The influence of coexisting copper (Cu) ion on the degradation of pesticides pyrethroid cypermethrin and cyhalothrin in soil and photodegradation in water system were studied. Serial concentrations of the pesticides...The influence of coexisting copper (Cu) ion on the degradation of pesticides pyrethroid cypermethrin and cyhalothrin in soil and photodegradation in water system were studied. Serial concentrations of the pesticides with the addition of copper ion were spiked in the soil and incubated for a regular period of time, the analysis of the extracts from the soil was carded out using gas chromatography (GC). The photodegradation of pyrethroids in water system was conducted under UV irradiation. The effect of Cu^2+ on the pesticides degradation was measured with half life 00.5) of degradation. It was found that a negative correlation between the degradation of the pyrethroid pesticides in soil and Cu addition was observed. But Cu^2+ could accelerate photodegradation of the pyrethroids in water. The t0.5 for cyhalothrin extended from 6.7 to 6.8 d while for cypermethrin extended from 8.1 to 10.9 d with the presence of copper ion in soil. As for photodegradation, t0.5 for cyhalothrin reduced from 173.3 to 115.5 min and for cypermethrin from 115.5 to 99.0 min. The results suggested that copper influenced the degradation of the pesticides in soil by affecting the activity of microorganisms. However, it had catalyst tendency for photodegradation in water system. The difference for the degradation efficiency of pyrethroid isomers in soil was also observed. Copper could obviously accelerate the degradation of some special isomers.展开更多
This paper described a new method for the trace determination of fenpropathrin, cyhalothrin and deltamethrin using multiwalled carbon nanotubes (MWCNTs) cartridge. Important parameters, such as the sample pH, eluent...This paper described a new method for the trace determination of fenpropathrin, cyhalothrin and deltamethrin using multiwalled carbon nanotubes (MWCNTs) cartridge. Important parameters, such as the sample pH, eluent and its volume, sample flow rate and sample volume were investigated in detail. The linear ranges, the detection limits, and precisions (R.S.D.) were in the range of 0.1- 40 μg L^-11, 1.34.3 ng L^-1 and 2.3-2.8%, respectively. The performance of the proposed method was validated with real water samples, and the spiked recoveries were in the range of 91.7-117.8%, respectively. The experimental results demonstrated that the proposed method was an excellent alternative for the routine analysis of such pollutants in environmental samples. 2007 Qing Xiang Zhou. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
The wide use and wide-spectrum toxicity of synthetic pyrethroids (SPs) insecticides make them an emerging ecotoxicological concern. Some previous studies showed that SPs possessed cytotoxicity in some immune cells s...The wide use and wide-spectrum toxicity of synthetic pyrethroids (SPs) insecticides make them an emerging ecotoxicological concern. Some previous studies showed that SPs possessed cytotoxicity in some immune cells such as human lymphocytes and rat bone marrow. However, the cytotoxicity of SPs to macrophages, which are crucial to innate immunity, has not been explored. In the present report, we investigated a new pyrethroid insecticide, lambda-cyhalothrin (LCT), which may increase the generation of reactive oxygen species (ROS) and DNA damage levels and cause cytotoxicity in RAW 264.7 cells in dose- and time-dependent manners. The results for the first time implicated increased endogenous ROS and DNA damage as co-mediators of LCT-induced cytotoxicity in macrophages. Our results also suggested that macrophages were involved in synthetic pyrethroid-induced adverse immune effects. Considering the ubiquitous environmental presence of SPs, this study provided new information relative to the potential long-term physiological and immunological effects associated with chronic exposure to SPs. Hence, the potential immunotoxicity of SPs should be considered in assessing the safety of these compounds in sensitive environmental compartments.展开更多
The effects of cyhalothrin on the transient outward potassium current in central neurons of Helicoverpa armigera were studied by using the patch clamp techniques. The results showed that before using cyhalothrin (10....The effects of cyhalothrin on the transient outward potassium current in central neurons of Helicoverpa armigera were studied by using the patch clamp techniques. The results showed that before using cyhalothrin (10.5 mmol/L), activation potential was approximately -40 mV, after application of the drug, the activation potential shifted roughly 10 mV to the negative potential direction, so channels can be activated more easily. Before and after cyhalothrin application, the change of current amplitude was insignificant. The value of V1/2 and k of activation curves did not change significantly, however, the V1/2 of the inactivation curves changed significantly. Inactivation curves significantly shifted to a negative direction, so that inactivation of the channels was hastened. It is indicated that there may exit a primary way in which cyhalothrin provides neurotoxicity to the nervous system through the regulation of activation potentials and inactivation state of IA channels.展开更多
The genetic inheritance of resistance to cyhalothrin in housefly, Musca domestica (L) was investigated. Reciprocal crosses between susceptible (S) and resistant (R) strains were used to determine the characteristi...The genetic inheritance of resistance to cyhalothrin in housefly, Musca domestica (L) was investigated. Reciprocal crosses between susceptible (S) and resistant (R) strains were used to determine the characteristics of resistance. Analysis of probit line from the F 1 generation and F 2 generation obtained by inbreeding the F 1 hybrids indicated that cyhalothrin resistance was controlled by more than one factors and degree of resistance dominance to cyhalothrin was -0.10, indicating cyhalothrin resistance is conferred by incompletely recessive gene(s). The realized heritability of resistance to cyhalothrin cyhalothrin calculated from data collected routinely from laboratory selection was 0 12.展开更多
The effects of amphiphilic O/W emulsions,stabilized by the alkyl polyglycoside(APG)or cholesterol-grafted sodium alginate(CSAD)/APG systems,on lambda-cyhalothrin adsorption/desorption mechanisms on natural soil minera...The effects of amphiphilic O/W emulsions,stabilized by the alkyl polyglycoside(APG)or cholesterol-grafted sodium alginate(CSAD)/APG systems,on lambda-cyhalothrin adsorption/desorption mechanisms on natural soil minerals(i.e.,illite and kaolinite)were investigated.Sorption and desorption of lambda-cyhalothrin onto soil minerals was studied via batch equilibration to give insight into the adsorption equilibrium,kinetics,and thermodynamics of lambda-cyhalothrin adsorption onto minerals.The results indicate the following:(i)The adsorption processes for the APG system and CSAD/APG system include:rapid adsorption,slow adsorption,and adsorption equilibrium.The adsorption kinetics of pesticide on illite and kaolinite are in accordance with the Ho and McKay model,and the adsorption isotherm conforms to the Freundlich model.In addition,the adsorption processes of pesticide for the two systems on minerals were spontaneous and feasible(ΔG^0<0),endothermic(ΔH^0>0),and mainly involved chemical bonding(ΔH^0>60).(ii)The equilibrium adsorption percentages of the pesticide on illite for the APG system and CSAD/APG system were 42.4%and 64.8%,and the corresponding equilibrium adsorption percentages on kaolinite were 40.8%and 61.8%,respectively.Moreover,the pesticide adsorption rate K_(2-CSAD/APG)was faster than K_(2-APG),and its adsorption capacity K_(f-CSAD/APG )was greater than K_(f-APG).Meanwhile,the pesticide desorption K_(fd)in the CSAD/APG system was smaller than that in the APG system.As a result,this eco-friendly O/W emulsion based on amphiphilic sodium alginate derivatives might provide a green pesticide formulation,since it could reduce the amount of lambda-cyhalothrin entering aquatic systems to threaten non-target fish and invertebrate species.展开更多
Excessive use of pesticides poses increased risks to non target species including humans. In the developing countries, lack of proper awareness about the toxic potential of pesticides makes the farmer more vulnerable ...Excessive use of pesticides poses increased risks to non target species including humans. In the developing countries, lack of proper awareness about the toxic potential of pesticides makes the farmer more vulnerable to pesticide linked toxicities, which could lead to diverse pathological conditions. The toxic potential of a pesticide could be determined by their ability to induce genetic mutations and cytotoxicity. Hence, determination of genetic mutation and cytotoxicity of each pesticide is unavoidable to legislate health and safety appraisal about pesticides. The objective of current investigation was to determine the genotoxic and cytotoxic potential of Endosulfan(EN) and Lambda-cyhalothrin(LC); individually and in combination. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide(MTT) assay was utilized to determine cytotoxicity, while two mutant histidine dependent Salmonella strains(TA98, TA100) were used to determine the mutagenicity of EN and LC.Moreover, mutagenicity assay was conducted with and without S9 to evaluate the effects of metabolic activation on mutagenicity. Even though a dose dependent increase in the number of revertant colonies was detected with EN against both bacterial strains, a highly significant(p 〈 0.05) increase in the mutagenicity was detected in TA98 with S9. In comparison, data obtained from LC revealed less mutagenic potential than EN. Surprisingly,the non-mutagenic individual-concentrations of EN and LC showed dose dependent mutagenicity when combined. Combination of EN and LC synergistically induced mutagenicity both in TA98 and TA100. MTT assay spotlighted comparable dose dependent cytotoxicity effects of both pesticides. Interestingly, the combination of EN and LC produced increased reversion and cytotoxicity at lower doses as compared to each pesticide, concluding that pesticide exposure even at sub-lethal doses can produce cytotoxicity and genetic mutations, which could lead to carcinogenicity.展开更多
Lambda-cyhalothrin(LCT),one of the type II pyrethroids,has been widely used throughout the world.The estrogenic effect of LCT to increase cell proliferation has been well established.However,whether the estrogenic e...Lambda-cyhalothrin(LCT),one of the type II pyrethroids,has been widely used throughout the world.The estrogenic effect of LCT to increase cell proliferation has been well established.However,whether the estrogenic effect of LCT will influence neurodevelopment has not been investigated.In addition,17β-Estradiol(E2)plays a crucial role in neurodevelopment and induces an increase in synaptic proteins.The post-synaptic density 95(PSD95)protein,which is involved in the development of the structure and function of new spines and localized with estrogen receptor α(ERα)at the post-synaptic density(PSD),was detected in our study by using hippocampal neuron cell line HT22.We found that LCT up-regulated PSD95 and ERα expression,estrogen receptor(ER)antagonist ICI182,780 and phosphatidylinositol-4;5-bisphosphate 3-kinase(PI3K)inhibitor LY294,002 blocked this effect.In addition,LCT disrupted the promotion effect of E2 on PSD95.To investigate whether the observed changes are caused by ERα-dependent signaling activation,we next detected the effects of LCT on the ERα-mediated PI3K-Protein kinase B(PKB/Akt)-eukaryotic initiation factor(e IF)4E-binding protein 1(4E-BP1)pathway.There existed an activation of Akt and the downstream factor 4E-BP1 after LCT treatment.In addition,LCT could disrupt the activation effect of E2 on the Akt pathway.However,no changes in c AMP response element-binding protein(CREB)activation and PSD95 messenger ribonucleic acid(m RNA)were observed.Our findings demonstrated that LCT could increase the PSD95 protein level via the ERα-dependent Akt pathway,and LCT might disrupt the up-regulation effect of E2 on PSD95 protein expression via this signaling pathway.展开更多
Pertussis toxin (FIX) inhibits the activation of the α-subunit of the inhibitory heterotrimeric G-proteins (Cαi/o) and modulates voltage-gated sodium channels, which may be one of the primary targets of pyrethro...Pertussis toxin (FIX) inhibits the activation of the α-subunit of the inhibitory heterotrimeric G-proteins (Cαi/o) and modulates voltage-gated sodium channels, which may be one of the primary targets of pyrethroids. To investigate the potential mechanisms of agricultural pests resistance to pyrethroid insecticides, we examined the modulations by PTX on sodium channels in the central neurons of the 3rd-4th instar larvae of cyhalothrin-resistant (Cy-R) and cyhaiothrin-susceptible (Cy-S) Helicoverpa armigera by the whole-cell patch-clamp technique. The isolated neurons were cultured for 12-16 h in an improved L15 insect culture medium with or without PTX (400 ng/mL). The results showed that both the Cy-R and Cy-S sodium channels exhibited fast kinetics and tetrodotoxin (TTX) sensitivity. The Cy-R sodium channels exhibited not only altered gating properties, including a 8.88-mV right shift in voltage-dependent activation (V0.5act) and a 6.54-mV right shift in voltage-dependent inactivation (V0.5inact), but also a reduced peak in sodium channel density (Ⅰdensity) (55.2% of that in Cy-S neurons). Cy-R sodium channels also showed low excitability, as evidenced by right shift of activation potential (Ⅴacti) by 5-10 mV and peak potential (Ⅴpcak) by 20 mV. FIX exerted significant effects on Cy-S sodium channels, reducing sodium channel density by 70.04%, right shifting V0.5act by 14.41 mV and V0.5inact by 9. 38 mV. It did not cause any significant changes of the parameters mentioned above in the Cy-R sodium channels. The activation time (Tpeak) from latency to peak at peak voltage and the fast inactivation time constant (τinact) in both Cy-S and Cy-R neurons were not affected. The results suggest that cotton bollworm resistant to pyrethroid insecticides involves not only mutations and allosteric alterations of voltage-gated sodium channels, but also might implicate perturbation of PTX-sensitive Gαi/o-COupled signaling Wansduction pathways.展开更多
基金Project supported by the National Natural Science Foundation of China (No.20677025)Social Development Foundation of Jiangsu Province (No.BS2006052)Social Development Foundation of Zhenjiang City (No.SH2006076)
文摘The influence of coexisting copper (Cu) ion on the degradation of pesticides pyrethroid cypermethrin and cyhalothrin in soil and photodegradation in water system were studied. Serial concentrations of the pesticides with the addition of copper ion were spiked in the soil and incubated for a regular period of time, the analysis of the extracts from the soil was carded out using gas chromatography (GC). The photodegradation of pyrethroids in water system was conducted under UV irradiation. The effect of Cu^2+ on the pesticides degradation was measured with half life 00.5) of degradation. It was found that a negative correlation between the degradation of the pyrethroid pesticides in soil and Cu addition was observed. But Cu^2+ could accelerate photodegradation of the pyrethroids in water. The t0.5 for cyhalothrin extended from 6.7 to 6.8 d while for cypermethrin extended from 8.1 to 10.9 d with the presence of copper ion in soil. As for photodegradation, t0.5 for cyhalothrin reduced from 173.3 to 115.5 min and for cypermethrin from 115.5 to 99.0 min. The results suggested that copper influenced the degradation of the pesticides in soil by affecting the activity of microorganisms. However, it had catalyst tendency for photodegradation in water system. The difference for the degradation efficiency of pyrethroid isomers in soil was also observed. Copper could obviously accelerate the degradation of some special isomers.
基金This work was supported by the Creative Talented Person's Fund of Henan Province (No. [20051126);Natural Science Foundation of Henan Province (No. 072300460010);the Fund of Henan Normal University (No. 2006PL06);the grants from the Henan Key Laboratory for environmental pollution control.
文摘This paper described a new method for the trace determination of fenpropathrin, cyhalothrin and deltamethrin using multiwalled carbon nanotubes (MWCNTs) cartridge. Important parameters, such as the sample pH, eluent and its volume, sample flow rate and sample volume were investigated in detail. The linear ranges, the detection limits, and precisions (R.S.D.) were in the range of 0.1- 40 μg L^-11, 1.34.3 ng L^-1 and 2.3-2.8%, respectively. The performance of the proposed method was validated with real water samples, and the spiked recoveries were in the range of 91.7-117.8%, respectively. The experimental results demonstrated that the proposed method was an excellent alternative for the routine analysis of such pollutants in environmental samples. 2007 Qing Xiang Zhou. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
基金supported by the National Natural Science Foundations of China (No. 20877071, 20837002)the National Basic Research Program (973) of China (No.2009CB421603)
文摘The wide use and wide-spectrum toxicity of synthetic pyrethroids (SPs) insecticides make them an emerging ecotoxicological concern. Some previous studies showed that SPs possessed cytotoxicity in some immune cells such as human lymphocytes and rat bone marrow. However, the cytotoxicity of SPs to macrophages, which are crucial to innate immunity, has not been explored. In the present report, we investigated a new pyrethroid insecticide, lambda-cyhalothrin (LCT), which may increase the generation of reactive oxygen species (ROS) and DNA damage levels and cause cytotoxicity in RAW 264.7 cells in dose- and time-dependent manners. The results for the first time implicated increased endogenous ROS and DNA damage as co-mediators of LCT-induced cytotoxicity in macrophages. Our results also suggested that macrophages were involved in synthetic pyrethroid-induced adverse immune effects. Considering the ubiquitous environmental presence of SPs, this study provided new information relative to the potential long-term physiological and immunological effects associated with chronic exposure to SPs. Hence, the potential immunotoxicity of SPs should be considered in assessing the safety of these compounds in sensitive environmental compartments.
文摘The effects of cyhalothrin on the transient outward potassium current in central neurons of Helicoverpa armigera were studied by using the patch clamp techniques. The results showed that before using cyhalothrin (10.5 mmol/L), activation potential was approximately -40 mV, after application of the drug, the activation potential shifted roughly 10 mV to the negative potential direction, so channels can be activated more easily. Before and after cyhalothrin application, the change of current amplitude was insignificant. The value of V1/2 and k of activation curves did not change significantly, however, the V1/2 of the inactivation curves changed significantly. Inactivation curves significantly shifted to a negative direction, so that inactivation of the channels was hastened. It is indicated that there may exit a primary way in which cyhalothrin provides neurotoxicity to the nervous system through the regulation of activation potentials and inactivation state of IA channels.
文摘The genetic inheritance of resistance to cyhalothrin in housefly, Musca domestica (L) was investigated. Reciprocal crosses between susceptible (S) and resistant (R) strains were used to determine the characteristics of resistance. Analysis of probit line from the F 1 generation and F 2 generation obtained by inbreeding the F 1 hybrids indicated that cyhalothrin resistance was controlled by more than one factors and degree of resistance dominance to cyhalothrin was -0.10, indicating cyhalothrin resistance is conferred by incompletely recessive gene(s). The realized heritability of resistance to cyhalothrin cyhalothrin calculated from data collected routinely from laboratory selection was 0 12.
基金supported by the Key Projects in the Hainan provincial Science & Technology Program (Nos. ZDYF2018061, ZDYF2018107)the National Natural Science Foundation of China (Nos. 21566009, 21706045)+1 种基金the Natural Science Foundation of Hainan Province (No. 217021)the Key Laboratory of Water Environment Pollution Treatment & Resource of Hainan Province
文摘The effects of amphiphilic O/W emulsions,stabilized by the alkyl polyglycoside(APG)or cholesterol-grafted sodium alginate(CSAD)/APG systems,on lambda-cyhalothrin adsorption/desorption mechanisms on natural soil minerals(i.e.,illite and kaolinite)were investigated.Sorption and desorption of lambda-cyhalothrin onto soil minerals was studied via batch equilibration to give insight into the adsorption equilibrium,kinetics,and thermodynamics of lambda-cyhalothrin adsorption onto minerals.The results indicate the following:(i)The adsorption processes for the APG system and CSAD/APG system include:rapid adsorption,slow adsorption,and adsorption equilibrium.The adsorption kinetics of pesticide on illite and kaolinite are in accordance with the Ho and McKay model,and the adsorption isotherm conforms to the Freundlich model.In addition,the adsorption processes of pesticide for the two systems on minerals were spontaneous and feasible(ΔG^0<0),endothermic(ΔH^0>0),and mainly involved chemical bonding(ΔH^0>60).(ii)The equilibrium adsorption percentages of the pesticide on illite for the APG system and CSAD/APG system were 42.4%and 64.8%,and the corresponding equilibrium adsorption percentages on kaolinite were 40.8%and 61.8%,respectively.Moreover,the pesticide adsorption rate K_(2-CSAD/APG)was faster than K_(2-APG),and its adsorption capacity K_(f-CSAD/APG )was greater than K_(f-APG).Meanwhile,the pesticide desorption K_(fd)in the CSAD/APG system was smaller than that in the APG system.As a result,this eco-friendly O/W emulsion based on amphiphilic sodium alginate derivatives might provide a green pesticide formulation,since it could reduce the amount of lambda-cyhalothrin entering aquatic systems to threaten non-target fish and invertebrate species.
基金financially supported by the Department of Pharmacology and Toxicology (Evening program), University of Veterinary and Animal Sciences, Lahore
文摘Excessive use of pesticides poses increased risks to non target species including humans. In the developing countries, lack of proper awareness about the toxic potential of pesticides makes the farmer more vulnerable to pesticide linked toxicities, which could lead to diverse pathological conditions. The toxic potential of a pesticide could be determined by their ability to induce genetic mutations and cytotoxicity. Hence, determination of genetic mutation and cytotoxicity of each pesticide is unavoidable to legislate health and safety appraisal about pesticides. The objective of current investigation was to determine the genotoxic and cytotoxic potential of Endosulfan(EN) and Lambda-cyhalothrin(LC); individually and in combination. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide(MTT) assay was utilized to determine cytotoxicity, while two mutant histidine dependent Salmonella strains(TA98, TA100) were used to determine the mutagenicity of EN and LC.Moreover, mutagenicity assay was conducted with and without S9 to evaluate the effects of metabolic activation on mutagenicity. Even though a dose dependent increase in the number of revertant colonies was detected with EN against both bacterial strains, a highly significant(p 〈 0.05) increase in the mutagenicity was detected in TA98 with S9. In comparison, data obtained from LC revealed less mutagenic potential than EN. Surprisingly,the non-mutagenic individual-concentrations of EN and LC showed dose dependent mutagenicity when combined. Combination of EN and LC synergistically induced mutagenicity both in TA98 and TA100. MTT assay spotlighted comparable dose dependent cytotoxicity effects of both pesticides. Interestingly, the combination of EN and LC produced increased reversion and cytotoxicity at lower doses as compared to each pesticide, concluding that pesticide exposure even at sub-lethal doses can produce cytotoxicity and genetic mutations, which could lead to carcinogenicity.
基金supported by the National Natural Science Foundation of China(No.H2607-30571585)
文摘Lambda-cyhalothrin(LCT),one of the type II pyrethroids,has been widely used throughout the world.The estrogenic effect of LCT to increase cell proliferation has been well established.However,whether the estrogenic effect of LCT will influence neurodevelopment has not been investigated.In addition,17β-Estradiol(E2)plays a crucial role in neurodevelopment and induces an increase in synaptic proteins.The post-synaptic density 95(PSD95)protein,which is involved in the development of the structure and function of new spines and localized with estrogen receptor α(ERα)at the post-synaptic density(PSD),was detected in our study by using hippocampal neuron cell line HT22.We found that LCT up-regulated PSD95 and ERα expression,estrogen receptor(ER)antagonist ICI182,780 and phosphatidylinositol-4;5-bisphosphate 3-kinase(PI3K)inhibitor LY294,002 blocked this effect.In addition,LCT disrupted the promotion effect of E2 on PSD95.To investigate whether the observed changes are caused by ERα-dependent signaling activation,we next detected the effects of LCT on the ERα-mediated PI3K-Protein kinase B(PKB/Akt)-eukaryotic initiation factor(e IF)4E-binding protein 1(4E-BP1)pathway.There existed an activation of Akt and the downstream factor 4E-BP1 after LCT treatment.In addition,LCT could disrupt the activation effect of E2 on the Akt pathway.However,no changes in c AMP response element-binding protein(CREB)activation and PSD95 messenger ribonucleic acid(m RNA)were observed.Our findings demonstrated that LCT could increase the PSD95 protein level via the ERα-dependent Akt pathway,and LCT might disrupt the up-regulation effect of E2 on PSD95 protein expression via this signaling pathway.
基金Acknowledgments This work was supported by a grant from The National Natural Science Foundation of China (30270884). We greatly thank Dr Lai-Hua Xie (University of California at Los Angeles) for critical reading of the early draft of the manuscript. We are grateful to Dr Chang-Hui Rui (Institute of Plant Protection, CAAS) for technical assistance and suggestions.
文摘Pertussis toxin (FIX) inhibits the activation of the α-subunit of the inhibitory heterotrimeric G-proteins (Cαi/o) and modulates voltage-gated sodium channels, which may be one of the primary targets of pyrethroids. To investigate the potential mechanisms of agricultural pests resistance to pyrethroid insecticides, we examined the modulations by PTX on sodium channels in the central neurons of the 3rd-4th instar larvae of cyhalothrin-resistant (Cy-R) and cyhaiothrin-susceptible (Cy-S) Helicoverpa armigera by the whole-cell patch-clamp technique. The isolated neurons were cultured for 12-16 h in an improved L15 insect culture medium with or without PTX (400 ng/mL). The results showed that both the Cy-R and Cy-S sodium channels exhibited fast kinetics and tetrodotoxin (TTX) sensitivity. The Cy-R sodium channels exhibited not only altered gating properties, including a 8.88-mV right shift in voltage-dependent activation (V0.5act) and a 6.54-mV right shift in voltage-dependent inactivation (V0.5inact), but also a reduced peak in sodium channel density (Ⅰdensity) (55.2% of that in Cy-S neurons). Cy-R sodium channels also showed low excitability, as evidenced by right shift of activation potential (Ⅴacti) by 5-10 mV and peak potential (Ⅴpcak) by 20 mV. FIX exerted significant effects on Cy-S sodium channels, reducing sodium channel density by 70.04%, right shifting V0.5act by 14.41 mV and V0.5inact by 9. 38 mV. It did not cause any significant changes of the parameters mentioned above in the Cy-R sodium channels. The activation time (Tpeak) from latency to peak at peak voltage and the fast inactivation time constant (τinact) in both Cy-S and Cy-R neurons were not affected. The results suggest that cotton bollworm resistant to pyrethroid insecticides involves not only mutations and allosteric alterations of voltage-gated sodium channels, but also might implicate perturbation of PTX-sensitive Gαi/o-COupled signaling Wansduction pathways.