The nonlinear vibration characteristics of the piezoelectric circular cylindrical nanoshells resting on an elastic foundation are analyzed. The small scale effect and thermo-electro-mechanical loading are taken into a...The nonlinear vibration characteristics of the piezoelectric circular cylindrical nanoshells resting on an elastic foundation are analyzed. The small scale effect and thermo-electro-mechanical loading are taken into account. Based on the nonlocal elasticity theory and Donnell's nonlinear shell theory, the nonlinear governing equations and the corresponding boundary conditions are derived by employing Hamilton's principle. Then,the Galerkin method is used to transform the governing equations into a set of ordinary differential equations, and subsequently, the multiple-scale method is used to obtain an approximate analytical solution. Finally, an extensive parametric study is conducted to examine the effects of the nonlocal parameter, the external electric potential, the temperature rise, and the Winkler-Pasternak foundation parameters on the nonlinear vibration characteristics of circular cylindrical piezoelectric nanoshells.展开更多
The size-dependent nonlinear buckling and postbuckling characteristics of circular cylindrical nanoshells subjected to the axial compressive load are investigated with an analytical approach. The surface energy effect...The size-dependent nonlinear buckling and postbuckling characteristics of circular cylindrical nanoshells subjected to the axial compressive load are investigated with an analytical approach. The surface energy effects are taken into account according to the surface elasticity theory of Gurtin and Murdoch. The developed geometrically nonlinear shell model is based on the classical Donnell shell theory and the von Karman's hypothesis. With the numerical results, the effect of the surface stress on the nonlinear buckling and postbuckling behaviors of nanoshells made of Si and Al is studied. Moreover, the influence of the surface residual tension and the radius-to-thickness ratio is illustrated. The results indicate that the surface stress has an important effect on prebuckling and postbuekling characteristics of nanoshells with small sizes.展开更多
基金Project supported by the National Natural Science Foundation of China(No.11672071)the Fundamental Research Funds for the Central Universities(No.N170504023)
文摘The nonlinear vibration characteristics of the piezoelectric circular cylindrical nanoshells resting on an elastic foundation are analyzed. The small scale effect and thermo-electro-mechanical loading are taken into account. Based on the nonlocal elasticity theory and Donnell's nonlinear shell theory, the nonlinear governing equations and the corresponding boundary conditions are derived by employing Hamilton's principle. Then,the Galerkin method is used to transform the governing equations into a set of ordinary differential equations, and subsequently, the multiple-scale method is used to obtain an approximate analytical solution. Finally, an extensive parametric study is conducted to examine the effects of the nonlocal parameter, the external electric potential, the temperature rise, and the Winkler-Pasternak foundation parameters on the nonlinear vibration characteristics of circular cylindrical piezoelectric nanoshells.
文摘The size-dependent nonlinear buckling and postbuckling characteristics of circular cylindrical nanoshells subjected to the axial compressive load are investigated with an analytical approach. The surface energy effects are taken into account according to the surface elasticity theory of Gurtin and Murdoch. The developed geometrically nonlinear shell model is based on the classical Donnell shell theory and the von Karman's hypothesis. With the numerical results, the effect of the surface stress on the nonlinear buckling and postbuckling behaviors of nanoshells made of Si and Al is studied. Moreover, the influence of the surface residual tension and the radius-to-thickness ratio is illustrated. The results indicate that the surface stress has an important effect on prebuckling and postbuekling characteristics of nanoshells with small sizes.