The dehydrogenation of cyclohexanol to cyclohexanone is a crucial industrial process in the production of caprolactam and adipic acid, both of which serve as important precursors in nylon textiles. This endothermic re...The dehydrogenation of cyclohexanol to cyclohexanone is a crucial industrial process in the production of caprolactam and adipic acid, both of which serve as important precursors in nylon textiles. This endothermic reaction is constrained by thermodynamic equilibrium and involves a complex reaction network, leading to a heightened focus on catalysts and process design. Copper-based catalysts have been extensively studied and exhibit exceptional low-temperature catalytic performance in cyclohexanol dehydrogenation, with some being commercially used in the industry. This paper specifically concentrates on research advancement concerning active species, reaction mechanisms, factors influencing product selectivity, and the deactivation behaviors of copper-based catalysts. Moreover, a brief introduction to the new processes that break thermodynamic equilibrium via reaction coupling and their corresponding catalysts is summarized here as well. These reviews may off er guidance and potential avenues for further investigations into catalysts and processes for cyclohexanol dehydrogenation.展开更多
Porous silica nano-flowers(KCC-1)immobilized Pt-Pd alloy NPs(Pt-Pd/KCC-1)with different mass ratios of Pd and Pt were successfully prepared by a facile in situ one-step reduction,using hydrazinium hydroxide as a reduc...Porous silica nano-flowers(KCC-1)immobilized Pt-Pd alloy NPs(Pt-Pd/KCC-1)with different mass ratios of Pd and Pt were successfully prepared by a facile in situ one-step reduction,using hydrazinium hydroxide as a reducing agent.The as-synthesized silica nanospheres possess radial fibers with a distance of 15 nm,exhibiting a high specific surface area(443.56 m^(2)·g^(-1)).Meanwhile,the obtained Pt-Pd alloy NPs are uniformly dispersed on the silica surface with a metallic particle size of 4-6 nm,which exist as metallic Pd and Pt on the surface of monodisperse KCC-1,showing the transfer of electrons from Pd to Pt.The as-synthesized 2.5%Pt-2.5%Pd/KCC-1 exhibited excellent catalytic activity and stability for the continuous dehydrogenation of 2-methoxycyclohexanol to prepare guaiacol.Compared with Pt or Pd single metal supported catalysts,the obtained 2.5%Pt-2.5%Pd/KCC-1 shows 97.2%conversion rate of 2-methoxycyclohexanol and 76.8%selectivity for guaiacol,which attributed to the significant synergistic effect of bimetallic Pt-Pd alloy NPs.Furthermore,turn over frequency value of the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs achieved 4.36 s^(-1),showing higher catalytic efficiency than other two monometallic catalysts.Reaction pathways of dehydro-aromatization of 2-methoxycyclohexanol over the obtained catalyst are proposed.Consequently,the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs prove their potential in the dehydrogenation of 2-methoxycyclohexanol,while the kinetics and mechanistic study of the dehydrogenation reaction over the catalyst in a continuous fixed-bed reactor may provide valuable information for the development of green,outstanding and powerful synthetic pathway of guaiacol.展开更多
Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derive...Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derived from shale gas,serves as an alternative olefins production route.Concurrently,the target of realizing carbon neutrality promotes the comprehensive utilization of greenhouse gas.The integrated process of light alkanes dehydrogenation and carbon dioxide reduction(CO_(2)-ODH)can produce light olefins and realize resource utilization of CO_(2),which has gained wide popularity.With the introduction of CO_(2),coke deposition and metal reduction encountered in alkanes dehydrogenation reactions can be effectively suppressed.CO_(2)-assisted alkanes dehydrogenation can also reduce the risk of potential explosion hazard associated with O_(2)-oxidative dehydrogenation reactions.Recent investigations into various metal-based catalysts including mono-and bi-metallic alloys and oxides have displayed promising performances due to their unique properties.This paper provides the comprehensive review and critical analysis of advancements in the CO_(2)-assisted oxidative dehydrogenation of light alkanes(C2-C4)on metal-based catalysts developed in recent years.Moreover,it offers a comparative summary of the structural properties,catalytic activities,and reaction mechanisms over various active sites,providing valuable insights for the future design of dehydrogenation catalysts.展开更多
Pt-based catalysts are the typical industrial catalysts for propane dehydrogenation(PDH),which still suffer from insufficient lo ng-term durability due to the structu ral instability and coke deposition.A commercial ...Pt-based catalysts are the typical industrial catalysts for propane dehydrogenation(PDH),which still suffer from insufficient lo ng-term durability due to the structu ral instability and coke deposition.A commercial γ-Al_(2)O_(3) supported thermally robust sub-nanometer Pt2In3intermetallic catalyst with atomically ordered structure and rigorously separated Pt single atoms was fabricated,which showed outstanding robustness in 240 h long-term operation at 600℃ with the deactivation rate constant kdas low as0.00078 h^(-1), ranking among the lowest reported values.Based on various in situ characterizations and theoretical calculations,it was proved that the catalyst stability not only resulted from the separated Pt single-atom sites but also significantly affected by the distance of adjacent Pt atoms.An increasing distance to 3.25 A in the Pt_(2)In_(3)could induce a weak π-adsorption configuration of propylene on Pt sites,which facilitated the desorption of propylene and restrained the side reactions like coking.展开更多
High activity and productivity of MoVNbTeO_(x) catalyst are challenging tasks in oxidative dehydrogenation of ethane(ODHE)for industrial application.In this work,phase-pure M1 with 30 wt%CeO_(2) composite catalyst was...High activity and productivity of MoVNbTeO_(x) catalyst are challenging tasks in oxidative dehydrogenation of ethane(ODHE)for industrial application.In this work,phase-pure M1 with 30 wt%CeO_(2) composite catalyst was treated by oxygen plasma to further enhance catalyst performance.The results show that the oxygen vacancies generated by the solid-state redox reaction between M1 and CeO_(2) capture active oxygen species in gas and transform V^(4+)to V^(5+)without damage to M1 structure.The space-time yield of ethylene of the plasma-treated catalyst was significantly increased,in which the catalyst shows an enhancement near~100% than that of phase-pure M1 at 400℃ for ODHE process.Plasma treatment for catalysts demonstrates an effective way to convert electrical energy into chemical energy in catalyst materials.Energy conversion is achieved by using the catalyst as a medium.展开更多
The structure and catalytic properties of PtSn catalysts supported on SUZ-4 and ZSM-5 zeolite have been studied by using various experimental techniques including XRD,nitrogen adsorption,NH3-TPD,TG,H2-TPR and TPO tech...The structure and catalytic properties of PtSn catalysts supported on SUZ-4 and ZSM-5 zeolite have been studied by using various experimental techniques including XRD,nitrogen adsorption,NH3-TPD,TG,H2-TPR and TPO techniques combined with propane dehydrogenation tests.It has been shown that SUZ-4-supported PtSnNa(PtSnNa/SUZ-4) was determined to be a better catalyst for propane dehydrogenation than conventional catalysts supported on ZSM-5,owing to its higher catalytic activity and stability.Dibenzothiophene poisoning experiments were performed to investigate the detailed structures of the two supported catalysts.The characterization of the two catalysts indicates that the distribution of Pt on the porous support affects the activity.In contrast to ZSM-5-supported catalysts,Pt particles on the PtSnNa/SUZ-4 are primarily dispersed over the external surface and are not as readily deactivated by carbon deposition.This is because that the strong acid sites of the SUZ-4 zeolite evidently prevented the impregnation of the Pt precursor H_2PtCl_6 into the zeolite.In contrast,the weak acid sites of the ZSM-5 zeolite led to more of the precursor entering the zeolite tunnels,followed by transformation to highly dispersed Pt clusters during calcination.In the case of the PtSnNa/ZSM-5,the interactions between Sn oxides and the support were lessened,owing to the weaker acidity of the ZSM-5 zeolite.The dispersed Sn oxides were therefore easier to reduce to the metallic state,thus decreasing the catalytic activity for hydrocarbon dehydrogenation.展开更多
With growing demand for propylene and increasing production of propane from shale gas,the technologies of propylene production,including direct dehydrogenation and oxidative dehydrogenation of propane,have drawn great...With growing demand for propylene and increasing production of propane from shale gas,the technologies of propylene production,including direct dehydrogenation and oxidative dehydrogenation of propane,have drawn great attention in recent years.In particular,direct dehydrogenation of propane to propylene is regarded as one of the most promising methods of propylene production because it is an on-purpose technique that exclusively yields propylene instead of a mixture of products.In this critical review,we provide the current investigations on the heterogeneous catalysts(such as Pt,CrOx,VOx,GaOx-based catalysts,and nanocarbons)used in the direct dehydrogenation of propane to propylene.A detailed comparison and discussion of the active sites,catalytic mechanisms,influencing factors(such as the structures,dispersions,and reducibilities of the catalysts and promoters),and supports for different types of catalysts is presented.Furthermore,rational designs and preparation of high-performance catalysts for propane dehydrogenation are proposed and discussed.展开更多
Dehydrogenation of ethane to ethylene in CO_2 was investigated overCeO_2/γ-Al_2O_3 catalysts at 700℃ in a conventional flow reactor operating at atmosphericpressure. XRD, BET and microcalori-metric adsorption techni...Dehydrogenation of ethane to ethylene in CO_2 was investigated overCeO_2/γ-Al_2O_3 catalysts at 700℃ in a conventional flow reactor operating at atmosphericpressure. XRD, BET and microcalori-metric adsorption techniques were used to characterize thestructure and surface acidity/basicity of the CeO_2/γ-Al_2O_3 catalysts. The results show that thesurface acidity decreased while the surface basicity increased after the addition of CeO_2 toγ-Al_2O_3. Accordingly, the activity of the hydrogenation reaction of CO_2 increased, which mightbe responsible for the enhanced conversion in the dehydrogenation of ethane to ethylene. The highestethane conversion obtained was about 15% for the 25%CeO_2/γ-Al_2O_3. The selectivity to ethylenewas high for all the CeO_2, γ-Al_2O_3 and CeO2/γ-Al_2O_3 catalysts.展开更多
Ordered macroporous materials with rapid mass transport and enhanced active site accessibility are essential for achieving improved catalytic activity.In this study,boron phosphate crystals with a three-dimensionally ...Ordered macroporous materials with rapid mass transport and enhanced active site accessibility are essential for achieving improved catalytic activity.In this study,boron phosphate crystals with a three-dimensionally interconnected ordered macroporous structure and a robust framework were fabricated and used as stable and selective catalysts in the oxidative dehydrogenation(ODH)of propane.Due to the improved mass diffusion and higher number of exposed active sites in the ordered macroporous structure,the catalyst exhibited a remarkable olefin productivity of^16 golefin gcat^-1 h^-1,which is up to 2–100 times higher than that of ODH catalysts reported to date.The selectivity for olefins was 91.5%(propene:82.5%,ethene:9.0%)at 515℃,with a propane conversion of 14.3%.At the same time,the selectivity for the unwanted deep-oxidized CO2 product remained less than 1.0%.The tri-coordinated surface boron species were identified as the active catalytic sites for the ODH of propane.This study provides a route for preparing a new type of metal-free catalyst with stable structure against oxidation and remarkable catalytic activity,which may represent a potential candidate to promote the industrialization of the ODH process.展开更多
Boron-based metal-free catalysts for oxidative dehydrogenation of propane(ODHP)have drawn great attention in both academia and industry due to their impressive activity and olefin selectivity.Herein,the SiO2 and B2O3 ...Boron-based metal-free catalysts for oxidative dehydrogenation of propane(ODHP)have drawn great attention in both academia and industry due to their impressive activity and olefin selectivity.Herein,the SiO2 and B2O3 sequentially coated honeycomb cordierite catalyst is designed by a two-step wash-coat method with different B2O3 loadings(0.1%–10%)and calcination temperatures(600,700,800℃).SiO2 obtained by TEOS hydrolysis acts as a media layer to bridge the cordierite substrate and boron oxide via abundant Si\\OH groups.The welldeveloped straight channels of honeycomb cordierite make it possible to carry out the reactor under high gas hourly space velocity(GHSV)and the thin wash-coated B2O3 layer can effectively facilitate the pore diffusion on the catalyst.The prepared B2O3/SiO2@HC monolithic catalyst exhibits good catalytic performance at low boron oxide loading and achieves excellent propylene selectivity(86.0%),olefin selectivity(97.6%,propylene and ethylene)and negligible CO2(0.1%)at 16.9%propane conversion under high GHSV of 345,600 ml·(g B2O3)^-1·h^-1,leading to a high propylene space time yield of 15.7 g C3H6·(g B2O3)^-1·h^-1 by suppressing the overoxidation.The obtained results strongly indicate that the boron-based monolithic catalyst can be properly fabricated to warrant the high activity and high throughput with its high gas/surface ratio and straight channels.展开更多
Dehydrogenation of propane(PDH)technology is one of the most promising on-purpose technologies to solve supply-demand unbalance of propylene.The industrial catalysts for PDH,such as Pt-and Cr-based catalysts,still hav...Dehydrogenation of propane(PDH)technology is one of the most promising on-purpose technologies to solve supply-demand unbalance of propylene.The industrial catalysts for PDH,such as Pt-and Cr-based catalysts,still have their own limitation in expensive price and security issues.Thus,a deep understanding into the structure-performance relationship of the catalysts during PDH reaction is necessary to achieve innovation in advanced high-efficient catalysts.In this review,we focused on discussion of structure-performance relationship of catalysts in PDH.Based on analysis of reaction mechanism and nature of active sites,we detailed interaction mechanism between structure of active sites and catalytic performance in metal catalysts and oxide catalysts.The relationship between coke deposition,co-feeding gas,catalytic activity and nanostructure of the catalysts are also highlighted.With these discussions on the relationship between structure and performances,we try to provide the insights into microstructure of active sites in PDH and the rational guidance for future design and development of PDH catalysts.展开更多
Propane dehydrogenation(PDH) provides an alternative route for producing propylene. Herein, we demonstrates that h-BN is a promising support of Pt-based catalysts for PDH. The Pt catalysts supported on h-BN were prepa...Propane dehydrogenation(PDH) provides an alternative route for producing propylene. Herein, we demonstrates that h-BN is a promising support of Pt-based catalysts for PDH. The Pt catalysts supported on h-BN were prepared by an impregnation method using Pt(NH_(3))_(4)(NO_(3))_(2) as metal precursors. It has been found that the Pt/BN catalyst undergoing calcination and reduction is highly stable in both PDH reaction and coke-burning regeneration, together with low coke deposition and outstanding propylene selectivity(99%). Detailed characterizations reveal that the high coke resistance and high propylene selectivity of the Pt/BN catalyst are derived not only from the absence of acidity on BN support, but also from the calcination-induced and reduction-adjusted strong metal-support interaction(SMSI) between Pt and BN, which causes the partial encapsulation of Pt particles by BO_(x) overlayers. The BO_(x) overlayers can block the low-coordinated Pt sites and constrain Pt particles into smaller ensembles, suppressing side reactions such as cracking and deep dehydrogenation. Moreover, the BO_(x) overlayers can effectively inhibit Pt sintering by the spatial isolation of Pt during periodic reaction-regeneration cycles. In this work, the catalyst support for PDH is expanded to nonoxide BN, and the understanding of SMSI between Pt and BN will provide rational design strategy for BN-based catalysts.展开更多
Pt-based catalysts are widely used in propane dehydrogenation reaction for the production of propylene.Suppressing irreversible deactivation caused by the sintering of Pt particles under harsh conditions and regenerat...Pt-based catalysts are widely used in propane dehydrogenation reaction for the production of propylene.Suppressing irreversible deactivation caused by the sintering of Pt particles under harsh conditions and regeneration process is a significant challenge in this catalyst.Herein,a series of highly ordered mesoporous Al_(2)O_(3) supports with different levels of Al3+penta sites,are fabricated and used as the support to disperse Pt-Sn_(2) clusters.Characterizations of Pt-Sn_(2)/meso-Al_(2)O_(3) with XRD,NMR,CO-IR,STEM,TG,and Raman techniques along with propane dehydrogenation-regeneration cycles test reveal the structure-stability-re generability relationship.The coordinatively unsaturated pentacoordinate Al_(Al3+penta)^(3+)can strongly anchor Pt atoms via a formation of Al-O-Pt bond,and thus stabilize the Pt-based particles at the surface of Al_(2)O_(3).The stability and regenerability of Pt-Sn2/meso-Al_(2)O_(3) are strongly dependent on the content of Al3+penta sites in the Al_(2)O_(3) structure,and a high level of Al3+penta sites can effectively prevent the agglomeration of Pt-Sn2 clusters into large Pt nanoparticles in the consecutive dehydrogenation-regeneration cycles.The Pt-Sn2/meso-Al_(2)O_(3)-600 with the highest level of Al_(penta)^(3+) (50.8%)delivers the best performance in propane dehydrogenation,which exhibits propane conversion of 40%and propylene selectivity above 98%at 570℃ with 10 vol%C_(3)H_(8) and 10 vol% H_(2) feed.A slow deactivation in this catalyst is ascribed to the formation of coke,and the catalytic performance can be fully restored in the consecutive dehydrogenation-regeneration cycles via a simple calcination treatment.展开更多
The intrinsic kinetics of oxidative dehydrogenation of propane with CO2 has been investigated over Cr/MSU-1 catalyst in a fixed bed reactor. Without limitations of both internal and external diffusion, intrinsic kinet...The intrinsic kinetics of oxidative dehydrogenation of propane with CO2 has been investigated over Cr/MSU-1 catalyst in a fixed bed reactor. Without limitations of both internal and external diffusion, intrinsic kinetic data were obtained under the following conditions: 490-530 °C, space velocity of 3600?6000 mL·h-1·g-1 and 3/1 molar ratio for CO2/C3H8 under normal pressure. Based on Langmuir-Hinshelwood mechanism, the kinetic models were established, and they were validated by statistical analysis. The parameters were estimated using Simplex Method combined with Universal Global Optimization Algorithm. The model, taking the surface reaction process as the rate-determining step, is the best one in agreement with the experimental data.展开更多
A series of Sn‐incorporated SBA‐15materials with high specific surface areas and highly orderedmesoporous structures were synthesized by a facile one‐pot method and used as catalyst supports.A reference sample was ...A series of Sn‐incorporated SBA‐15materials with high specific surface areas and highly orderedmesoporous structures were synthesized by a facile one‐pot method and used as catalyst supports.A reference sample was also prepared using a conventional impregnation method.The catalystswere characterized using various methods,and their activities in propane dehydrogenation wereinvestigated.The incorporation of Sn into the SBA‐15matrix led to strong interactions between Snspecies and the support,and these helped to maintain the oxidation states of Sn species during thereaction.Substitution with Sn changed the interfacial properties of the Pt species and improved thefunction and effect of the Sn promoter.The catalytic activities and stabilities of the Pt catalysts supportedon Sn‐incorporated SBA‐15were better than those of the impregnated sample.However,thecatalytic performance deteriorated when an excessive amount of Sn was introduced and the interactionsamong Pt,Sn species,and the support became weaker.The Pt/0.5Sn‐SBA‐15catalyst gavethe best propene selectivity,i.e.,98.5%,with a corresponding propane conversion of about43.8%.展开更多
PtSnNa/AlSBA-15 catalysts with different amounts of Sn were prepared for propane dehydrogenation.The catalysts were characterized by XRF,BET,H2 chemisorption,NH3-TPD,H2-TPR,and TPO techniques.Test results indicated th...PtSnNa/AlSBA-15 catalysts with different amounts of Sn were prepared for propane dehydrogenation.The catalysts were characterized by XRF,BET,H2 chemisorption,NH3-TPD,H2-TPR,and TPO techniques.Test results indicated that the presence of tin not only modified the acid function and the interfacial character between metal and support,but also reduced the coke deposition effectively.Among these catalysts investigated thereby,the PtSn(0.7%)Na/AlSBA-15 catalyst had the best catalytic performance in terms of propane conversion and stability.With the continuous addition of Sn,more amounts of Sn0 species appeared,which was unfavorable to the reaction.The PtSn(0.7%)Na/AlSBA-15 catalyst was parametrically characterized in order to obtain necessary information to integrate the process operating conditions.A weight hourly space velocity of 3 h-1,a reaction temperature of 610 ℃ and a H2/C3H8 molar ratio of 0.25 were found to be optimum conditions for achieving a higher dehydrogenation activity of the catalyst.展开更多
The synthesis of ultrasmall metal nanoclusters(NCs) with high catalytic activities is of great importance for the development of clean and renewable energy technologies but remains a challenge. Here we report a facile...The synthesis of ultrasmall metal nanoclusters(NCs) with high catalytic activities is of great importance for the development of clean and renewable energy technologies but remains a challenge. Here we report a facile wet-chemical method to prepare ~1.0 nm Au Pd NCs supported on amine-functionalized carbon blacks. The Au Pd NCs exhibit a specific activity of 5.98 mA cm_(AuPd)^(-2)and mass activity of 5.25 A mg_(auPd)^(-1) for ethanol electrooxidation, which are far better than those of commercial Pd/C catalysts(1.74 mAcm_(AuPd)^(-2) and 0.54 A mg_(Pd)^(-1) ). For formic acid dehydrogenation, the Au Pd NCs have an initial turn over frequency of 49339 h^(-1) at 298 K without any additive, which is much higher than those obtained for most of reported Au Pd catalysts. The reported synthesis may represent a facile and low-cost approach to prepare other ultrasmall metal NCs with high catalytic activities for various applications.展开更多
The development of bifunctional catalysts for the efficient hydrogenation and acceptorless dehydrogenation of N‐heterocycles is a challenge.In this study,Ru_(2)P/AC effectively promoted reversible transformations bet...The development of bifunctional catalysts for the efficient hydrogenation and acceptorless dehydrogenation of N‐heterocycles is a challenge.In this study,Ru_(2)P/AC effectively promoted reversible transformations between unsaturated and saturated N‐heterocycles affording yields of 98%and 99%,respectively.Moreover,a remarkable enhancement in the reusability of Ru_(2)P/AC was observed compared with other Ru‐based catalysts.According to density functional theory calculations,the superior performance of Ru_(2)P/AC was ascribed to specific synergistic factors,namely geometric and electronic effects induced by P.P greatly reduced the large Ru‐Ru ensembles and finely modified the electronic structures,leading to a low reaction barrier and high desorption ability of the catalyst,further boosting the hydrogenation and acceptorless dehydrogenation processes.展开更多
Oxidative dehydrogenation of propane over V-Mg-O and MCl_n(M=Cu^+,Li^+, Ag^+,Cd^(2+))promoted V-Mg-O catalysts was studied.XRD result showed that the V-Mg-O catalysts were composed of MgO and Mg_3(VO_4)_2.The yield of...Oxidative dehydrogenation of propane over V-Mg-O and MCl_n(M=Cu^+,Li^+, Ag^+,Cd^(2+))promoted V-Mg-O catalysts was studied.XRD result showed that the V-Mg-O catalysts were composed of MgO and Mg_3(VO_4)_2.The yield of propene was much higher over CuCl and LiCl promoted VMgO catalysts than that over VMgO catalysts at the same reaction temperature.The highest yield of propene reached 23.1% at 500℃ and 6000h^(-1) space velocity.展开更多
The effects of ethanol vapor pretreatment on the performance of CrOx/SiO2 catalysts during the dehydrogenation of propane to propylene were studied with and without the presence of CO2.The catalyst pretreated with eth...The effects of ethanol vapor pretreatment on the performance of CrOx/SiO2 catalysts during the dehydrogenation of propane to propylene were studied with and without the presence of CO2.The catalyst pretreated with ethanol vapor exhibited better catalytic activity than the pristine CrOx/SiO2,generating 41.4% propane conversion and 84.8% propylene selectivity.The various catalyst samples prepared were characterized by X-ray diffraction,transmission electron microscopy,temperature-programmed reduction,X-ray photoelectron spectroscopy and reflectance UV-Vis spectroscopy.The data show that coordinative Cr^3+ species represent the active sites during the dehydrogenation of propane and that these species serve as precursors for the generation of Cr^3+.Cr^3+ is reduced during the reaction,leading to a decrease in catalytic activity.Following ethanol vapor pretreatment,the reduced CrOx in the catalyst is readily re-oxidized to Cr^6+ by CO2.The pretreated catalyst thus exhibits high activity during the propane dehydrogenation reaction by maintaining the active Cr^3+ states.展开更多
基金the support from Clariant International Ltd.the National Natural Science Foundation of China (Nos.22022811,21938008,and U21B2096)the Haihe Laboratory of Sustainable Chemical Transformations。
文摘The dehydrogenation of cyclohexanol to cyclohexanone is a crucial industrial process in the production of caprolactam and adipic acid, both of which serve as important precursors in nylon textiles. This endothermic reaction is constrained by thermodynamic equilibrium and involves a complex reaction network, leading to a heightened focus on catalysts and process design. Copper-based catalysts have been extensively studied and exhibit exceptional low-temperature catalytic performance in cyclohexanol dehydrogenation, with some being commercially used in the industry. This paper specifically concentrates on research advancement concerning active species, reaction mechanisms, factors influencing product selectivity, and the deactivation behaviors of copper-based catalysts. Moreover, a brief introduction to the new processes that break thermodynamic equilibrium via reaction coupling and their corresponding catalysts is summarized here as well. These reviews may off er guidance and potential avenues for further investigations into catalysts and processes for cyclohexanol dehydrogenation.
基金supported by Natural Science Foundation of Henan Province of China(162300410253)the Open Research Fund of State Key Laboratory of Coking Coal Exploitation and Comprehensive Utilization,China Pingmei Shen-ma Group(41040220181107-8).
文摘Porous silica nano-flowers(KCC-1)immobilized Pt-Pd alloy NPs(Pt-Pd/KCC-1)with different mass ratios of Pd and Pt were successfully prepared by a facile in situ one-step reduction,using hydrazinium hydroxide as a reducing agent.The as-synthesized silica nanospheres possess radial fibers with a distance of 15 nm,exhibiting a high specific surface area(443.56 m^(2)·g^(-1)).Meanwhile,the obtained Pt-Pd alloy NPs are uniformly dispersed on the silica surface with a metallic particle size of 4-6 nm,which exist as metallic Pd and Pt on the surface of monodisperse KCC-1,showing the transfer of electrons from Pd to Pt.The as-synthesized 2.5%Pt-2.5%Pd/KCC-1 exhibited excellent catalytic activity and stability for the continuous dehydrogenation of 2-methoxycyclohexanol to prepare guaiacol.Compared with Pt or Pd single metal supported catalysts,the obtained 2.5%Pt-2.5%Pd/KCC-1 shows 97.2%conversion rate of 2-methoxycyclohexanol and 76.8%selectivity for guaiacol,which attributed to the significant synergistic effect of bimetallic Pt-Pd alloy NPs.Furthermore,turn over frequency value of the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs achieved 4.36 s^(-1),showing higher catalytic efficiency than other two monometallic catalysts.Reaction pathways of dehydro-aromatization of 2-methoxycyclohexanol over the obtained catalyst are proposed.Consequently,the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs prove their potential in the dehydrogenation of 2-methoxycyclohexanol,while the kinetics and mechanistic study of the dehydrogenation reaction over the catalyst in a continuous fixed-bed reactor may provide valuable information for the development of green,outstanding and powerful synthetic pathway of guaiacol.
文摘Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derived from shale gas,serves as an alternative olefins production route.Concurrently,the target of realizing carbon neutrality promotes the comprehensive utilization of greenhouse gas.The integrated process of light alkanes dehydrogenation and carbon dioxide reduction(CO_(2)-ODH)can produce light olefins and realize resource utilization of CO_(2),which has gained wide popularity.With the introduction of CO_(2),coke deposition and metal reduction encountered in alkanes dehydrogenation reactions can be effectively suppressed.CO_(2)-assisted alkanes dehydrogenation can also reduce the risk of potential explosion hazard associated with O_(2)-oxidative dehydrogenation reactions.Recent investigations into various metal-based catalysts including mono-and bi-metallic alloys and oxides have displayed promising performances due to their unique properties.This paper provides the comprehensive review and critical analysis of advancements in the CO_(2)-assisted oxidative dehydrogenation of light alkanes(C2-C4)on metal-based catalysts developed in recent years.Moreover,it offers a comparative summary of the structural properties,catalytic activities,and reaction mechanisms over various active sites,providing valuable insights for the future design of dehydrogenation catalysts.
基金financially supported by the DNL Cooperation Fund,CAS (DNL202002)the National Natural Science Foundation of China (22102180)+3 种基金the CAS Project for Young Scientists in Basic Research,(YSBR-022)the Key Research Program of Frontier Sciences,CAS (ZDBS-LY-7012)Liao Ning Revitalization Talents Program (XLYC2007070)the Fundamental Research Funds for the Central Universities (20720220009)。
文摘Pt-based catalysts are the typical industrial catalysts for propane dehydrogenation(PDH),which still suffer from insufficient lo ng-term durability due to the structu ral instability and coke deposition.A commercial γ-Al_(2)O_(3) supported thermally robust sub-nanometer Pt2In3intermetallic catalyst with atomically ordered structure and rigorously separated Pt single atoms was fabricated,which showed outstanding robustness in 240 h long-term operation at 600℃ with the deactivation rate constant kdas low as0.00078 h^(-1), ranking among the lowest reported values.Based on various in situ characterizations and theoretical calculations,it was proved that the catalyst stability not only resulted from the separated Pt single-atom sites but also significantly affected by the distance of adjacent Pt atoms.An increasing distance to 3.25 A in the Pt_(2)In_(3)could induce a weak π-adsorption configuration of propylene on Pt sites,which facilitated the desorption of propylene and restrained the side reactions like coking.
基金supported by the National Natural Science Foundation of China (No.21776156).
文摘High activity and productivity of MoVNbTeO_(x) catalyst are challenging tasks in oxidative dehydrogenation of ethane(ODHE)for industrial application.In this work,phase-pure M1 with 30 wt%CeO_(2) composite catalyst was treated by oxygen plasma to further enhance catalyst performance.The results show that the oxygen vacancies generated by the solid-state redox reaction between M1 and CeO_(2) capture active oxygen species in gas and transform V^(4+)to V^(5+)without damage to M1 structure.The space-time yield of ethylene of the plasma-treated catalyst was significantly increased,in which the catalyst shows an enhancement near~100% than that of phase-pure M1 at 400℃ for ODHE process.Plasma treatment for catalysts demonstrates an effective way to convert electrical energy into chemical energy in catalyst materials.Energy conversion is achieved by using the catalyst as a medium.
基金supported by the Jiangsu Planned Projects for Postdoctoral Research Funds(1301080C)NNSFC(21202141,21173182)+1 种基金Key Science&Technology Specific Projects of Yangzhou(YZ20122029)the Innovation Foundation of Yangzhou University(2015CXJ009)~~
文摘The structure and catalytic properties of PtSn catalysts supported on SUZ-4 and ZSM-5 zeolite have been studied by using various experimental techniques including XRD,nitrogen adsorption,NH3-TPD,TG,H2-TPR and TPO techniques combined with propane dehydrogenation tests.It has been shown that SUZ-4-supported PtSnNa(PtSnNa/SUZ-4) was determined to be a better catalyst for propane dehydrogenation than conventional catalysts supported on ZSM-5,owing to its higher catalytic activity and stability.Dibenzothiophene poisoning experiments were performed to investigate the detailed structures of the two supported catalysts.The characterization of the two catalysts indicates that the distribution of Pt on the porous support affects the activity.In contrast to ZSM-5-supported catalysts,Pt particles on the PtSnNa/SUZ-4 are primarily dispersed over the external surface and are not as readily deactivated by carbon deposition.This is because that the strong acid sites of the SUZ-4 zeolite evidently prevented the impregnation of the Pt precursor H_2PtCl_6 into the zeolite.In contrast,the weak acid sites of the ZSM-5 zeolite led to more of the precursor entering the zeolite tunnels,followed by transformation to highly dispersed Pt clusters during calcination.In the case of the PtSnNa/ZSM-5,the interactions between Sn oxides and the support were lessened,owing to the weaker acidity of the ZSM-5 zeolite.The dispersed Sn oxides were therefore easier to reduce to the metallic state,thus decreasing the catalytic activity for hydrocarbon dehydrogenation.
基金supported by the National Natural Science Foundation of China(21421001,21573115)the Fundamental Research Funds for the Central Universities(63185015)the Foundation of State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering(2017-K13)~~
文摘With growing demand for propylene and increasing production of propane from shale gas,the technologies of propylene production,including direct dehydrogenation and oxidative dehydrogenation of propane,have drawn great attention in recent years.In particular,direct dehydrogenation of propane to propylene is regarded as one of the most promising methods of propylene production because it is an on-purpose technique that exclusively yields propylene instead of a mixture of products.In this critical review,we provide the current investigations on the heterogeneous catalysts(such as Pt,CrOx,VOx,GaOx-based catalysts,and nanocarbons)used in the direct dehydrogenation of propane to propylene.A detailed comparison and discussion of the active sites,catalytic mechanisms,influencing factors(such as the structures,dispersions,and reducibilities of the catalysts and promoters),and supports for different types of catalysts is presented.Furthermore,rational designs and preparation of high-performance catalysts for propane dehydrogenation are proposed and discussed.
文摘Dehydrogenation of ethane to ethylene in CO_2 was investigated overCeO_2/γ-Al_2O_3 catalysts at 700℃ in a conventional flow reactor operating at atmosphericpressure. XRD, BET and microcalori-metric adsorption techniques were used to characterize thestructure and surface acidity/basicity of the CeO_2/γ-Al_2O_3 catalysts. The results show that thesurface acidity decreased while the surface basicity increased after the addition of CeO_2 toγ-Al_2O_3. Accordingly, the activity of the hydrogenation reaction of CO_2 increased, which mightbe responsible for the enhanced conversion in the dehydrogenation of ethane to ethylene. The highestethane conversion obtained was about 15% for the 25%CeO_2/γ-Al_2O_3. The selectivity to ethylenewas high for all the CeO_2, γ-Al_2O_3 and CeO2/γ-Al_2O_3 catalysts.
文摘Ordered macroporous materials with rapid mass transport and enhanced active site accessibility are essential for achieving improved catalytic activity.In this study,boron phosphate crystals with a three-dimensionally interconnected ordered macroporous structure and a robust framework were fabricated and used as stable and selective catalysts in the oxidative dehydrogenation(ODH)of propane.Due to the improved mass diffusion and higher number of exposed active sites in the ordered macroporous structure,the catalyst exhibited a remarkable olefin productivity of^16 golefin gcat^-1 h^-1,which is up to 2–100 times higher than that of ODH catalysts reported to date.The selectivity for olefins was 91.5%(propene:82.5%,ethene:9.0%)at 515℃,with a propane conversion of 14.3%.At the same time,the selectivity for the unwanted deep-oxidized CO2 product remained less than 1.0%.The tri-coordinated surface boron species were identified as the active catalytic sites for the ODH of propane.This study provides a route for preparing a new type of metal-free catalyst with stable structure against oxidation and remarkable catalytic activity,which may represent a potential candidate to promote the industrialization of the ODH process.
基金supported by State Key Program of National Natural Science Foundation of China(21733002)Joint Sino-German Research Project(21761132011)Cheung Kong Scholars Programme of China(T2015036)。
文摘Boron-based metal-free catalysts for oxidative dehydrogenation of propane(ODHP)have drawn great attention in both academia and industry due to their impressive activity and olefin selectivity.Herein,the SiO2 and B2O3 sequentially coated honeycomb cordierite catalyst is designed by a two-step wash-coat method with different B2O3 loadings(0.1%–10%)and calcination temperatures(600,700,800℃).SiO2 obtained by TEOS hydrolysis acts as a media layer to bridge the cordierite substrate and boron oxide via abundant Si\\OH groups.The welldeveloped straight channels of honeycomb cordierite make it possible to carry out the reactor under high gas hourly space velocity(GHSV)and the thin wash-coated B2O3 layer can effectively facilitate the pore diffusion on the catalyst.The prepared B2O3/SiO2@HC monolithic catalyst exhibits good catalytic performance at low boron oxide loading and achieves excellent propylene selectivity(86.0%),olefin selectivity(97.6%,propylene and ethylene)and negligible CO2(0.1%)at 16.9%propane conversion under high GHSV of 345,600 ml·(g B2O3)^-1·h^-1,leading to a high propylene space time yield of 15.7 g C3H6·(g B2O3)^-1·h^-1 by suppressing the overoxidation.The obtained results strongly indicate that the boron-based monolithic catalyst can be properly fabricated to warrant the high activity and high throughput with its high gas/surface ratio and straight channels.
基金supported by the National Natural Science Foundation of China(21872163,21972166)National Engineering Laboratory for Mobile Source Emission Control Technology(NELMS2017A05)+1 种基金Beijing Natural Science Foundation(2202045,2182060)PetroChina Innovation Foundation(2018D-5007-0505)
文摘Dehydrogenation of propane(PDH)technology is one of the most promising on-purpose technologies to solve supply-demand unbalance of propylene.The industrial catalysts for PDH,such as Pt-and Cr-based catalysts,still have their own limitation in expensive price and security issues.Thus,a deep understanding into the structure-performance relationship of the catalysts during PDH reaction is necessary to achieve innovation in advanced high-efficient catalysts.In this review,we focused on discussion of structure-performance relationship of catalysts in PDH.Based on analysis of reaction mechanism and nature of active sites,we detailed interaction mechanism between structure of active sites and catalytic performance in metal catalysts and oxide catalysts.The relationship between coke deposition,co-feeding gas,catalytic activity and nanostructure of the catalysts are also highlighted.With these discussions on the relationship between structure and performances,we try to provide the insights into microstructure of active sites in PDH and the rational guidance for future design and development of PDH catalysts.
基金financially supported by the National Natural Science Foundation of China(21273049,22172037)the Guangdong Basic and Applied Basic Research Foundation(2021A1515010014)+1 种基金the Science and Technology Program of Guangzhou(201904010023)the CAS Key Laboratory of Renewable Energy(E029kf0901)。
文摘Propane dehydrogenation(PDH) provides an alternative route for producing propylene. Herein, we demonstrates that h-BN is a promising support of Pt-based catalysts for PDH. The Pt catalysts supported on h-BN were prepared by an impregnation method using Pt(NH_(3))_(4)(NO_(3))_(2) as metal precursors. It has been found that the Pt/BN catalyst undergoing calcination and reduction is highly stable in both PDH reaction and coke-burning regeneration, together with low coke deposition and outstanding propylene selectivity(99%). Detailed characterizations reveal that the high coke resistance and high propylene selectivity of the Pt/BN catalyst are derived not only from the absence of acidity on BN support, but also from the calcination-induced and reduction-adjusted strong metal-support interaction(SMSI) between Pt and BN, which causes the partial encapsulation of Pt particles by BO_(x) overlayers. The BO_(x) overlayers can block the low-coordinated Pt sites and constrain Pt particles into smaller ensembles, suppressing side reactions such as cracking and deep dehydrogenation. Moreover, the BO_(x) overlayers can effectively inhibit Pt sintering by the spatial isolation of Pt during periodic reaction-regeneration cycles. In this work, the catalyst support for PDH is expanded to nonoxide BN, and the understanding of SMSI between Pt and BN will provide rational design strategy for BN-based catalysts.
基金Financial supports of the National Natural Science Foundation of China(21878050,91934301)the State Key Laboratory of Coal Conversion(J21-22-620)the 111 Project(D17005)。
文摘Pt-based catalysts are widely used in propane dehydrogenation reaction for the production of propylene.Suppressing irreversible deactivation caused by the sintering of Pt particles under harsh conditions and regeneration process is a significant challenge in this catalyst.Herein,a series of highly ordered mesoporous Al_(2)O_(3) supports with different levels of Al3+penta sites,are fabricated and used as the support to disperse Pt-Sn_(2) clusters.Characterizations of Pt-Sn_(2)/meso-Al_(2)O_(3) with XRD,NMR,CO-IR,STEM,TG,and Raman techniques along with propane dehydrogenation-regeneration cycles test reveal the structure-stability-re generability relationship.The coordinatively unsaturated pentacoordinate Al_(Al3+penta)^(3+)can strongly anchor Pt atoms via a formation of Al-O-Pt bond,and thus stabilize the Pt-based particles at the surface of Al_(2)O_(3).The stability and regenerability of Pt-Sn2/meso-Al_(2)O_(3) are strongly dependent on the content of Al3+penta sites in the Al_(2)O_(3) structure,and a high level of Al3+penta sites can effectively prevent the agglomeration of Pt-Sn2 clusters into large Pt nanoparticles in the consecutive dehydrogenation-regeneration cycles.The Pt-Sn2/meso-Al_(2)O_(3)-600 with the highest level of Al_(penta)^(3+) (50.8%)delivers the best performance in propane dehydrogenation,which exhibits propane conversion of 40%and propylene selectivity above 98%at 570℃ with 10 vol%C_(3)H_(8) and 10 vol% H_(2) feed.A slow deactivation in this catalyst is ascribed to the formation of coke,and the catalytic performance can be fully restored in the consecutive dehydrogenation-regeneration cycles via a simple calcination treatment.
基金supported by the National Natural Science Foundation of China (No. 21006109)the Postdoctoral Science Foundation of China (No. 20080430581)the CASKC Wang Post-Doctoral Fellowship
文摘The intrinsic kinetics of oxidative dehydrogenation of propane with CO2 has been investigated over Cr/MSU-1 catalyst in a fixed bed reactor. Without limitations of both internal and external diffusion, intrinsic kinetic data were obtained under the following conditions: 490-530 °C, space velocity of 3600?6000 mL·h-1·g-1 and 3/1 molar ratio for CO2/C3H8 under normal pressure. Based on Langmuir-Hinshelwood mechanism, the kinetic models were established, and they were validated by statistical analysis. The parameters were estimated using Simplex Method combined with Universal Global Optimization Algorithm. The model, taking the surface reaction process as the rate-determining step, is the best one in agreement with the experimental data.
基金supported by the Science & Technology Support Plan Projects of Sichuan Province (2016GZ0371)National Natural Science Foun-dation of China (NNSFC,21476145,21506111)~~
文摘A series of Sn‐incorporated SBA‐15materials with high specific surface areas and highly orderedmesoporous structures were synthesized by a facile one‐pot method and used as catalyst supports.A reference sample was also prepared using a conventional impregnation method.The catalystswere characterized using various methods,and their activities in propane dehydrogenation wereinvestigated.The incorporation of Sn into the SBA‐15matrix led to strong interactions between Snspecies and the support,and these helped to maintain the oxidation states of Sn species during thereaction.Substitution with Sn changed the interfacial properties of the Pt species and improved thefunction and effect of the Sn promoter.The catalytic activities and stabilities of the Pt catalysts supportedon Sn‐incorporated SBA‐15were better than those of the impregnated sample.However,thecatalytic performance deteriorated when an excessive amount of Sn was introduced and the interactionsamong Pt,Sn species,and the support became weaker.The Pt/0.5Sn‐SBA‐15catalyst gavethe best propene selectivity,i.e.,98.5%,with a corresponding propane conversion of about43.8%.
基金the Production and Research Prospective Joint Research Project(BY2009153)the Science and Technology Support Program(BE2008129) of Jiangsu Province of Chinathe National Nature Science Foundation of China(50873026) for financial supports
文摘PtSnNa/AlSBA-15 catalysts with different amounts of Sn were prepared for propane dehydrogenation.The catalysts were characterized by XRF,BET,H2 chemisorption,NH3-TPD,H2-TPR,and TPO techniques.Test results indicated that the presence of tin not only modified the acid function and the interfacial character between metal and support,but also reduced the coke deposition effectively.Among these catalysts investigated thereby,the PtSn(0.7%)Na/AlSBA-15 catalyst had the best catalytic performance in terms of propane conversion and stability.With the continuous addition of Sn,more amounts of Sn0 species appeared,which was unfavorable to the reaction.The PtSn(0.7%)Na/AlSBA-15 catalyst was parametrically characterized in order to obtain necessary information to integrate the process operating conditions.A weight hourly space velocity of 3 h-1,a reaction temperature of 610 ℃ and a H2/C3H8 molar ratio of 0.25 were found to be optimum conditions for achieving a higher dehydrogenation activity of the catalyst.
基金supported by the National Natural Science Foundation of China (51901083)the Fundamental Research Funds for the Central Universities。
文摘The synthesis of ultrasmall metal nanoclusters(NCs) with high catalytic activities is of great importance for the development of clean and renewable energy technologies but remains a challenge. Here we report a facile wet-chemical method to prepare ~1.0 nm Au Pd NCs supported on amine-functionalized carbon blacks. The Au Pd NCs exhibit a specific activity of 5.98 mA cm_(AuPd)^(-2)and mass activity of 5.25 A mg_(auPd)^(-1) for ethanol electrooxidation, which are far better than those of commercial Pd/C catalysts(1.74 mAcm_(AuPd)^(-2) and 0.54 A mg_(Pd)^(-1) ). For formic acid dehydrogenation, the Au Pd NCs have an initial turn over frequency of 49339 h^(-1) at 298 K without any additive, which is much higher than those obtained for most of reported Au Pd catalysts. The reported synthesis may represent a facile and low-cost approach to prepare other ultrasmall metal NCs with high catalytic activities for various applications.
文摘The development of bifunctional catalysts for the efficient hydrogenation and acceptorless dehydrogenation of N‐heterocycles is a challenge.In this study,Ru_(2)P/AC effectively promoted reversible transformations between unsaturated and saturated N‐heterocycles affording yields of 98%and 99%,respectively.Moreover,a remarkable enhancement in the reusability of Ru_(2)P/AC was observed compared with other Ru‐based catalysts.According to density functional theory calculations,the superior performance of Ru_(2)P/AC was ascribed to specific synergistic factors,namely geometric and electronic effects induced by P.P greatly reduced the large Ru‐Ru ensembles and finely modified the electronic structures,leading to a low reaction barrier and high desorption ability of the catalyst,further boosting the hydrogenation and acceptorless dehydrogenation processes.
文摘Oxidative dehydrogenation of propane over V-Mg-O and MCl_n(M=Cu^+,Li^+, Ag^+,Cd^(2+))promoted V-Mg-O catalysts was studied.XRD result showed that the V-Mg-O catalysts were composed of MgO and Mg_3(VO_4)_2.The yield of propene was much higher over CuCl and LiCl promoted VMgO catalysts than that over VMgO catalysts at the same reaction temperature.The highest yield of propene reached 23.1% at 500℃ and 6000h^(-1) space velocity.
基金the financial support from China Postdoctoral Science Foundation (2014M560224)
文摘The effects of ethanol vapor pretreatment on the performance of CrOx/SiO2 catalysts during the dehydrogenation of propane to propylene were studied with and without the presence of CO2.The catalyst pretreated with ethanol vapor exhibited better catalytic activity than the pristine CrOx/SiO2,generating 41.4% propane conversion and 84.8% propylene selectivity.The various catalyst samples prepared were characterized by X-ray diffraction,transmission electron microscopy,temperature-programmed reduction,X-ray photoelectron spectroscopy and reflectance UV-Vis spectroscopy.The data show that coordinative Cr^3+ species represent the active sites during the dehydrogenation of propane and that these species serve as precursors for the generation of Cr^3+.Cr^3+ is reduced during the reaction,leading to a decrease in catalytic activity.Following ethanol vapor pretreatment,the reduced CrOx in the catalyst is readily re-oxidized to Cr^6+ by CO2.The pretreated catalyst thus exhibits high activity during the propane dehydrogenation reaction by maintaining the active Cr^3+ states.