High load-bearing efficiency is one of the advantages of biological structures after the evolution of billions of years. Biomimicking from nature may offer the potential for lightweight design. In the viewpoint ofrnec...High load-bearing efficiency is one of the advantages of biological structures after the evolution of billions of years. Biomimicking from nature may offer the potential for lightweight design. In the viewpoint ofrnechanics properties, the culm of bamboo comprises of two types of cells and the number of the vascular bundles takes a gradient of distribution. A three-point bending test was carried out to measure the elastic modulus. Results show that the elastic modulus of bamboo decreases gradually from the periphery towards the centre. Based on the structural characteristics of bamboo, a bionic cylindrical structure was designed to mimic the gradient distribution of vascular bundles and parenchyma cells. The buckling resistance of the bionic structure was compared with that of a traditional shell of equal mass under axial pressure by finite element simulations. Results show that the load-bearing capacity of bionic shell is increased by 124.8%. The buckling mode of bionic structure is global buckling while that of the conventional shell is local buckling.展开更多
镁合金薄壁结构在飞行器和航海器工程领域应用范围逐步扩展。针对一种筋肋增强镁合金薄壁圆筒结构试件,采用Solid Works Simulation有限元分析软件,数值模拟圆筒结构应力和变形分布及结构固有模态特性。结果表明在1~1.75 MPa外压载荷下...镁合金薄壁结构在飞行器和航海器工程领域应用范围逐步扩展。针对一种筋肋增强镁合金薄壁圆筒结构试件,采用Solid Works Simulation有限元分析软件,数值模拟圆筒结构应力和变形分布及结构固有模态特性。结果表明在1~1.75 MPa外压载荷下,圆筒壳板最大等效应力和变形都发生在外止口临域单元框壳板中心部位,其值随外压载荷的变化与筒体试验有关结果符合较好,筋和肋对增强薄壁结构壳体刚性起主要作用。圆筒前十阶固有频率从683 Hz依次增加至1147 Hz。Simulation软件能够用于筒体结构的后续改进设计和深化研究使用。展开更多
Thin-walled structures are commonly utilized in aerospace and aircraft structures,which are prone to buckling under axial compression and extremely sensitive to geometric imperfections.After decades of efforts,it stil...Thin-walled structures are commonly utilized in aerospace and aircraft structures,which are prone to buckling under axial compression and extremely sensitive to geometric imperfections.After decades of efforts,it still remains a challenging issue to accurately predict the lower-bound buckling load due to the impact of geometric imperfections.Up to now,the lower-bound curve in NASA SP-8007 is still widely used as the design criterion of aerospace thin-walled structures,and this series of knockdown factors(KDF)has been proven to be overly conservative with the significant promotion of the manufacturing process.In recent years,several new numerical and experimental methods for determining KDF have been established,which are systematically reviewed in this paper.The Worst Multiple Perturbation Load Approach(WMPLA)is one of the most representative methods to reduce the conservatism of traditional methods in a rational manner.Based on an extensive collection of test data from 1990 to 2020,a new lower-bound curve is approximated to produce a series of improved KDFs.It is evident that these new KDFs have an overall improvement of 0.1-0.3 compared with NASA SP-8007,and the KDF predicted by the WMPLA is very close to the front of the new curve.This may provide some insight into future design guidelines of axially compressed cylindrical shells,which is promising for the lightweight design of large-diameter aerospace structures.展开更多
基金National Natural Science Foundation of China (Grant No. 50575008)the Aeronautical Science Foundation of China (Grant No. 05B01004)
文摘High load-bearing efficiency is one of the advantages of biological structures after the evolution of billions of years. Biomimicking from nature may offer the potential for lightweight design. In the viewpoint ofrnechanics properties, the culm of bamboo comprises of two types of cells and the number of the vascular bundles takes a gradient of distribution. A three-point bending test was carried out to measure the elastic modulus. Results show that the elastic modulus of bamboo decreases gradually from the periphery towards the centre. Based on the structural characteristics of bamboo, a bionic cylindrical structure was designed to mimic the gradient distribution of vascular bundles and parenchyma cells. The buckling resistance of the bionic structure was compared with that of a traditional shell of equal mass under axial pressure by finite element simulations. Results show that the load-bearing capacity of bionic shell is increased by 124.8%. The buckling mode of bionic structure is global buckling while that of the conventional shell is local buckling.
基金the National Natural Science Foundation of China(Grant Nos.U21A20429,11772078,and 11825202)the National Defense Basic Research Program(Grant No.JCKY2020110).
文摘Thin-walled structures are commonly utilized in aerospace and aircraft structures,which are prone to buckling under axial compression and extremely sensitive to geometric imperfections.After decades of efforts,it still remains a challenging issue to accurately predict the lower-bound buckling load due to the impact of geometric imperfections.Up to now,the lower-bound curve in NASA SP-8007 is still widely used as the design criterion of aerospace thin-walled structures,and this series of knockdown factors(KDF)has been proven to be overly conservative with the significant promotion of the manufacturing process.In recent years,several new numerical and experimental methods for determining KDF have been established,which are systematically reviewed in this paper.The Worst Multiple Perturbation Load Approach(WMPLA)is one of the most representative methods to reduce the conservatism of traditional methods in a rational manner.Based on an extensive collection of test data from 1990 to 2020,a new lower-bound curve is approximated to produce a series of improved KDFs.It is evident that these new KDFs have an overall improvement of 0.1-0.3 compared with NASA SP-8007,and the KDF predicted by the WMPLA is very close to the front of the new curve.This may provide some insight into future design guidelines of axially compressed cylindrical shells,which is promising for the lightweight design of large-diameter aerospace structures.