Cytosine and adenine base editors are promising new tools for introducing precise genetic modifications that are required to generate disease models and to improve traits in pigs. Base editors can catalyze the convers...Cytosine and adenine base editors are promising new tools for introducing precise genetic modifications that are required to generate disease models and to improve traits in pigs. Base editors can catalyze the conversion of C→T(C>T) or A→G(A>G) in the target site through a single guide RNA. Injection of base editors into the zygote cytoplasm can result in the production of offspring with precise point mutations, but most F0 are mosaic, and breeding of F1 heterozygous pigs is time-intensive. Here, we developed a method called germinal vesicle oocyte base editing(GVBE) to produce point mutant F0 porcine embryos by editing the maternal alleles during the GV to MⅡ transition. Injection of cytosine base editor 3(BE3) mRNA and X-linked Dmdspecific guide RNAs into GVoocytes efficiently edited maternal Dmd during in vitro maturation and did not affect the maturation potential of the oocytes. The edited MⅡ oocytes developed into blastocysts after parthenogenetic activation(PA) or in vitro fertilization(IVF). However, BE3 may reduce the developmental potential of IVF blastocysts from 31.5%±0.8% to 20.4%±2.1%. There 40%–78.3% diploid PA blastocysts had no more than two different alleles, including up to 10% embryos that had only C>T mutation alleles. Genotyping of IVF blastocysts indicated that over 70% of the edited embryos had one allele or two different alleles of Dmd. Since the male embryos had only a copy of Dmd allele, all five(5/19) F0 male embryos are homozygous and three of them were Dmd precise C>T mutation. Nine(9/19) female IVF embryos had two different alleles including a WT and a C>T mutation. DNA sequencing showed that some of them might be heterozygous embryos. In conclusion, the GVBE method is a valuable method for generating F0 embryos with maternal point mutated alleles in a single step.展开更多
Exploiting novel endogenous glyphosate-tolerant alleles is highly desirable and has promising potential for weed control in rice breeding. Here,through fusions of different effective cytosine and adenine deaminases wi...Exploiting novel endogenous glyphosate-tolerant alleles is highly desirable and has promising potential for weed control in rice breeding. Here,through fusions of different effective cytosine and adenine deaminases with nCas9-NG, we engineered an effective surrogate two-component composite base editing system, STCBE-2, with improved C-to-T and A-to-G base editing efficiency and expanded the editing window. Furthermore,we targeted a rice endogenous OsEPSPS gene for artificial evolution through STCBE-2-mediated near-saturated mutagenesis. After hygromycin and glyphosate selection, we identified a novel OsEPSPS allele with an Asp-213-Asn(D213N)mutation(OsEPSPS-D213N) in the predicted glyphosate-binding domain, which conferred rice plants reliable glyphosate tolerance and had not been reported or applied in rice breeding. Collectively, we developed a novel dual base editor which will be valuable for artificial evolution of important genes in crops. And the novel glyphosate-tolerant rice germplasm generated in this study will benefit weeds management in rice paddy fields.展开更多
Single-nucleotide variants account for about half of known pathogenic genetic variants in human.Genome editing strategies by reversing pathogenic point mutations with minimum side effects have great therapeutic potent...Single-nucleotide variants account for about half of known pathogenic genetic variants in human.Genome editing strategies by reversing pathogenic point mutations with minimum side effects have great therapeutic potential and are now being actively pursued.The emerge of precise and effcient genome editing strategies such as base editing and prime editing provide powerful tools for nucleotide conversion without inducing double-stranded DNA breaks(DSBs),which have shown great potential for curing genetic disorders.A diverse toolkit of base editors has been devel-oped to improve the editing effciency and accuracy in different context of application.Here,we summarized the evolving of base editors(BEs),their limitations and future perspective of base editing-based therapeutic strategies.展开更多
CRISPR-Cas(Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated)has been extensively exploited as a genetic tool for genome editing.The RNA guided Cas nucleases generate DNA doublestrand break(D...CRISPR-Cas(Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated)has been extensively exploited as a genetic tool for genome editing.The RNA guided Cas nucleases generate DNA doublestrand break(DSB),triggering cellular repair systems mainly Non-homologous end-joining(NHEJ,imprecise repair)or Homology-directed repair(HDR,precise repair).However,DSB typically leads to unexpected DNA changes and lethality in some organisms.The establishment of bacteria and plants into major bio-production platforms require efficient and precise editing tools.Hence,in this review,we focus on the non-DSB and template-free genome editing,i.e.,base editing(BE)and prime editing(PE)in bacteria and plants.We first highlight the development of base and prime editors and summarize their studies in bacteria and plants.We then discuss current and future applications of BE/PE in synthetic biology,crop improvement,evolutionary engineering,and metabolic engineering.Lastly,we critically consider the challenges and prospects of BE/PE in PAM specificity,editing efficiency,off-targeting,sequence specification,and editing window.展开更多
基金supported by the National Key R&D Program of China (2017YFC1001901 and 2017YFA0102801)the National Natural Science Foundation (31671540)+3 种基金the National Transgenic Major Program (2016ZX08006003-006)the Natural Science Foundation of Guangdong Province (2015A020212005 and 2014A030312011)the Key R&D Program of Guangdong Province (2018B020203003)the Guangzhou Science and Technology Project (201803010020)。
文摘Cytosine and adenine base editors are promising new tools for introducing precise genetic modifications that are required to generate disease models and to improve traits in pigs. Base editors can catalyze the conversion of C→T(C>T) or A→G(A>G) in the target site through a single guide RNA. Injection of base editors into the zygote cytoplasm can result in the production of offspring with precise point mutations, but most F0 are mosaic, and breeding of F1 heterozygous pigs is time-intensive. Here, we developed a method called germinal vesicle oocyte base editing(GVBE) to produce point mutant F0 porcine embryos by editing the maternal alleles during the GV to MⅡ transition. Injection of cytosine base editor 3(BE3) mRNA and X-linked Dmdspecific guide RNAs into GVoocytes efficiently edited maternal Dmd during in vitro maturation and did not affect the maturation potential of the oocytes. The edited MⅡ oocytes developed into blastocysts after parthenogenetic activation(PA) or in vitro fertilization(IVF). However, BE3 may reduce the developmental potential of IVF blastocysts from 31.5%±0.8% to 20.4%±2.1%. There 40%–78.3% diploid PA blastocysts had no more than two different alleles, including up to 10% embryos that had only C>T mutation alleles. Genotyping of IVF blastocysts indicated that over 70% of the edited embryos had one allele or two different alleles of Dmd. Since the male embryos had only a copy of Dmd allele, all five(5/19) F0 male embryos are homozygous and three of them were Dmd precise C>T mutation. Nine(9/19) female IVF embryos had two different alleles including a WT and a C>T mutation. DNA sequencing showed that some of them might be heterozygous embryos. In conclusion, the GVBE method is a valuable method for generating F0 embryos with maternal point mutated alleles in a single step.
基金partly funded by the National Natural Science Foundation of China (32188102 to LX)Hainan Yazhou Bay Seed Lab (B21HJ0215 to LX)+2 种基金the Central Public-Interest Scientific Institution-Based Research Fund (S2023ZD03 to LX)Key Laboratory of Gene Editing Technologies (Hainan), ChinaNational Engineering Research Center of Crop Molecular Breeding。
文摘Exploiting novel endogenous glyphosate-tolerant alleles is highly desirable and has promising potential for weed control in rice breeding. Here,through fusions of different effective cytosine and adenine deaminases with nCas9-NG, we engineered an effective surrogate two-component composite base editing system, STCBE-2, with improved C-to-T and A-to-G base editing efficiency and expanded the editing window. Furthermore,we targeted a rice endogenous OsEPSPS gene for artificial evolution through STCBE-2-mediated near-saturated mutagenesis. After hygromycin and glyphosate selection, we identified a novel OsEPSPS allele with an Asp-213-Asn(D213N)mutation(OsEPSPS-D213N) in the predicted glyphosate-binding domain, which conferred rice plants reliable glyphosate tolerance and had not been reported or applied in rice breeding. Collectively, we developed a novel dual base editor which will be valuable for artificial evolution of important genes in crops. And the novel glyphosate-tolerant rice germplasm generated in this study will benefit weeds management in rice paddy fields.
基金supported by CAMS Innovation Fund for Medical Sciences(CIFMS,2022-I2M-1-024,2022-RC180-02 to Z.G.).
文摘Single-nucleotide variants account for about half of known pathogenic genetic variants in human.Genome editing strategies by reversing pathogenic point mutations with minimum side effects have great therapeutic potential and are now being actively pursued.The emerge of precise and effcient genome editing strategies such as base editing and prime editing provide powerful tools for nucleotide conversion without inducing double-stranded DNA breaks(DSBs),which have shown great potential for curing genetic disorders.A diverse toolkit of base editors has been devel-oped to improve the editing effciency and accuracy in different context of application.Here,we summarized the evolving of base editors(BEs),their limitations and future perspective of base editing-based therapeutic strategies.
基金This work was sponsored by National Key R&D Program of China(2018YFA0901200)Science and Technology Commission of Shanghai Municipality(18JC1413600)National Natural Science Foundation of China(31870071).
文摘CRISPR-Cas(Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated)has been extensively exploited as a genetic tool for genome editing.The RNA guided Cas nucleases generate DNA doublestrand break(DSB),triggering cellular repair systems mainly Non-homologous end-joining(NHEJ,imprecise repair)or Homology-directed repair(HDR,precise repair).However,DSB typically leads to unexpected DNA changes and lethality in some organisms.The establishment of bacteria and plants into major bio-production platforms require efficient and precise editing tools.Hence,in this review,we focus on the non-DSB and template-free genome editing,i.e.,base editing(BE)and prime editing(PE)in bacteria and plants.We first highlight the development of base and prime editors and summarize their studies in bacteria and plants.We then discuss current and future applications of BE/PE in synthetic biology,crop improvement,evolutionary engineering,and metabolic engineering.Lastly,we critically consider the challenges and prospects of BE/PE in PAM specificity,editing efficiency,off-targeting,sequence specification,and editing window.