We analytically determine the nonlocal parameter value to achieve a more accurate axial-buckling response of carbon nanoshells conveying nanofluids. To this end, the four plates/shells' classical theories of Love,...We analytically determine the nonlocal parameter value to achieve a more accurate axial-buckling response of carbon nanoshells conveying nanofluids. To this end, the four plates/shells' classical theories of Love, Fl ¨ugge, Donnell, and Sanders are generalized using Eringen's nonlocal elasticity theory. By combining these theories in cylindrical coordinates,a modified motion equation is presented to investigate the buckling behavior of the nanofluid-nanostructure-interaction problem. Herein, in addition to the small-scale effect of the structure and the passing fluid on the critical buckling strain,we discuss the effects of nanoflow velocity, fluid density(nano-liquid/nano-gas), half-wave numbers, aspect ratio, and nanoshell flexural rigidity. The analytical approach is used to discretize and solve the obtained relations to study the mentioned cases.展开更多
The differential cross section for an electron Raman scattering process in a semiconductor GaAs/AlGaAs double quantum well wire is calculated,and expressions for the electronic states are presented.The system is model...The differential cross section for an electron Raman scattering process in a semiconductor GaAs/AlGaAs double quantum well wire is calculated,and expressions for the electronic states are presented.The system is modeled by considering T = 0 K and also with a single parabolic conduction band,which is split into a subband system due to the confinement.The gain and differential cross-section for an electron Raman scattering process are obtained.In addition,the emission spectra for several scattering configurations are discussed,and interpretations of the singularities found in the spectra are given.The electron Raman scattering studied here can be used to provide direct information about the efficiency of the lasers.展开更多
The structural instability of multi-walled carbon nanotubes(MWCNTs) has captured extensive attention due to the unique characteristic of extremely thin hollow cylinder structure. The previous studies usually focus on ...The structural instability of multi-walled carbon nanotubes(MWCNTs) has captured extensive attention due to the unique characteristic of extremely thin hollow cylinder structure. The previous studies usually focus on the buckling behavior without considering the effects of the wall number and initial pressure. In this paper, the axial buckling behavior of MWCNTs with the length-to-outermost radius ratio less than 20 is investigated within the framework of the Donnell shell theory. The governing equations for the infinitesimal buckling of MWCNTs are established, accounting for the van der Waals(vd W) interaction between layers. The effects of the wall number, initial pressure prior to buckling, and aspect ratio on the critical buckling mode, buckling load, and buckling strain are discussed, respectively. Specially, the four-walled and twenty-walled CNTs are studied in detail, indicating the fact that the buckling instability may occur in other layers besides the outermost layer. The obtained results extend the buckling analysis of the continuum-based model, and provide theoretical support for the application of CNTs.展开更多
The mechanical properties of a superconducting composite cylinder with transport current are investigated. By adopting the exponent model, the nonlinear differential equations for flux distributions are derived. The e...The mechanical properties of a superconducting composite cylinder with transport current are investigated. By adopting the exponent model, the nonlinear differential equations for flux distributions are derived. The elastic solutions to stress, displacement and magnetostriction are analytically given. Some typical numerical results are displayed. Numerical results show that in the process of transport current reduction, tensile stress generally occurs in the outer region of the composite, and that displacement is always negative in the composite. In addition, as the applied maximal transport current exceeds the outer-cylinder critical current, a hysteresis loop of the magnetostriction exists for the full cycle of the transport current.展开更多
An engineering analysis of computing the penetration problem of a steel ball penetrating into fibre-reinforced composite targets is presented. Assume the metal ball is a rigid body, and the composite target is a trans...An engineering analysis of computing the penetration problem of a steel ball penetrating into fibre-reinforced composite targets is presented. Assume the metal ball is a rigid body, and the composite target is a transversely isotropic elasto-plastic material. In the analysis, a spherical cavity dilatation model is incorporated in the cylindrical cavity penetration method. Simulation results based on the modified model are in good agreement with the results for 3-D Kevlar woven (3DKW) composite anti-penetration experiments. Effects of the target material parameters and impact parameters on the penetration problem are also studied.展开更多
文摘We analytically determine the nonlocal parameter value to achieve a more accurate axial-buckling response of carbon nanoshells conveying nanofluids. To this end, the four plates/shells' classical theories of Love, Fl ¨ugge, Donnell, and Sanders are generalized using Eringen's nonlocal elasticity theory. By combining these theories in cylindrical coordinates,a modified motion equation is presented to investigate the buckling behavior of the nanofluid-nanostructure-interaction problem. Herein, in addition to the small-scale effect of the structure and the passing fluid on the critical buckling strain,we discuss the effects of nanoflow velocity, fluid density(nano-liquid/nano-gas), half-wave numbers, aspect ratio, and nanoshell flexural rigidity. The analytical approach is used to discretize and solve the obtained relations to study the mentioned cases.
文摘The differential cross section for an electron Raman scattering process in a semiconductor GaAs/AlGaAs double quantum well wire is calculated,and expressions for the electronic states are presented.The system is modeled by considering T = 0 K and also with a single parabolic conduction band,which is split into a subband system due to the confinement.The gain and differential cross-section for an electron Raman scattering process are obtained.In addition,the emission spectra for several scattering configurations are discussed,and interpretations of the singularities found in the spectra are given.The electron Raman scattering studied here can be used to provide direct information about the efficiency of the lasers.
基金Project supported by the National Natural Science Foundation of China (No. 12072003)the Beijing Natural Science Foundation of China (No. 1222001)。
文摘The structural instability of multi-walled carbon nanotubes(MWCNTs) has captured extensive attention due to the unique characteristic of extremely thin hollow cylinder structure. The previous studies usually focus on the buckling behavior without considering the effects of the wall number and initial pressure. In this paper, the axial buckling behavior of MWCNTs with the length-to-outermost radius ratio less than 20 is investigated within the framework of the Donnell shell theory. The governing equations for the infinitesimal buckling of MWCNTs are established, accounting for the van der Waals(vd W) interaction between layers. The effects of the wall number, initial pressure prior to buckling, and aspect ratio on the critical buckling mode, buckling load, and buckling strain are discussed, respectively. Specially, the four-walled and twenty-walled CNTs are studied in detail, indicating the fact that the buckling instability may occur in other layers besides the outermost layer. The obtained results extend the buckling analysis of the continuum-based model, and provide theoretical support for the application of CNTs.
基金Support from the National Natural Science Foundation of China(Grant Nos.11272223 and 11072160)the Program for Changjiang Scholars and Innovative Research Team in University(IRT0971)
文摘The mechanical properties of a superconducting composite cylinder with transport current are investigated. By adopting the exponent model, the nonlinear differential equations for flux distributions are derived. The elastic solutions to stress, displacement and magnetostriction are analytically given. Some typical numerical results are displayed. Numerical results show that in the process of transport current reduction, tensile stress generally occurs in the outer region of the composite, and that displacement is always negative in the composite. In addition, as the applied maximal transport current exceeds the outer-cylinder critical current, a hysteresis loop of the magnetostriction exists for the full cycle of the transport current.
基金supported by the National Natural Science Foundation of China (No. 10572134)the Foundation of State Key Laboratory of Transient Physics (No. 51453030205ZK0101)
文摘An engineering analysis of computing the penetration problem of a steel ball penetrating into fibre-reinforced composite targets is presented. Assume the metal ball is a rigid body, and the composite target is a transversely isotropic elasto-plastic material. In the analysis, a spherical cavity dilatation model is incorporated in the cylindrical cavity penetration method. Simulation results based on the modified model are in good agreement with the results for 3-D Kevlar woven (3DKW) composite anti-penetration experiments. Effects of the target material parameters and impact parameters on the penetration problem are also studied.