In this paper, we investigate the free boundary value problem (FBVP) for the cylindrically symmetric isentropic compressible Navier-Stokes equations (CNS) with density- dependent viscosity coefficients in the case...In this paper, we investigate the free boundary value problem (FBVP) for the cylindrically symmetric isentropic compressible Navier-Stokes equations (CNS) with density- dependent viscosity coefficients in the case that across the free surface stress tensor is balanced by a constant exterior pressure. Under certain assumptions imposed on the initial data, we prove that there exists a unique global strong solution which tends pointwise to a non-vacuum equilibrium state at an exponential time-rate as the time tends to infinity.展开更多
Applying Parikh-Wilzcek's semi-classical quantum tunneling model, we study the Hawking radiation of charged particles as tunneling from the event horizon of a cylindrically symmetric black hole in anti-de Sitter spac...Applying Parikh-Wilzcek's semi-classical quantum tunneling model, we study the Hawking radiation of charged particles as tunneling from the event horizon of a cylindrically symmetric black hole in anti-de Sitter space-time. The derived result shows that the tunneling rate of charged particles is related to the change of Bekenstein-Hawking entropy and that the radiation spectrum is not strictly pure thermal after taking the black hole background dynamical and self-gravitation interaction into account, but is consistent with the underlying unitary theory.展开更多
This paper is concerned with the free boundary value problem(FBVP) for the cylindrically symmetric barotropic compressible Navier-Stokes equations(CNS) with density-dependent viscosity coefficients in the case tha...This paper is concerned with the free boundary value problem(FBVP) for the cylindrically symmetric barotropic compressible Navier-Stokes equations(CNS) with density-dependent viscosity coefficients in the case that across the free surface stress tensor is balanced by a constant exterior pressure. Under certain assumptions imposed on the initial data, the unique cylindrically symmetric strong solution is shown to exist globally in time and tend to a non-vacuum equilibrium state exponentially as time tends to infinity.展开更多
In this paper, the general solution on nonlinear axial symmetrical deformation of nonhomogeneous cylindrical shells is obtained by step reduction method[1]. The general formula of displacements and stress resultants, ...In this paper, the general solution on nonlinear axial symmetrical deformation of nonhomogeneous cylindrical shells is obtained by step reduction method[1]. The general formula of displacements and stress resultants, which is used to solve the bending problems of nonhomogeneous cylindrical shells under arbitrary axial symmetric loads, is derived. Its uniform convergence is proved. Finally, it is only necessary to solve one set of binary linear algebraic equations. A numerical example is given at the end of the paper which indicates satisfactory results of displacement and stress resultants can be obtained and converge to the exact solution.展开更多
We study the asymptotic-preserving fully discrete schemes for nonequilibrium radiation diffusion problem in spherical and cylindrical symmetric geometry.The research is based on two-temperature models with Larsen’s f...We study the asymptotic-preserving fully discrete schemes for nonequilibrium radiation diffusion problem in spherical and cylindrical symmetric geometry.The research is based on two-temperature models with Larsen’s flux-limited diffusion operators.Finite volume spatially discrete schemes are developed to circumvent the singularity at the origin and the polar axis and assure local conservation.Asymmetric second order accurate spatial approximation is utilized instead of the traditional first order one for boundary flux-limiters to consummate the schemes with higher order global consistency errors.The harmonic average approach in spherical geometry is analyzed,and its second order accuracy is demonstrated.By formal analysis,we prove these schemes and their corresponding fully discrete schemes with implicitly balanced and linearly implicit time evolutions have first order asymptoticpreserving properties.By designing associated manufactured solutions and reference solutions,we verify the desired performance of the fully discrete schemes with numerical tests,which illustrates quantitatively they are first order asymptotic-preserving and basically second order accurate,hence competent for simulations of both equilibrium and non-equilibrium radiation diffusion problems.展开更多
基金supported by NNSFC(11101145),supported by NNSFC(11326140 and11501323)China Postdoctoral Science Foundation(2012M520360)+1 种基金Doctoral Foundation of North China University of Water Sources and Electric Power(201032),Innovation Scientists and Technicians Troop Construction Projects of Henan Provincethe Doctoral Starting up Foundation of Quzhou University(BSYJ201314 and XNZQN201313)
文摘In this paper, we investigate the free boundary value problem (FBVP) for the cylindrically symmetric isentropic compressible Navier-Stokes equations (CNS) with density- dependent viscosity coefficients in the case that across the free surface stress tensor is balanced by a constant exterior pressure. Under certain assumptions imposed on the initial data, we prove that there exists a unique global strong solution which tends pointwise to a non-vacuum equilibrium state at an exponential time-rate as the time tends to infinity.
基金The project supported by the Science Foundation for Fundamental Research of Sichuan Province of China under Grant No. 05JY029-092 .
文摘Applying Parikh-Wilzcek's semi-classical quantum tunneling model, we study the Hawking radiation of charged particles as tunneling from the event horizon of a cylindrically symmetric black hole in anti-de Sitter space-time. The derived result shows that the tunneling rate of charged particles is related to the change of Bekenstein-Hawking entropy and that the radiation spectrum is not strictly pure thermal after taking the black hole background dynamical and self-gravitation interaction into account, but is consistent with the underlying unitary theory.
基金supported by National Natural Science Foundation of China(No.41630530),National Natural Science Foundation of China(No.41575109)Key Research Program of Frontier Sciences,CAS(Grant No.QYZDY-SSW-DQC002)
文摘This paper is concerned with the free boundary value problem(FBVP) for the cylindrically symmetric barotropic compressible Navier-Stokes equations(CNS) with density-dependent viscosity coefficients in the case that across the free surface stress tensor is balanced by a constant exterior pressure. Under certain assumptions imposed on the initial data, the unique cylindrically symmetric strong solution is shown to exist globally in time and tend to a non-vacuum equilibrium state exponentially as time tends to infinity.
文摘In this paper, the general solution on nonlinear axial symmetrical deformation of nonhomogeneous cylindrical shells is obtained by step reduction method[1]. The general formula of displacements and stress resultants, which is used to solve the bending problems of nonhomogeneous cylindrical shells under arbitrary axial symmetric loads, is derived. Its uniform convergence is proved. Finally, it is only necessary to solve one set of binary linear algebraic equations. A numerical example is given at the end of the paper which indicates satisfactory results of displacement and stress resultants can be obtained and converge to the exact solution.
基金The authors are very grateful to the editors and the anonymous referees for helpful suggestions to enhance the paper.This work is supported by the National Natural Science Foundation of China(11271054,11471048,11571048,U1630249)the Science Foundation of CAEP(2014A0202010)the Science Challenge Project(No.JCKY2016212A502)and the Foundation of LCP.
文摘We study the asymptotic-preserving fully discrete schemes for nonequilibrium radiation diffusion problem in spherical and cylindrical symmetric geometry.The research is based on two-temperature models with Larsen’s flux-limited diffusion operators.Finite volume spatially discrete schemes are developed to circumvent the singularity at the origin and the polar axis and assure local conservation.Asymmetric second order accurate spatial approximation is utilized instead of the traditional first order one for boundary flux-limiters to consummate the schemes with higher order global consistency errors.The harmonic average approach in spherical geometry is analyzed,and its second order accuracy is demonstrated.By formal analysis,we prove these schemes and their corresponding fully discrete schemes with implicitly balanced and linearly implicit time evolutions have first order asymptoticpreserving properties.By designing associated manufactured solutions and reference solutions,we verify the desired performance of the fully discrete schemes with numerical tests,which illustrates quantitatively they are first order asymptotic-preserving and basically second order accurate,hence competent for simulations of both equilibrium and non-equilibrium radiation diffusion problems.