Exploiting novel endogenous glyphosate-tolerant alleles is highly desirable and has promising potential for weed control in rice breeding. Here,through fusions of different effective cytosine and adenine deaminases wi...Exploiting novel endogenous glyphosate-tolerant alleles is highly desirable and has promising potential for weed control in rice breeding. Here,through fusions of different effective cytosine and adenine deaminases with nCas9-NG, we engineered an effective surrogate two-component composite base editing system, STCBE-2, with improved C-to-T and A-to-G base editing efficiency and expanded the editing window. Furthermore,we targeted a rice endogenous OsEPSPS gene for artificial evolution through STCBE-2-mediated near-saturated mutagenesis. After hygromycin and glyphosate selection, we identified a novel OsEPSPS allele with an Asp-213-Asn(D213N)mutation(OsEPSPS-D213N) in the predicted glyphosate-binding domain, which conferred rice plants reliable glyphosate tolerance and had not been reported or applied in rice breeding. Collectively, we developed a novel dual base editor which will be valuable for artificial evolution of important genes in crops. And the novel glyphosate-tolerant rice germplasm generated in this study will benefit weeds management in rice paddy fields.展开更多
CRISPR-mediated base editors have been widely used to correct defective alleles and create novel alleles by artificial evolution for the rapid genetic improvement of crops.The editing capabilities of base editors stri...CRISPR-mediated base editors have been widely used to correct defective alleles and create novel alleles by artificial evolution for the rapid genetic improvement of crops.The editing capabilities of base editors strictly rely on the performance of various nucleotide modification enzymes.Compared with the welldeveloped adenine base editors(ABEs),cytosine base editors(CBEs)and dual base editors suffer from unstable editing efficiency and patterns at different genomic loci in rice,significantly limiting their application.Here,we comprehensively examined the base editing activities of multiple evolved TadA8e variants in rice.We found that both TadA-CDd and TadA-E27R/N46L achieved more robust C-to-T editing than previously reported hyperactive hAID*D,and TadA-CDd outperformed TadA-E27R/N46L.A C-to-G base editor(CGBE)engineered with TadA-CDd and OsUNG performed highly efficient C-to-G editing in rice compared with that of TadA-N46P.In addition,a dual base editor constructed with a single protein,TadDE,enabled simultaneous,highly efficient C-to-T and A-to-G editing in rice.Collectively,our results demonstrate that TadA8e derivatives improve both CBEs and dual base editors in rice,providing a powerful way to induce diverse nucleotide substitutions for plant genome editing.展开更多
Sogatella furcifera (Hovarth) is a major rice pest with sexual dimorphism. The objective of the current research was to monitor differentially cytosine methylation at CCGG sequences in male and female adults of S. f...Sogatella furcifera (Hovarth) is a major rice pest with sexual dimorphism. The objective of the current research was to monitor differentially cytosine methylation at CCGG sequences in male and female adults of S. furcifera to determine the association between gene methylation and sexual phenotypes using methylation-sensitive representa- tional difference analysis. After the second subtractive hybridization, four differentially methylated DNA bands were obtained and sequenced. Ten different fragments were found. One fragment from the positive hybridization was 120 bp, and highly similar to the tram- track genes from Nasonia vitripennis. Another fragment from the reverse hybridization was 414 bp, and homologous to the 28S rRNA gene of S. furcifera with a similarity rate as high as 99%. We also discussed how DNA methylation of tramtrack and 28S rRNA genes produced effects on sexual differentiation and development. These results provide potential evidence that DNA methylation of some genes may be related to sexual phenotype variations in S.furcifera and will facilitate future studies on the epigenetic mechanisms of insect sexual dimorphism.展开更多
Amylose content(AC),which is regulated by the Waxy(Wx)gene,is a major indicator of eating and cooking quality(ECQ)in rice(Oryza sativa).Thus far,only a limited number of mutations in the N-terminal domain of Wx were f...Amylose content(AC),which is regulated by the Waxy(Wx)gene,is a major indicator of eating and cooking quality(ECQ)in rice(Oryza sativa).Thus far,only a limited number of mutations in the N-terminal domain of Wx were found to have a major impact on the AC of rice grains and no mutations with such effects were reported for other regions of the Wx protein.Here,nucleotide substitutions in the middle region of Wx were generated by adenine and cytosine base editors.The nucleotide substitutions led to changes in 15 amino acid residues of Wx,and a series of novel Wx alleles with ACs of 0.3%-29.43%(wild type with AC of 19.87%)were obtained.Importantly,the waxy~(abe2)allele showed a"soft rice"AC,improved ECQ,favorable appearance,and no undesirable agronomic traits.The transgenes were removed from the waxy~(abe2)progeny,generating a promising breeding material for improving rice grain quality.展开更多
基金partly funded by the National Natural Science Foundation of China (32188102 to LX)Hainan Yazhou Bay Seed Lab (B21HJ0215 to LX)+2 种基金the Central Public-Interest Scientific Institution-Based Research Fund (S2023ZD03 to LX)Key Laboratory of Gene Editing Technologies (Hainan), ChinaNational Engineering Research Center of Crop Molecular Breeding。
文摘Exploiting novel endogenous glyphosate-tolerant alleles is highly desirable and has promising potential for weed control in rice breeding. Here,through fusions of different effective cytosine and adenine deaminases with nCas9-NG, we engineered an effective surrogate two-component composite base editing system, STCBE-2, with improved C-to-T and A-to-G base editing efficiency and expanded the editing window. Furthermore,we targeted a rice endogenous OsEPSPS gene for artificial evolution through STCBE-2-mediated near-saturated mutagenesis. After hygromycin and glyphosate selection, we identified a novel OsEPSPS allele with an Asp-213-Asn(D213N)mutation(OsEPSPS-D213N) in the predicted glyphosate-binding domain, which conferred rice plants reliable glyphosate tolerance and had not been reported or applied in rice breeding. Collectively, we developed a novel dual base editor which will be valuable for artificial evolution of important genes in crops. And the novel glyphosate-tolerant rice germplasm generated in this study will benefit weeds management in rice paddy fields.
基金supported by the STI 2030-Major Projects(2023ZD04074)the National Key Research and Development Program of China(2023YFD1202900)+2 种基金the Nanfan special project of the Chinese Academy of Agricultural Sciences(YBXM2313)the Hainan Seed Industry Laboratory(project of B23CJ0208)the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences.
文摘CRISPR-mediated base editors have been widely used to correct defective alleles and create novel alleles by artificial evolution for the rapid genetic improvement of crops.The editing capabilities of base editors strictly rely on the performance of various nucleotide modification enzymes.Compared with the welldeveloped adenine base editors(ABEs),cytosine base editors(CBEs)and dual base editors suffer from unstable editing efficiency and patterns at different genomic loci in rice,significantly limiting their application.Here,we comprehensively examined the base editing activities of multiple evolved TadA8e variants in rice.We found that both TadA-CDd and TadA-E27R/N46L achieved more robust C-to-T editing than previously reported hyperactive hAID*D,and TadA-CDd outperformed TadA-E27R/N46L.A C-to-G base editor(CGBE)engineered with TadA-CDd and OsUNG performed highly efficient C-to-G editing in rice compared with that of TadA-N46P.In addition,a dual base editor constructed with a single protein,TadDE,enabled simultaneous,highly efficient C-to-T and A-to-G editing in rice.Collectively,our results demonstrate that TadA8e derivatives improve both CBEs and dual base editors in rice,providing a powerful way to induce diverse nucleotide substitutions for plant genome editing.
基金This research was supported by the National Nat- ural Science Foundation of China (31171844) and Natural Science Foundation of Guangdong Province ($2011010001353). We are very grateful to Dr. Min Zhang and Mrs. Wen-Jing Wu for technical assistance.
文摘Sogatella furcifera (Hovarth) is a major rice pest with sexual dimorphism. The objective of the current research was to monitor differentially cytosine methylation at CCGG sequences in male and female adults of S. furcifera to determine the association between gene methylation and sexual phenotypes using methylation-sensitive representa- tional difference analysis. After the second subtractive hybridization, four differentially methylated DNA bands were obtained and sequenced. Ten different fragments were found. One fragment from the positive hybridization was 120 bp, and highly similar to the tram- track genes from Nasonia vitripennis. Another fragment from the reverse hybridization was 414 bp, and homologous to the 28S rRNA gene of S. furcifera with a similarity rate as high as 99%. We also discussed how DNA methylation of tramtrack and 28S rRNA genes produced effects on sexual differentiation and development. These results provide potential evidence that DNA methylation of some genes may be related to sexual phenotype variations in S.furcifera and will facilitate future studies on the epigenetic mechanisms of insect sexual dimorphism.
基金supported by funding from the National Natural Science Foundation of China(31801016)the Agricultural Variety Improvement Project of Shandong Province(2019LZGC015)。
文摘Amylose content(AC),which is regulated by the Waxy(Wx)gene,is a major indicator of eating and cooking quality(ECQ)in rice(Oryza sativa).Thus far,only a limited number of mutations in the N-terminal domain of Wx were found to have a major impact on the AC of rice grains and no mutations with such effects were reported for other regions of the Wx protein.Here,nucleotide substitutions in the middle region of Wx were generated by adenine and cytosine base editors.The nucleotide substitutions led to changes in 15 amino acid residues of Wx,and a series of novel Wx alleles with ACs of 0.3%-29.43%(wild type with AC of 19.87%)were obtained.Importantly,the waxy~(abe2)allele showed a"soft rice"AC,improved ECQ,favorable appearance,and no undesirable agronomic traits.The transgenes were removed from the waxy~(abe2)progeny,generating a promising breeding material for improving rice grain quality.