An analytical method for the three-dimensional vibration analysis of a functionally graded cylindrical shell integrated by two thin functionally graded piezoelectric (FGP) layers is presented. The first-order shear ...An analytical method for the three-dimensional vibration analysis of a functionally graded cylindrical shell integrated by two thin functionally graded piezoelectric (FGP) layers is presented. The first-order shear deformation theory is used to model the electromechanical system. Nonlinear equations of motion are derived by considering the von Karman nonlinear strain-displacement relations using Hamilton's principle. The piezoelectric layers on the inner and outer surfaces of the core can be considered as a sensor and an actuator for controlling characteristic vibration of the system. The equations of motion are derived as partial differential equations and then discretized by the Navier method. Numerical simulation is performed to investigate the effect of different para- meters of material and geometry on characteristic vibration of the cylinder. The results of this study show that the natural frequency of the system decreases by increasing the non-homogeneous index of FGP layers and decreases by increasing the non-homogeneous index of the functionally graded core. Furthermore, it is concluded that by increasing the ratio of core thickness to cylinder length, the natural frequencies of the cylinder increase considerably.展开更多
Thermal buckling behavior of cylindrical shell made of functionally graded material(FGM) is studied. The material constituents are composed of ceramic and metal.The material properties across the shell thickness are...Thermal buckling behavior of cylindrical shell made of functionally graded material(FGM) is studied. The material constituents are composed of ceramic and metal.The material properties across the shell thickness are assumed to be graded according to a simple power law distribution in terms of the volume fraction rule of mixtures. Based on the Donnell shell theory, a system of dimensionless partial differential equations of buckling in terms of displacement components is derived. The method of separation of variables is used to transform the governing equations to ordinary differential equations(ODEs). A shooting method is used to search for the numerical solutions of the differential equations under two types of boundary conditions. Effects of the power law index, the dimensionless geometrical parameters, and the temperature ratio on the critical buckling temperature are discussed in detail.展开更多
The transmission of terahertz(THz)Bessel vortex beams through a multi-layered anisotropic magnetized plasma slab is investigated by using a hybrid method of cylindrical vector wave functions(CVWFs)and Fourier transfor...The transmission of terahertz(THz)Bessel vortex beams through a multi-layered anisotropic magnetized plasma slab is investigated by using a hybrid method of cylindrical vector wave functions(CVWFs)and Fourier transform.On the basis of the electromagnetic boundary conditions on each interface,a cascade form of expansion coefficients of the reflected and transmitted fields is obtained.Taking a double Gaussian distribution of the plasma density as an example,the influences of the applied magnetic field,the incident angle and polarization mode of the incident beams on the magnitude,OAM mode and polarization of the transmitted beams are analyzed in detail.The results indicate that the applied magnetic field has a major effect upon the polarization state of the transmitted fields but not upon the transmitted OAM spectrum.The incident angle has a powerful influence upon both the amplitude profile and the OAM spectrum of the transmitted beam.Furthermore,for multiple coaxial vortex beams,an increase of the maximum value of the plasma density causes more remarkable distortion of both the profile and OAM spectrum of the transmitted beam.This research makes a stable foundation for the THz OAM multiplexing/demultiplexing technology in a magnetized plasma environment.展开更多
基金supported by the University of Kashan(Nos.574613/01 and 574619/02)
文摘An analytical method for the three-dimensional vibration analysis of a functionally graded cylindrical shell integrated by two thin functionally graded piezoelectric (FGP) layers is presented. The first-order shear deformation theory is used to model the electromechanical system. Nonlinear equations of motion are derived by considering the von Karman nonlinear strain-displacement relations using Hamilton's principle. The piezoelectric layers on the inner and outer surfaces of the core can be considered as a sensor and an actuator for controlling characteristic vibration of the system. The equations of motion are derived as partial differential equations and then discretized by the Navier method. Numerical simulation is performed to investigate the effect of different para- meters of material and geometry on characteristic vibration of the cylinder. The results of this study show that the natural frequency of the system decreases by increasing the non-homogeneous index of FGP layers and decreases by increasing the non-homogeneous index of the functionally graded core. Furthermore, it is concluded that by increasing the ratio of core thickness to cylinder length, the natural frequencies of the cylinder increase considerably.
基金Project supported by the National Natural Science Foundation of China(Nos.11272278 and11672260)
文摘Thermal buckling behavior of cylindrical shell made of functionally graded material(FGM) is studied. The material constituents are composed of ceramic and metal.The material properties across the shell thickness are assumed to be graded according to a simple power law distribution in terms of the volume fraction rule of mixtures. Based on the Donnell shell theory, a system of dimensionless partial differential equations of buckling in terms of displacement components is derived. The method of separation of variables is used to transform the governing equations to ordinary differential equations(ODEs). A shooting method is used to search for the numerical solutions of the differential equations under two types of boundary conditions. Effects of the power law index, the dimensionless geometrical parameters, and the temperature ratio on the critical buckling temperature are discussed in detail.
基金supported by National Natural Science Foundation of China(Nos.62171355,61801349,and 61875156)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2020JM-192)+1 种基金the Stable Support Project of Basic Scientific Research Institutes(Nos.A131901W14,A132001W12)the Science and Technology Foundation of State Key Laboratory of Electromagnetic Environment,and the 111 Project(No.B17035)。
文摘The transmission of terahertz(THz)Bessel vortex beams through a multi-layered anisotropic magnetized plasma slab is investigated by using a hybrid method of cylindrical vector wave functions(CVWFs)and Fourier transform.On the basis of the electromagnetic boundary conditions on each interface,a cascade form of expansion coefficients of the reflected and transmitted fields is obtained.Taking a double Gaussian distribution of the plasma density as an example,the influences of the applied magnetic field,the incident angle and polarization mode of the incident beams on the magnitude,OAM mode and polarization of the transmitted beams are analyzed in detail.The results indicate that the applied magnetic field has a major effect upon the polarization state of the transmitted fields but not upon the transmitted OAM spectrum.The incident angle has a powerful influence upon both the amplitude profile and the OAM spectrum of the transmitted beam.Furthermore,for multiple coaxial vortex beams,an increase of the maximum value of the plasma density causes more remarkable distortion of both the profile and OAM spectrum of the transmitted beam.This research makes a stable foundation for the THz OAM multiplexing/demultiplexing technology in a magnetized plasma environment.