期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Velocity distribution of the flow field in the cyclonic zone of cyclone-static micro-bubble flotation column 被引量:10
1
作者 Deng Xiao-wei Liu Jiong-tian +1 位作者 Wang Yong-tian Cao Yi-jun 《International Journal of Mining Science and Technology》 SCIE EI 2013年第1期89-94,共6页
Laboratory experiments have been conducted to study the flow field in a cyclone static micro-bubble flotation column. The method of Particle Image Velocimetry (PIV) was used. The flow field velocity distribution in bo... Laboratory experiments have been conducted to study the flow field in a cyclone static micro-bubble flotation column. The method of Particle Image Velocimetry (PIV) was used. The flow field velocity distribution in both cross section and longitudinal section within cyclonic zone was studied for different circulating volumes. The cross sectional vortex was also analyzed. The results show that in cross section as the circulating volume increases from 0.187 to 0.350 m 3 /h, the flow velocity ranges from 0 to 0.68 m/s. The flow field is mainly a non-vortex potential flow that forms a free vortex without outside energy input. In the cyclonic region the vortex deviates from the center of the flotation column because a single tangential opening introduces circulating fluid into the column. The tangential component of the velocity plays a defining role in the cross section. In the longitudinal section the velocity ranges from 0 to 0.08 m/s. The flow velocity increases as does the circulating volume. Advantageous mineral separation conditions arise from the combined effects of cyclonic flow in cross and longitudinal section. 展开更多
关键词 Cyclone-static micro-bubble flotation column PIV cyclonic flow field Velocity distribution
下载PDF
Influence of slug flow on flow fields in a gas–liquid cylindrical cyclone separator:A simulation study 被引量:3
2
作者 Xiaoming Luo Jing Ren +3 位作者 Tong Chen YibinWang Yuling Lü Limin He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第8期2075-2083,共9页
A simulation method for slug flow based on the VOF multiphase flow model was implemented in ANSYS?Fluent via a user-defined function(UDF)and applied to the dissipation of liquid slugs in the inlet pipe of a gas–liqui... A simulation method for slug flow based on the VOF multiphase flow model was implemented in ANSYS?Fluent via a user-defined function(UDF)and applied to the dissipation of liquid slugs in the inlet pipe of a gas–liquid cylindrical cyclone(GLCC)separator while varying the expanding diameter ratio and angle of inclination.The dissipation of liquid slug in inlet pipe is analyzed under different expanding diameter ratios and inclination angles.In the inlet pipe,it is found that increasing expanding diameter ratio and inclination angle can reduce the liquid slug stability and enhancing the effect of gravity,which is beneficial to slug flow dissipation.In the cylinder,increasing the expanding diameter ratio can significantly reduce the liquid carrying depth of the gas phase but result in a slightly increase of the gas content in the liquid phase space.Moreover,increasing the inclination angle results in a decrease in the carrying depth of liquid in the vapor phase,but enhances gas–liquid mixing and increases the gas-carrying depth in the liquid phase.Taking into consideration the dual effects of slug dissipation in the inlet pipe and carrying capacity of gas/liquid spaces in the cylinder,the optimal expanding diameter ratio and inclination angle values can be determined. 展开更多
关键词 GLCC Slug simulation Flow pattern Liquid slug dissipation cyclonic flow field analysis
下载PDF
Experimental Study of the Movement of Particles in the Coupled Field of Low Temperature Plasma and Cyclone
3
作者 马朝臣 李明华 魏名山 《Plasma Science and Technology》 SCIE EI CAS CSCD 2005年第3期2842-2844,共3页
An investigation was made of the movement of particles in the coupled field of a low temperature plasma and cyclone with PIV in order to study the moving trace of particles' movement in an electrostatic cyclonic c... An investigation was made of the movement of particles in the coupled field of a low temperature plasma and cyclone with PIV in order to study the moving trace of particles' movement in an electrostatic cyclonic collector. The experimental results show that the plasma field had little effect on the tangential velocity of particles, but had an obvious influence on the radial velocity. The tangential velocity of airflow had a great impact on particles' tangential movement. With the particles going down the cyclone tube, their tangential velocity dropped. Their radial velocity dropped as the radius enlarged from the center to the collecting wall of the tube. The plasma field could improve the radial velocity of particles by 5% - 10%, but the motion along the radius was determined by the cyclone. 展开更多
关键词 plasma field cyclone field electrostatic cyclonic collector PIV technique
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部