The detection of ash content in coal slime flotation tailings using deep learning can be hindered by various factors such as foam,impurities,and changing lighting conditions that disrupt the collection of tailings ima...The detection of ash content in coal slime flotation tailings using deep learning can be hindered by various factors such as foam,impurities,and changing lighting conditions that disrupt the collection of tailings images.To address this challenge,we present a method for ash content detection in coal slime flotation tailings.This method utilizes chromatographic filter paper sampling and a multi-scale residual network,which we refer to as MRCN.Initially,tailings are sampled using chromatographic filter paper to obtain static tailings images,effectively isolating interference factors at the flotation site.Subsequently,the MRCN,consisting of a multi-scale residual network,is employed to extract image features and compute ash content.Within the MRCN structure,tailings images undergo convolution operations through two parallel branches that utilize convolution kernels of different sizes,enabling the extraction of image features at various scales and capturing a more comprehensive representation of the ash content information.Furthermore,a channel attention mechanism is integrated to enhance the performance of the model.The combination of the multi-scale residual structure and the channel attention mechanism within MRCN results in robust capabilities for image feature extraction and ash content detection.Comparative experiments demonstrate that this proposed approach,based on chromatographic filter paper sampling and the multi-scale residual network,exhibits significantly superior performance in the detection of ash content in coal slime flotation tailings.展开更多
This paper deals with the operation principle of the cyclonic microbubble flotation column and its structure characterisics. The pilot test results and the commercial applied results of cyclonic microbubble flotation ...This paper deals with the operation principle of the cyclonic microbubble flotation column and its structure characterisics. The pilot test results and the commercial applied results of cyclonic microbubble flotation column for fine coal processing are also introduced. The test results proved that the cyclonic microbubble flotation column has many advantages suck as high selectivity, high efficiency in ash rejection from fine coals, low comsumption of energy, easy operation and maintenance, etc. It is a kind of equipment widely applied to fine coal processing.展开更多
Beneficiation of non-coking coal is gaining ground in India. It not only reduces the volume of inert content to be transported to the power plant and also lowers the wear in the boiler houses. For special applications...Beneficiation of non-coking coal is gaining ground in India. It not only reduces the volume of inert content to be transported to the power plant and also lowers the wear in the boiler houses. For special applications such as the fuel for integrated gasification combined cycle plant (IGCC), the ash content in the coal should preferably be below 15 %. Indian coals are characterized by high inter-grown ash content mainly due to 'drift origin' of Gondwana formation in Permian age. This warrants fine grinding of non-coking coal in order to liberate the ash forming minerals from coal macerals. A non- coking coal sample of vitrinite type from India was ground to 44 ~tm (dso) and subjected to column flotation to improve its quality. The non-coking coal analyzing 34.6 % ash, 26.2 % volatile matter, 1.3 % moisture and 37.9 % fixed carbon could be upgraded to a concentrate/froth of 14.83 % ash at 72.18 % yield by optimizing collector and frother dosages and flotation column operating parameters, namely, froth depth, superficial feed velocity and superficial air velocity. The concentrate produced by this process is suitable as fuel for IGCC in coal-to-electricity route.展开更多
Flotation column is widely used as the separation equipment for fine mineral due to its high selectivity. However, this device may be unsuitable for the coarse particle flotation and has high handling ability. A two-s...Flotation column is widely used as the separation equipment for fine mineral due to its high selectivity. However, this device may be unsuitable for the coarse particle flotation and has high handling ability. A two-stage flotation column with dimensions of 2 000 mm×1 000 mm×4 000 mm was designed to enhance the column flotation process. The energy input was modified by adjusting the flow rate and the head of circulating pump. The flotation column was designed with low energy input in the first stage(speed flotation stage) to recover easy-to-float materials quickly, and high energy input in the second stage(recovery stage) to recover difficult-to-float minerals compulsorily. Contrast experiments on the throughput and coarse coal recovery of high ash coal from the Kailuan Mine were conducted using conventional single-stage flotation column and the two-stage flotation column. The results show that the combustible matter recovery of the two-stage flotation column is 5.25% higher than that of the conventional single-stage flotation column. However, the ash contents of clean coal for both columns are similar. Less coarse coals with low ash are obtained using the two-stage flotation column than that using the single-stage column flotation with the same handling ability. The two-stage flotation column process can enhance coal flotation compared with the conventional single-stage column flotation.展开更多
The cyclonic static micro-bubble column flotation (FCSMC) is an effective separation device for fine particle treatment. The high mineralization rate and short flotation time of this equipment can be attributed to its...The cyclonic static micro-bubble column flotation (FCSMC) is an effective separation device for fine particle treatment. The high mineralization rate and short flotation time of this equipment can be attributed to its unique cyclonic force field. It also has been observed that the presence of a cyclonic force field leads to a lower bottom separation size limit and a reduction of unselective entrainment. The collection zone of the column is considered to consist of two parts,a column separation zone and a cyclonic zone. Total recovery of the collection zone was developed. For our study,we analyzed the particle movement in the cyclonic zone. Particle residence time equations for the cyclonic zone were de-rived by force analysis. Results obtained in this study provide a theoretical foundation for the design and scale-up of the FCSMC.展开更多
Laboratory experiments have been conducted to study the flow field in a cyclone static micro-bubble flotation column. The method of Particle Image Velocimetry (PIV) was used. The flow field velocity distribution in bo...Laboratory experiments have been conducted to study the flow field in a cyclone static micro-bubble flotation column. The method of Particle Image Velocimetry (PIV) was used. The flow field velocity distribution in both cross section and longitudinal section within cyclonic zone was studied for different circulating volumes. The cross sectional vortex was also analyzed. The results show that in cross section as the circulating volume increases from 0.187 to 0.350 m 3 /h, the flow velocity ranges from 0 to 0.68 m/s. The flow field is mainly a non-vortex potential flow that forms a free vortex without outside energy input. In the cyclonic region the vortex deviates from the center of the flotation column because a single tangential opening introduces circulating fluid into the column. The tangential component of the velocity plays a defining role in the cross section. In the longitudinal section the velocity ranges from 0 to 0.08 m/s. The flow velocity increases as does the circulating volume. Advantageous mineral separation conditions arise from the combined effects of cyclonic flow in cross and longitudinal section.展开更多
Fine particle flotation has been one of the main problems in many mineral processing plants.The bubble particle collision rate is very low for fine particles,which reduces flotation efficiency.Also,the existence of sl...Fine particle flotation has been one of the main problems in many mineral processing plants.The bubble particle collision rate is very low for fine particles,which reduces flotation efficiency.Also,the existence of slimes is,generally,detrimental to the flotation process,affecting the selectivity and the quality of the concentrates.Besides,it causes an increase in reagents consumption.Hence,in most of processing plants,some of these particles are transmitted to the tailing ponds to reduce the effects of these problems and increase the selectivity of the process.Esfordi phosphate plant in Iran loses more than 30%of its capacity as particles with d 80 finer than 30μm.These fine particles with 15.9%P_(2)O_(5)content are transferred to tailing dam.Processing of fine particles is very important for phosphate industry from economic and environmental aspects.This study addressed the processing of fine tailings(slimes)from a phosphate ore concentrator via flotation,despite the traditional view that ultrafine particles do not float.Phosphate flotation performances in the presence and absence of nanobubbles(NBs)in both mechanical and column cells were compared according to the metallurgical results of the process.NBs(generated by hydrodynamic cavitation)have interesting and exclusive properties such as high stability,durability and high surface area per volume,leading to increase of their utilization in mining-metallurgy and environmental areas.The results of this study revealed that,in the absence of NBs,a concentrate containing 26.9%P_(2)O_(5)with a recovery of 29.13%was obtained using mechanical cells in comparison to 31.6%P_(2)O_(5)with a recovery of 32.74%obtained using column flotation.In the presence of NBs,the recoveries of the concentrate of the mechanical and column flotation increased to 40.49%and 41.26%with 28.47%and 30.43%P_(2)O_(5)contents,respectively.Comparative study showed that the column flotation was almost more efficient for processing the phosphate ore in the presence of the NBs,and had thicker froth layer compared to the mechanical flotation.展开更多
The cyclonic-static microbubble flotation column has dual effects including the cyclonic separation and floatation separation with the characteristics of the small lower limit of the effective separation size, short s...The cyclonic-static microbubble flotation column has dual effects including the cyclonic separation and floatation separation with the characteristics of the small lower limit of the effective separation size, short separation time, large handling capacity, and low operation cost. It shows significant advantages in the oily wastewater treatment field, especially the polymer flooding oily wastewater treatment aspect. In this paper, the cyclonic separation function mechanism of the cyclonic-static microbubble flotation column was studied, the impact of the parameters including the feeding rate, aeration rate, circulating pressure, and underflow split ratio on the cyclonic separation efficiency was investigated, and the cyclonic separation efficiency model was established as well. In addition, by applying the Doppler Laser Velocimeter (LDV) and Fluent simulation software, the test and simulation to the single-phase flow velocity field of the cyclonic separation section of the cyclonic-static microbubble flotation column were carried out, and the velocity distribution rule of the cyclonic separation section was analyzed under the singlephase flow conditions.展开更多
Brazil and Colombia have large reserves of coal. Those reserves in Brazil are located predominantly in the south and the main reserves in Colombia are located in the north. Despite the relative ease of exploitation, t...Brazil and Colombia have large reserves of coal. Those reserves in Brazil are located predominantly in the south and the main reserves in Colombia are located in the north. Despite the relative ease of exploitation, these resources have been underestimated as a source of energy. Currently, these countries are developing projects and partnerships aiming to qualify this mineral resource, adding quality to the final product of the processing plants. In this scenario, the processing of Brazilian and Colombian coal in flotation columns appears as a promising alternative, having been successful in mineral systems containing fine particles. The paper aims to study the overall process of column flotation for a specific Brazilian coal and a specific Colombian coal. The material used in this study consists of fine coal from Brazil (Copelmi) and Colombia (Cerrejon). The objective is to recover carbonaceous matter and reduce the ash and contaminants grade. The two coals were floated using a negative bias in a 5 cm diameter conventional flotation column of 5 m high. Flotation parameter investigated included air velocity in the range 0.6 to 1.5 cm/s. For all runs, a constant negative bias of-0.25 cm/s and a pulp concentration of 8% w/w were used. For Cerrej6n coal, 300 g/ton of frother and 907 g/ton of collector was used, whereas for Copelmi coal, 600 g/ton of frother and 1,815 g/ton of collector was employed. The frother was a commercial Aerofroth 65 (AF65), whereas the collector was Kerosene. For the Colombian coal, in general, yield, organic recovery, ash recovery and water recovery decreased with the increasing air rate. However, for Brazilian coal the air rate had no significant effect. For Colombian coal, the highest yield (60% w/w) and organic recovery (69% w/w) were obtained at the lowest air rate (0.6 cm/s).展开更多
The current study investigated the effects of novel hybrid polyacrylamide polymers as ash (slime) depressants in fine coal flotation to enhance combustible recovery and ash rejection. Coal samples at P<sub>80<...The current study investigated the effects of novel hybrid polyacrylamide polymers as ash (slime) depressants in fine coal flotation to enhance combustible recovery and ash rejection. Coal samples at P<sub>80</sub> of approximately 45 um with ~25% ash content were floated in the presence of in-house synthesized hybrid aluminum hydroxide polyacrylamide polymers (Al(OH)<sub>3</sub>-PAM, or Al-PAM). All flotation experiments were carried out in a 5-L Denver flotation cell. Various influencing factors were examined to optimize the flotation process in the presence of the Al-PAM polymers, including the Al-PAM dosage, Al-PAM conditioning time, impeller rotation speed and pulp pH. Comparative and synergistic studies were also performed using organic polyacrylamide polymers (PAMs), commercial dispersants and Al-PAM/dispersant system. Results showed a significant improvement in both combustible recovery and ash rejection at an Al-PAM dosage of 0.25 mg/L. The maximum combustible recovery obtained, at natural pH, with Al-PAM and Al-PAM/dispersant system was determined to be 70% and 66% at ash content of 7.74% and 7.4%, respectively. Zeta potential values of both the raw coal and concentrate products showed a large shift toward more positive values (from ˉ50 mV to ˉ13 mV), indicating a significant decrease in ash-forming minerals (slimes) when Al-PAM polymers were applied.展开更多
The use of wash oil as a coal collector is proposed to overcome the disadvantages of regular collectors in coal slime flotation. These disadvantages include high price, limited sources and high consumption. The effect...The use of wash oil as a coal collector is proposed to overcome the disadvantages of regular collectors in coal slime flotation. These disadvantages include high price, limited sources and high consumption. The effect of additives on flotation was studied and an innovative "one rough separation--one cleaning separation" flotation technology was developed. The experimental resuits show that the clean coal ash content decreases by about 1.36% and the clean coal yield declines by around 10% with the application of the depressant. There is an increase of 3.76% in the yield of clean coal and a decrease of 0.40% in the ash content caused by utilizing a dispersant. An ultimate product having an ash content of 10.78% and yield of 70.12% can be attained using a combination of dispersant and depressant. The use of this new technology decreases the ash content by 1.21%, decreases the yield by 2.80% and an increases the coal flotation perfect index by 2.03%. Compared to common flotation, the utilization of the new technology reduces ash by 0.17%, increases yield by 5.3% and increases perfect index by 4.18%.展开更多
Introduced a new gravity and flotation separator with double-tailing dtsctaarge tor nne coat~, u,u ,,,~,.~ cation and cyclone scavenging with flotation in an original way. The beneficiation performance of it was good....Introduced a new gravity and flotation separator with double-tailing dtsctaarge tor nne coat~, u,u ,,,~,.~ cation and cyclone scavenging with flotation in an original way. The beneficiation performance of it was good. The results show that the gravity and flotation separator with double-tailing discharge can produce high-quality clean coal of 10.46% ash from free coal of 35.56% ash. It can discharge the fine and coarse tailings separately.展开更多
基金This work was supported by National Natural Science Foundation of China:Grant No.62106048.
文摘The detection of ash content in coal slime flotation tailings using deep learning can be hindered by various factors such as foam,impurities,and changing lighting conditions that disrupt the collection of tailings images.To address this challenge,we present a method for ash content detection in coal slime flotation tailings.This method utilizes chromatographic filter paper sampling and a multi-scale residual network,which we refer to as MRCN.Initially,tailings are sampled using chromatographic filter paper to obtain static tailings images,effectively isolating interference factors at the flotation site.Subsequently,the MRCN,consisting of a multi-scale residual network,is employed to extract image features and compute ash content.Within the MRCN structure,tailings images undergo convolution operations through two parallel branches that utilize convolution kernels of different sizes,enabling the extraction of image features at various scales and capturing a more comprehensive representation of the ash content information.Furthermore,a channel attention mechanism is integrated to enhance the performance of the model.The combination of the multi-scale residual structure and the channel attention mechanism within MRCN results in robust capabilities for image feature extraction and ash content detection.Comparative experiments demonstrate that this proposed approach,based on chromatographic filter paper sampling and the multi-scale residual network,exhibits significantly superior performance in the detection of ash content in coal slime flotation tailings.
文摘This paper deals with the operation principle of the cyclonic microbubble flotation column and its structure characterisics. The pilot test results and the commercial applied results of cyclonic microbubble flotation column for fine coal processing are also introduced. The test results proved that the cyclonic microbubble flotation column has many advantages suck as high selectivity, high efficiency in ash rejection from fine coals, low comsumption of energy, easy operation and maintenance, etc. It is a kind of equipment widely applied to fine coal processing.
文摘Beneficiation of non-coking coal is gaining ground in India. It not only reduces the volume of inert content to be transported to the power plant and also lowers the wear in the boiler houses. For special applications such as the fuel for integrated gasification combined cycle plant (IGCC), the ash content in the coal should preferably be below 15 %. Indian coals are characterized by high inter-grown ash content mainly due to 'drift origin' of Gondwana formation in Permian age. This warrants fine grinding of non-coking coal in order to liberate the ash forming minerals from coal macerals. A non- coking coal sample of vitrinite type from India was ground to 44 ~tm (dso) and subjected to column flotation to improve its quality. The non-coking coal analyzing 34.6 % ash, 26.2 % volatile matter, 1.3 % moisture and 37.9 % fixed carbon could be upgraded to a concentrate/froth of 14.83 % ash at 72.18 % yield by optimizing collector and frother dosages and flotation column operating parameters, namely, froth depth, superficial feed velocity and superficial air velocity. The concentrate produced by this process is suitable as fuel for IGCC in coal-to-electricity route.
基金Project(2012CB214905)supported by the National Basic Research Program of ChinaProject(51074157)supported by the National Natural Science Foundation of China
文摘Flotation column is widely used as the separation equipment for fine mineral due to its high selectivity. However, this device may be unsuitable for the coarse particle flotation and has high handling ability. A two-stage flotation column with dimensions of 2 000 mm×1 000 mm×4 000 mm was designed to enhance the column flotation process. The energy input was modified by adjusting the flow rate and the head of circulating pump. The flotation column was designed with low energy input in the first stage(speed flotation stage) to recover easy-to-float materials quickly, and high energy input in the second stage(recovery stage) to recover difficult-to-float minerals compulsorily. Contrast experiments on the throughput and coarse coal recovery of high ash coal from the Kailuan Mine were conducted using conventional single-stage flotation column and the two-stage flotation column. The results show that the combustible matter recovery of the two-stage flotation column is 5.25% higher than that of the conventional single-stage flotation column. However, the ash contents of clean coal for both columns are similar. Less coarse coals with low ash are obtained using the two-stage flotation column than that using the single-stage column flotation with the same handling ability. The two-stage flotation column process can enhance coal flotation compared with the conventional single-stage column flotation.
基金Project 50425414 supported by the National Outstanding Youth Science Foundation of China
文摘The cyclonic static micro-bubble column flotation (FCSMC) is an effective separation device for fine particle treatment. The high mineralization rate and short flotation time of this equipment can be attributed to its unique cyclonic force field. It also has been observed that the presence of a cyclonic force field leads to a lower bottom separation size limit and a reduction of unselective entrainment. The collection zone of the column is considered to consist of two parts,a column separation zone and a cyclonic zone. Total recovery of the collection zone was developed. For our study,we analyzed the particle movement in the cyclonic zone. Particle residence time equations for the cyclonic zone were de-rived by force analysis. Results obtained in this study provide a theoretical foundation for the design and scale-up of the FCSMC.
基金the State Key Basic Research Program of China (No. 2012CB214905)Key Program of National Natural Science Foundation of China (No. 500834006)the National Natural Science Foundation of China (No. 50974119) for financial support
文摘Laboratory experiments have been conducted to study the flow field in a cyclone static micro-bubble flotation column. The method of Particle Image Velocimetry (PIV) was used. The flow field velocity distribution in both cross section and longitudinal section within cyclonic zone was studied for different circulating volumes. The cross sectional vortex was also analyzed. The results show that in cross section as the circulating volume increases from 0.187 to 0.350 m 3 /h, the flow velocity ranges from 0 to 0.68 m/s. The flow field is mainly a non-vortex potential flow that forms a free vortex without outside energy input. In the cyclonic region the vortex deviates from the center of the flotation column because a single tangential opening introduces circulating fluid into the column. The tangential component of the velocity plays a defining role in the cross section. In the longitudinal section the velocity ranges from 0 to 0.08 m/s. The flow velocity increases as does the circulating volume. Advantageous mineral separation conditions arise from the combined effects of cyclonic flow in cross and longitudinal section.
基金Project supported by Iran Mineral Processing Research Center(IMPRC)。
文摘Fine particle flotation has been one of the main problems in many mineral processing plants.The bubble particle collision rate is very low for fine particles,which reduces flotation efficiency.Also,the existence of slimes is,generally,detrimental to the flotation process,affecting the selectivity and the quality of the concentrates.Besides,it causes an increase in reagents consumption.Hence,in most of processing plants,some of these particles are transmitted to the tailing ponds to reduce the effects of these problems and increase the selectivity of the process.Esfordi phosphate plant in Iran loses more than 30%of its capacity as particles with d 80 finer than 30μm.These fine particles with 15.9%P_(2)O_(5)content are transferred to tailing dam.Processing of fine particles is very important for phosphate industry from economic and environmental aspects.This study addressed the processing of fine tailings(slimes)from a phosphate ore concentrator via flotation,despite the traditional view that ultrafine particles do not float.Phosphate flotation performances in the presence and absence of nanobubbles(NBs)in both mechanical and column cells were compared according to the metallurgical results of the process.NBs(generated by hydrodynamic cavitation)have interesting and exclusive properties such as high stability,durability and high surface area per volume,leading to increase of their utilization in mining-metallurgy and environmental areas.The results of this study revealed that,in the absence of NBs,a concentrate containing 26.9%P_(2)O_(5)with a recovery of 29.13%was obtained using mechanical cells in comparison to 31.6%P_(2)O_(5)with a recovery of 32.74%obtained using column flotation.In the presence of NBs,the recoveries of the concentrate of the mechanical and column flotation increased to 40.49%and 41.26%with 28.47%and 30.43%P_(2)O_(5)contents,respectively.Comparative study showed that the column flotation was almost more efficient for processing the phosphate ore in the presence of the NBs,and had thicker froth layer compared to the mechanical flotation.
基金the National Natural Science Foundation of China (No. 50974119) for the financial support for this project
文摘The cyclonic-static microbubble flotation column has dual effects including the cyclonic separation and floatation separation with the characteristics of the small lower limit of the effective separation size, short separation time, large handling capacity, and low operation cost. It shows significant advantages in the oily wastewater treatment field, especially the polymer flooding oily wastewater treatment aspect. In this paper, the cyclonic separation function mechanism of the cyclonic-static microbubble flotation column was studied, the impact of the parameters including the feeding rate, aeration rate, circulating pressure, and underflow split ratio on the cyclonic separation efficiency was investigated, and the cyclonic separation efficiency model was established as well. In addition, by applying the Doppler Laser Velocimeter (LDV) and Fluent simulation software, the test and simulation to the single-phase flow velocity field of the cyclonic separation section of the cyclonic-static microbubble flotation column were carried out, and the velocity distribution rule of the cyclonic separation section was analyzed under the singlephase flow conditions.
文摘Brazil and Colombia have large reserves of coal. Those reserves in Brazil are located predominantly in the south and the main reserves in Colombia are located in the north. Despite the relative ease of exploitation, these resources have been underestimated as a source of energy. Currently, these countries are developing projects and partnerships aiming to qualify this mineral resource, adding quality to the final product of the processing plants. In this scenario, the processing of Brazilian and Colombian coal in flotation columns appears as a promising alternative, having been successful in mineral systems containing fine particles. The paper aims to study the overall process of column flotation for a specific Brazilian coal and a specific Colombian coal. The material used in this study consists of fine coal from Brazil (Copelmi) and Colombia (Cerrejon). The objective is to recover carbonaceous matter and reduce the ash and contaminants grade. The two coals were floated using a negative bias in a 5 cm diameter conventional flotation column of 5 m high. Flotation parameter investigated included air velocity in the range 0.6 to 1.5 cm/s. For all runs, a constant negative bias of-0.25 cm/s and a pulp concentration of 8% w/w were used. For Cerrej6n coal, 300 g/ton of frother and 907 g/ton of collector was used, whereas for Copelmi coal, 600 g/ton of frother and 1,815 g/ton of collector was employed. The frother was a commercial Aerofroth 65 (AF65), whereas the collector was Kerosene. For the Colombian coal, in general, yield, organic recovery, ash recovery and water recovery decreased with the increasing air rate. However, for Brazilian coal the air rate had no significant effect. For Colombian coal, the highest yield (60% w/w) and organic recovery (69% w/w) were obtained at the lowest air rate (0.6 cm/s).
文摘The current study investigated the effects of novel hybrid polyacrylamide polymers as ash (slime) depressants in fine coal flotation to enhance combustible recovery and ash rejection. Coal samples at P<sub>80</sub> of approximately 45 um with ~25% ash content were floated in the presence of in-house synthesized hybrid aluminum hydroxide polyacrylamide polymers (Al(OH)<sub>3</sub>-PAM, or Al-PAM). All flotation experiments were carried out in a 5-L Denver flotation cell. Various influencing factors were examined to optimize the flotation process in the presence of the Al-PAM polymers, including the Al-PAM dosage, Al-PAM conditioning time, impeller rotation speed and pulp pH. Comparative and synergistic studies were also performed using organic polyacrylamide polymers (PAMs), commercial dispersants and Al-PAM/dispersant system. Results showed a significant improvement in both combustible recovery and ash rejection at an Al-PAM dosage of 0.25 mg/L. The maximum combustible recovery obtained, at natural pH, with Al-PAM and Al-PAM/dispersant system was determined to be 70% and 66% at ash content of 7.74% and 7.4%, respectively. Zeta potential values of both the raw coal and concentrate products showed a large shift toward more positive values (from ˉ50 mV to ˉ13 mV), indicating a significant decrease in ash-forming minerals (slimes) when Al-PAM polymers were applied.
基金Financial support for this research,provided by the National Natural Science Foundation of China (No. 50921002)
文摘The use of wash oil as a coal collector is proposed to overcome the disadvantages of regular collectors in coal slime flotation. These disadvantages include high price, limited sources and high consumption. The effect of additives on flotation was studied and an innovative "one rough separation--one cleaning separation" flotation technology was developed. The experimental resuits show that the clean coal ash content decreases by about 1.36% and the clean coal yield declines by around 10% with the application of the depressant. There is an increase of 3.76% in the yield of clean coal and a decrease of 0.40% in the ash content caused by utilizing a dispersant. An ultimate product having an ash content of 10.78% and yield of 70.12% can be attained using a combination of dispersant and depressant. The use of this new technology decreases the ash content by 1.21%, decreases the yield by 2.80% and an increases the coal flotation perfect index by 2.03%. Compared to common flotation, the utilization of the new technology reduces ash by 0.17%, increases yield by 5.3% and increases perfect index by 4.18%.
基金Supported by the Natural Science Foundation of China (50974094) the National High-tech R & D Program of China (863 Program) (2007AA05Z317)
文摘Introduced a new gravity and flotation separator with double-tailing dtsctaarge tor nne coat~, u,u ,,,~,.~ cation and cyclone scavenging with flotation in an original way. The beneficiation performance of it was good. The results show that the gravity and flotation separator with double-tailing discharge can produce high-quality clean coal of 10.46% ash from free coal of 35.56% ash. It can discharge the fine and coarse tailings separately.