decreased SFRP5 mRNA and protein levels in a concentration-dependent manner.SFRP5 overexpression in AML12cells suppressed MC-LR-induced inflammation.Overexpression of SFRP5 also inhibited Wnt5a and phosphorylation of JNK.Conclusion MC-LR can induce lipid metabolism disorders in mice,and SFRP5 can attenuate lipid metabolism disorders in the mouse liver by inhibiting Wnt5a/JNK signaling.
文摘BACKGROUND: The p25-activated cyclin-dependent protein kinase 5 (Cdk5) may induce neuronal cell death and cause the development of dementia following cerebral ischemia and reperfusion. OBJECTIVE: To observe changes in the expression of Cdk5 and p25 in hippocampal tissue of vascular dementia mice at different time points following cerebral ischemia and reperfusion. DESIGN, TIME AND SETTING: A randomized, controlled animal experiment was performed in the clinical trial center of Hebei Provincial People's Hospital between September 2007 and October 2008. MATERIALS: Cdk5 rabbit anti-mouse polyclonal antibody, p35 rabbit anti-mouse polyclonal antibody, and β-actin mouse monoclonal antibody were purchased from Santa Cruz Biotechnology, Inc., USA; horseradish peroxidase-labeled goat anti-rabbit IgG and horseradish peroxidase-labeled goat anti-mice IgG were offered by Beijing Zhongshan Geldenbridye Biotechnology Co.,Ltd., China; the protein quantitative kit was produced by Applygen Gene Technology Corp., Beijing, China; cDNA reverse transcription and PCR amplification reagents were products of TianGen& Biotech (Beijing) Co.,Ltd., China. METHODS: One hundred and sixty male Kunming mice were randomly divided into two groups: a sham-operated group (n = 65) and a model group (n = 95). Vascular dementia was induced with three periods of transient ischemia and reperfusion of the bilateral common carotid arteries. In the sham-operated group, the bilateral common carotid arteries were not blocked. MAIN OUTCOME MEASURES: Behavioral tests were done at four and six weeks post surgery. Pathological changes in the hippocampal CA1 region were observed with hematoxylin-eosin staining Cdk5 mRNA expression was examined by RT-PCR, and Western blots were used to evaluate Cdk5 and p25 expression. Learning and memory performance were assayed using the Morris water maze. RESULTS: Vascular dementia reduced learning and memory performance at 4 and 6 weeks post surgery. Vascular dementia also caused severe, time-dependent neuronal damage and death in the hippocampal CA1 region. Dementia induction also increased mRNA and protein expression of Cdk5 and p25 at both 4 and 6 weeks after surgery. CONCLUSION: Cdk5/p25 is involved in the development of vascular dementia in mice following cerebral ischemia and reperfusion.
文摘It is known that human papillomavirus (HPV) infection can cause squamous cell neoplasms at several sites, such as cervix uteri carcinoma and oral squamous carcinoma. There is little information on the expression of HPV and its predictive markers in tumours of the major and minor salivary glands of the head and neck. We therefore assessed oral salivary gland neoplasms to identify associations between HPV and infection-related epidermal growth factor receptor (EGFR), cyclin-dependent kinase inhibitor 2A (CDKN2A/p16) and tumour protein p53 (TP53). Formalin-fixed, paraffin-embedded tissue samples from oral salivary gland carcinomas (n=51) and benign tumours (n=26) were analysed by polymerase chain reaction (PCR) analysis for several HPV species, including high-risk types 16 and 18. Evaluation of EGFR, CDKN2A, TP53 and cytomegalovirus (CMV) was performed by immunohistochemistry. Epstein-Barr virus (EBV) was evaluated by EBV-encoded RNA in situ hybridisation. We demonstrated that salivary gland tumours are not associated with HPV infection. The expression of EGFR, CDKN2A and TP53 may be associated with tumour pathology but is not induced by HPV. CMV and EBV were not detectable. In contrast to oral squamous cell carcinomas, HPV, CMV and EBV infections are not associated with malignant or benign neoplastic lesions of the salivary glands.
文摘OBJECTIVE Previous studies have demonstrated acetylcholine muscarinic 4(M4) receptor regulates DARPP-32 phosphorylation at Thr75 in isolated medium spiny neurons(MSNs),indicating antagonistic mechanism with D1 dependent signal cascade,but the exact molecular mechanisms remain unclearly.In this study,we investigated the roles of M4 receptor in modulation D1 dependent signal to integrate striatal DA inputs in isolated MSNs.METHODS(1)Lentivirus technology was employed to genetically knock down the M4 receptor of MSNs;(2) Apomorphine(APO),acts as a dopamine receptor agonist,while SCH23390,acts as a selective antagonist for D1,were used to study the pharmacologically profiles with D1 receptor stimulation or blockade,respectively.Then the no subtype-selective muscarinic agonist oxotremorine M(OX) were used to show that mAchRs activation,in order to dissect the particular function of M4,a selective M4 antagonist,MT3 was used;(3) Intracellular cAMP production of MSNs was measured by using time resolved fluorescence resonance energy transfer detection method;(4) Laser confocal was used to explore the expression of M4 and D1 in MSNs;(5) Immunofluorescence cytochemistry and Western blotting were used to confirm the alteration of signaling molecular including P-CREB,DARPP-32 P-Thr34,DARPP-32 P-Thr75,cyclin-dependent kinase 5(CDK5) as wel as p25/35,which are involved in DA-dependent signaling modulations.RESULTS Firstly,TR-FRET assay revealed APO(10-2 mol·L^(-1))significantly increased the level of intracellular cAMP(vs control,n=3,P<0.01),also Western blotting results showed that APO(10-6 mol · L^(-1))increased DARPP-32 Thr34 phosphorylation(vs control,n=3,P<0.01),and these effect were reversed by D1 receptor antagonist SCH23390(vs APO,n=3,P<0.01).Interestingly,we confirmed that OX(10-6 mol · L^(-1)) down-regulated APO-induced DARPP-32 Thr34 phosphorylation(vs APO,n=3,P<0.01),due to its effects on DARPP-32 phosphorylation at Thr75.The results presented the antagonistic mechanism of mAchRs stimulation with D1 dependent signal cascade in MSNs.Meanwhile,OX(10-7,10-6 and10^(-5) mol·L^(-1)) stimulated DARPP-32 phosphorylation at Thr75,and simultaneously up regulated P25/35 and CDK5 activity(vs control,n=3,P<0.01) by using Western blotting assay.Furthermore,roscovitine(10^(-5) mol · L^(-1)),acts as a CDK5 inhibitor,suppressed CDK5 activity(vs control,n=10,P<0.01),and fully inhibited OX-induced DARPP-32 Thr75 phosphorylation(vs OX,n=10,P<0.01).More important,pretreated with roscovitine(10^(-5) mol·L^(-1)),the effect of APO on DARPP-32 Thr34 phosphorylation was potentiated(vs APO,n=3,P<0.05).The result presented CDK5 is required in suppression of APO on DARPP-32 Thr34 phosphorylation mediated through mAchRs stimulation.In addition,laser confocal results showed that the CDK5 up-regulation was mostly confined to MSNs co-expressing M4,which means that M4 participated in CDK5-mediated phosphorylation of DARPP-32 at Thr75.Consistently,immunofluorescence and Western blotting results confirmed that both genetic knockdown and pharmacologic inhibition of M4 receptors with MT3(10-7 mol · L^(-1)) down-regulated the OX-induced the expression of CDK5(vs OX,n=3,P<0.01) and P25/35(vs OX,n=3,P<0.01)in isolated MSNs.CONCLUSION M4 receptor may play an important role in antagonistic regulation D1 dependent signaling,in which CDK5 is required for suppressing D1-DARPP-32 Thr34 phosphorylation in isolated medium spiny neurons.
基金supported by the National Natural Science Foundation of China(No.81874148 and No.82203142).
文摘Objective Kidney renal clear cell carcinoma(KIRC)is a common renal malignancy that has a poor prognosis.As a member of the F box family,cyclin F(CCNF)plays an important regulatory role in normal tissues and tumors.However,the underlying mechanism by which CCNF promotes KIRC proliferation still remains unclear.Methods Bioinformatics methods were used to analyze The Cancer Genome Atlas(TCGA)database to obtain gene expression and clinical prognosis data.The CCK8 assay,EdU assay,and xenograft assay were used to detect cell proliferation.The cell senescence and potential mechanism were assessed by SA-β-gal staining,Western blotting,as well as ELISA.Results Our data showed that CCNF was highly expressed in KIRC patients.Meanwhile,downregulation of CCNF inhibited cell proliferation in vivo and in vitro.Further studies showed that the reduction of CCNF promoted cell senescence by decreasing cyclin-dependent kinase 1(CDK1),increasing the proinflammatory factors interleukin(IL)-6 and IL-8,and then enhancing the expression of p21 and p53.Conclusion We propose that the high expression of CCNF in KIRC may play a key role in tumorigenesis by regulating cell senescence.Therefore,CCNF shows promise as a new biomarker to predict the clinical prognosis of KIRC patients and as an effective therapeutic target.
文摘BACKGROUND Pathological complete response(pCR) is rare in hormone receptor-positive(HR+)HER2-negative breast cancer(BC) treated with either endocrine therapy(ET) or chemotherapy. Radical resection of locoregional relapse, although potentially curative in some cases, is challenging when the tumor invades critical structures.The oral cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with ET has obtained a significant increase in objective response rates and progression-free survival in patients with advanced BC and is now being evaluated in the neoadjuvant setting. We present a clinical case of a patient with an inoperable locoregional relapse of HR+ HER2-negative BC who experienced p CR after treatment with palbociclib.CASE SUMMARY We report the clinical case of a 60-year-old patient who presented with an inoperable locoregional relapse of HR+, HER2-negative BC 10 years after the diagnosis of the primary tumor. During a routine follow-up visit, breast magnetic resonance imaging and positron emission tomography/computed tomography revealed a 4-cm lesion in the right subclavicular region, infiltrating the chest wall and extending to the subclavian vessels, but without bone or visceral involvement. Treatment was begun with palbociclib plus letrozole, converting the disease to operability over a period of 6 mo. Surgery was performed and a p CR achieved. Of note, during treatment the patient experienced a very uncommon toxicity characterized by burning tongue and glossodynia associated with dysgeusia, paresthesia, dysesthesia, and xerostomia. A reduction in the dose of palbociclib did not provide relief and treatment with the inhibitor was thus discontinued, resolving the tongue symptoms. Laboratory exams were unremarkable. Given that this was a late relapse, the tumor was classified asendocrine-sensitive, a condition associated with high sensitivity to palbociclib.CONCLUSION This case highlights the potential of the cyclin-dependent kinase 4/6 inhibitor plus ET combination to achieve pCR in locoregional relapse of BC, enabling surgical resection of a lesion initially considered inoperable.
基金Supported by The National Research Foundation of Korea Grant,Funded by the Korea Government(MEST),No.2010-0001706,South Korea
文摘The adenosine monophosphate-activated protein kinase (AMPK) and p70 ribosomal S6 kinase-1 pathway may serve as a key signaling flow that regulates energy metabolism; thus, this pathway becomes an attractive target for the treatment of liver diseases that result from metabolic derangements. In addition, AMPK emerges as a kinase that controls the redox-state and mitochondrial function, whose activity may be modulated by antioxidants. A close link exists between fuel metabolism and mitochondrial biogenesis. The relationship between fuel metabolism and cell survival strongly implies the existence of a shared signaling network, by which hepatocytes respond to challenges of external stimuli. The AMPK pathway may belong to this network. A series of drugs and therapeutic candidates enable hepatocytes to protect mitochondria from radical stress and increase cell viability, which may be associated with the activation of AMPK, liver kinase B1, and other molecules or components. Consequently, the components downstream of AMPK may contribute to stabilizing mitochondrial membrane potential for hepatocyte survival. In this review, we discuss the role of the AMPK pathway in hepatic energy metabolism and hepatocyte viability. This information may help identify ways to prevent and/or treat hepatic diseases caused by the metabolic syndrome. Moreover, clinical drugs and experimental therapeutic candidates that directly or indirectly modulate the AMPK pathway in distinct manners are discussed here with particular emphasis on their effects on fuel metabolism and mitochondrial function.
文摘Metabolic syndrome is a pre-diabetic state characterized by several biochemical and physiological alterations,including insulin resistance,visceral fat accumulation,and dyslipidemias,which increase the risk for developing cardiovascular disease.Metabolic syndrome is associated with augmented sympathetic tone,which could account for the etiology of pre-diabetic cardiomyopathy.This review summarizes the current knowledge of the pathophysiological consequences of enhanced and sustainedβ-adrenergic response in pre-diabetes,focusing on cardiac dysfunction reported in diet-induced experimental models of pre-diabetic cardiomyopathy.The research reviewed indicates that both protein kinase A and Ca^(2+)/calmodulin-dependent protein kinase Ⅱ play important roles in functional responses mediated byβ1-adrenoceptors;therefore,alterations in the expression or function of these kinases can be deleterious.This review also outlines recent information on the role of protein kinase A and Ca^(2+)/calmodulin-dependent protein kinase Ⅱ in abnormal Ca^(2+)handling by cardiomyocytes from diet-induced models of pre-diabetic cardiomyopathy.
基金supported by the grants from the National Natural Science Foundation of China(No.3180030530)the Fundamental Research Funds for the Central Universities(2572019BA14)
文摘To understand the function of phosphoenolpyruvate carboxylase kinase,we introduced PtPEPCK1 gene under the control of 35S promoter into 84K poplar(Populus alba×P.glandulosa).PtPEPCK1 gene is well-known for its role in gluconeogenesis.However,our data confi rmed that it has signifi cant eff ects on amino acid biosynthesis and nitrogen metabolism.Immunohistochemistry and fl uorescence microscopy indicate that PtPEPCK1 is specifi cally expressed in the cytoplasm of the spongy and palisade tissues.Overexpression of PtPEPCK1 was characterized through transcriptomics and metabolomics.The metabolites concentration of the ornithine cycle and its precursors also increased,of which N-acetylornithine was up-regulated almost 50-fold and ornithine 33.7-fold.These were accompanied by a massive increase in levels of several amino acids.Therefore,overexpression of PtPEPCK1 increases amino acid levels with urea cycle disorder.
基金National Natural Science Foundation of China(81703529)
文摘OBJECTIVE To investigate berberine(BBR)attenuates arthritis in adjuvant-induced arthritic(AA)rats associated with regulating the energy metabolism and correcting the polarization of macrophages through activation of AMP-activated protein kinase(AMPK)and inhibition of hypoxia inducible factor 1α(HIF-1α).METHODS AA rats were treated with BBR(40,80,or 160 mg·kg-1)from days 15 to 29 after immunization.The histopathology of ankle joint was examined through hematoxylin-eosin(HE)staining.The concentrations of tumour necrosis factor-α(TNF-α),interleukin-6(IL-6),IL-1β,IL-2,IL-17A,interferon-gamma(IFN-γ),monocyte chemotactic protein 1(MCP-1),IL-4,IL-10,transforming growth factor-β1(TGF-β1),ATP,and lactic acid were measured by using ELISA kits.The percentage of M1 and M2 macro⁃phage cells in joint tissues were evaluated by immune-fluorescence.The expressions of p-AMPK and HIF-1αin joint of AA rats were determined according to immunohistochemistry analysis.The migration of macrophage was detected by Transwell assays.The expression of inducible nitric oxide synthase(iNOS),Arginase-1(Arg1),p-AMPK,AMPK and HIF-1αwere examined by Western blotting.The labeled macrophages were observed with laser confocal microscopy.RESULTS BBR relieved signs and symptoms of AA rats and reversed pathological changes.BBR treatment group exhibited decreases in pro-inflammatory cytokines(TNF-α,IL-1β,IL-6,IL-2,IL-17A,IFN-γ,and MCP-1)coupled with increases anti-inflammatory cytokines(IL-4,IL-10,TGF-β1)in the serum.The number of M1 macrophage was reduced,while the number of M2 macrophage was increased in BBR group joint tissues.Moreover,BBR showed marked up-regu⁃lation the expression of p-AMPK and down-regulation the expression of HIF-1αin joint of AA rats.Next in vitro study,we found BBR up-regulated the expression of p-AMPK,Arg1(M2 marker)and down-regulated the expression of HIF-1α,iNOS(M1 marker)induced by LPS in peritoneal macrophages from normal SD rat.Furthermore,BBR treatment inhibited the migration of macrophages stimulated by LPS.The level of ATP was elevated and lactic acid was reduced in LPSinduced macrophages after treated by BBR.However,Compound C significantly attenuated the effects of BBR on acti⁃vated macrophages.CONCLUSION BBR alleviates inflammation by regulating energy metabolism and correcting the polarization of macrophage through AMPK-HIF-1αpathway.BBR might have great therapeutic value for RA.
文摘Obesity is crucially involved in many metabolic diseases,such as type 2 diabetes,cardiovascular disease and cancer.Regulating the number or size of adipocytes has been suggested to be a potential treatment for obesity.In this study,we investigated the effect of pyrocincholic acid 3β-O-β-D-quinovopyranosyl-28-O-β-D-glucopyranoside(PAQG),a 27-nor-oleanolic acid saponin extracted from Metadina trichotoma,on adipogenesis and lipid metabolism in 3T3-L1 adipocytes.The 3T3-L1 pre-adipocytes were incubated with vehicle or PAQG for 6 days in differentiation process.PAQG significantly reduced the adipogenesis,adiponectin secretion and the expression level of key transcription factors related to adipogenesis,such as PPARc,C/EBPb,C/EBPa,and FABP4.Moreover,PAQG increased the levels of FFA and glycerol in medium and reduced TG level in mature adipocytes.Interestingly,PAQG not only promoted the activation of AMPK and genes involved in fatty oxidation including PDK4 and CPT1a,but also inhibited those genes involved in fatty acid biosynthesis,such as SREBP1c,FAS,ACCa and SCD1.In conclusion,PAQG inhibits the differentiation and regulates lipid metabolism of 3T3-L1 cells via AMPK pathway,suggesting that PAQG may be a novel and promising natural product for the treatment of obesity and hyperlipidemia.
文摘Background:Metabolic stress has been proposed to contribute to neuronal damage in glaucoma,but the mechanism driving this response is not understood.The adenosine monophosphate-activated protein kinase(AMPK)is a master regulator of energy homeostasis that becomes active at the onset of energy stress.AMPK is a potent inhibitor of the mammalian target of rapamycin complex 1(mTORC1),which we showed is essential for the maintenance of retinal ganglion cell(RGC)dendrites,synapses,and survival.Here,we tested the hypothesis that AMPK is an early mediator of metabolic stress in glaucoma.Methods:Unilateral elevation of intraocular pressure was induced by injection of magnetic microbeads into the anterior chamber of mice expressing yellow fluorescent protein in RGCs.Inhibition of AMPK was achieved by administration of siRNA or compound C.RGC dendritic trees were 3D-reconstructed and analyzed with Imaris(Bitplane),and survival was assessed by counting Brn3a or RBPMS-labeled soma and axons in the optic nerve.RGC function was examined by quantification of anterograde axonal transport after intraocular administration of cholera toxinβ-subunit.Retinas from glaucoma patients were analyzed for expression of active AMPK.Results:Ocular hypertension triggered rapid upregulation of AMPK activity in RGCs concomitant with loss of mTORC1 function.AMPK inhibition with compound C or siRNA effectively restored mTORC1 activity and promoted an increase in total dendritic length,surface and complexity relative to control retinas.Attenuation of AMPK activity led to robust RGC soma and axon survival.For example,95%of RGCs(2,983±258 RGCs/mm2,mean±S.E.M.)survived with compound C compared to 77%in vehicle-treated eyes(2,430±233 RGCs/mm2)(ANOVA,P<0.001)at three weeks after glaucoma induction(n=8-10/group).Importantly,blockade of AMPK activity effectively restored anterograde axonal transport.Lastly,RGC-specific upregulation of AMPK activity was detected in human glaucomatous retinas relative to age-matched controls(n=10/group).Conclusions:Metabolic stress in glaucoma involves AMPK activation and mTORC1 inhibition promoting early RGC dendritic pathology,dysfunction and neurodegeneration.
基金supported by the National Natural Science Foundation of China(Grant Nos.:82104827 and 82274336)the National High Level Hospital Clinical Research Funding,China(Grant No.:2022-PUMCH-A-265)the Young Elite Scientists Sponsorship Program by China Association of Chinese Medicine(Grant No.:CACM-2022-QNRC2-B14).
文摘Diabetic peripheral neuropathy (DPN) is a common and devastating complication of diabetes, for which effective therapies are currently lacking. Disturbed energy status plays a crucial role in DPN pathogenesis. However, the integrated profile of energy metabolism, especially the central carbohydrate metabolism, remains unclear in DPN. Here, we developed a metabolomics approach by targeting 56 metabolites using high-performance ion chromatography-tandem mass spectrometry (HPIC-MS/MS) to illustrate the integrative characteristics of central carbohydrate metabolism in patients with DPN and streptozotocin-induced DPN rats. Furthermore, JinMaiTong (JMT), a traditional Chinese medicine (TCM) formula, was found to be effective for DPN, improving the peripheral neurological function and alleviating the neuropathology of DPN rats even after demyelination and axonal degeneration. JMT ameliorated DPN by regulating the aberrant energy balance and mitochondrial functions, including excessive glycolysis restoration, tricarboxylic acid cycle improvement, and increased adenosine triphosphate (ATP) generation. Bioenergetic profile was aberrant in cultured rat Schwann cells under high-glucose conditions, which was remarkably corrected by JMT treatment. In-vivo and in-vitro studies revealed that these effects of JMT were mainly attributed to the activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and downstream peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Our results expand the therapeutic framework for DPN and suggest the integrative modulation of energy metabolism using TCMs, such as JMT, as an effective strategy for its treatment.
基金Supported by the National Institutes of Health Grants,No.K99HL146954 and No.R00HL146954the College of Pharmacy Seed Research Grant Program of the University of Tennessee Health Science Center.
文摘The prevalence of metabolic dysfunction-associated steatotic liver disease(MASLD)has increased significantly in recent decades and is projected to increase further due to the rising obesity rates.MASLD patients are at higher risk of developing advanced liver diseases“cirrhosis and hepatocellular carcinoma”as well as liver-or cardiovascular-related mortality.Existing lipid-lowering therapies failed to reduce the risk of mortality in these patients.Therefore,there is an urgent need for pharmacotherapies that can control and even reverse this disease.Fanlian Huazhuo Formula(FLHZF)is a combination herbal preparation,and its various individual constituents regulate hepatic lipid metabolism,adipose tissue inflammation,and gut microbiota.Despite,these useful effects,limited information is available on its benefits in diet-induced hepatosteatosis.In this article,we discuss the research findings recently published about the therapeutic effects of FLHZF in suppressing MASLD development and underlying mechanisms.Utilizing a series of in vitro and in vivo experiments,the authors demonstrated for the first time that FLHZF suppresses MASLD in male mice possibly by inhibiting hepatic de novo lipogenesis pathways and reducing hepatocyte death.This study paves the way for future investigations aimed at investigating FLHZF’s role in inhibiting lipogenesis particularly using radioactively-labeled glucose and acetate,and governing hepatocyte mitochondrial function,gut microbiome profile,and its effects in other models of MASLD,and female mice.
基金supported by the National Natural Science Foundation of China,No.30971534125 Project of the Third Xiangya Hospital,China
文摘Studies have shown that glycolysis increases during seizures, and that the glycolytic metabolite lactic acid can be used as an energy source. However, how lactic acid provides energy for seizures and how it can participate in the termination of seizures remains unclear. We reviewed possible mechanisms of glycolysis involved in seizure onset. Results showed that lactic acid was involved in seizure onset and provided energy at early stages. As seizures progress, lactic acid reduces the pH of tissue and induces metabolic acidosis, which terminates the seizure. The specific mechanism of lactic acid-induced acidosis involves several aspects, which include lactic acid-induced inhibition of the glycolytic enzyme 6-diphosphate kinase-1, inhibition of the N-methyl-D-aspartate receptor, activation of the acid-sensitive 1A ion channel, strengthening of the receptive mechanism of the inhibitory neurotransmitter Y-aminobutyric acid, and changes in the intra- and extracellular environment.
文摘宰后能量代谢是影响肉嫩度的关键生化途径,其中糖酵解是宰后能量代谢的主导过程,其进程受到众多因素的调控。本文综述了影响宰后糖酵解进程的因素及具体影响机制。一磷酸腺苷活化蛋白激酶(AMP-activated protein kinase,AMPK)和沉默信息调节因子1(sirtuin 1,SIRT1)是宰后糖酵解的重要上游调控因子,本文重点概括了AMPK/SIRT1信号通路对糖酵解及宰后内源酶系的影响,并解析其作用机制,以期为AMPK/SIRT1信号通路调控肉的嫩度提供新思路。
文摘背景:巨噬细胞的能量代谢和极化状态在动脉粥样硬化的进展中起关键作用。中医药通过调控巨噬细胞代谢途径展示出防治动脉粥样硬化的潜力。目的:综述腺苷酸活化蛋白激酶调控巨噬细胞能量代谢和极化状态的研究进展,并探讨中医药防治动脉粥样硬化的作用机制。方法:计算机检索Web of Science、PubMed及中国知网等数据库,检索时限为各数据库建库至2024年6月。中文检索词为“AMPK,脂肪酸氧化,巨噬细胞极化,中药,动脉粥样硬化,冠心病”等;英文检索词为“AMPK,fatty acid oxidation,macrophage polarization,Traditional Chinese Medicine,atherosclerosis,coronary heart disease”等,最终纳入62篇文献。结果与结论:①巨噬细胞的能量代谢从氧化磷酸化向糖酵解的转变,在动脉粥样硬化进展中起关键作用。在巨噬细胞中腺苷酸活化蛋白激酶激活后,通过促进脂肪酸氧化和M2型极化,发挥抗炎和稳定动脉斑块的作用。②中药单药(如人参、黄芪、黄精等)及复方(如黄连解毒汤、养心舒脉颗粒、调肝导浊方等)通过调控腺苷酸活化蛋白激酶途径干预核因子κB、过氧化物酶体增殖物激活受体γ、哺乳动物雷帕霉素靶蛋白等多条信号通路影响巨噬细胞的代谢方式,改变细胞功能,从而发挥治疗疾病的作用。③未来的研究应关注腺苷酸活化蛋白激酶、代谢与极化途径的相互作用,以及中药如何通过这些途径发挥治疗作用,为动脉粥样硬化的治疗提供新的策略。