Fast-neutron irradiated nitrogen-doped Czochralski silicon(NCZ-Si)was annealed at 1100℃for different time,then FTIR and optical microscope were used to study the behavior of oxygen.It is found that[Oi]increase at the...Fast-neutron irradiated nitrogen-doped Czochralski silicon(NCZ-Si)was annealed at 1100℃for different time,then FTIR and optical microscope were used to study the behavior of oxygen.It is found that[Oi]increase at the early stage then decrease along with the increasing of anneal time.High density induced-defects can be found in the cleavage plane.By comparing NCZ-Si with Czochralski silicon(CZ-Si),[Oi]in NCZ-Si decrease more after anneal 24 h.展开更多
Further development of the photovoltaic industry is restricted by the productivity of mono-crystalline silicon technology due to its requirements of low cost and high efficient photocells. The heat shield is not only ...Further development of the photovoltaic industry is restricted by the productivity of mono-crystalline silicon technology due to its requirements of low cost and high efficient photocells. The heat shield is not only the important part of the thermal field in Czochralski(Cz) mono-crystalline silicon furnace, but also one of the most important factors influencing the silicon crystal growth. Large-diameter Cz-Si crystal growth process is taken as the study object, Based on FEM numerical simulation, different heat shield structures are analyzed to investigate the heater power, the melt-crystal interface shape, the argon flow field, and the oxygen concentration at the melt-crystal interface in the process of large Cz-Si crystal growth. The impact of these factors on the growth efficiency and crystal quality are analyzed. The results show that the oxygen concentration on the melt-crystal interface and the power consumption of the heater stay high due to the lack of a heat shield in the crystal growth system. Argon circumfluence is generated on the external side of the right angle heat shield. By the right-angle heat shield, the speed of gas flow is lowered on the melt free surface, and the temperature gradient of the free surface is increased around the melt-crystal interface. It is not conducive for the stable growth of crystal. The shape of the melt-crystal interface and the argon circulation above the melt free surface are improved by the inclined heat shield. Compared with the others, the system pulling rate is increased and the lowest oxygen concentration is achieved at the melt-crystal interface with the composite heat shield. By the adoption of the optimized composite heat shield in experiment, the real melt-crystal interface shapes and its deformation laws obtained by Quick Pull Separation Method at different pulling rates agree with the simulation results. The results show that the method of simulation is feasible. The proposed research provides the theoretical foundation for the thermal field design of the large diameter Cz-Si monocrystalline growth.展开更多
The difference of annealing behaviors of vacancy-oxygen complex (VO) in varied dose neutron irradiated Czochralski silicon: (S1 5×1017 n/cm3 and S2 1.07×1019 n/cm3) were studied. The results show that the VO...The difference of annealing behaviors of vacancy-oxygen complex (VO) in varied dose neutron irradiated Czochralski silicon: (S1 5×1017 n/cm3 and S2 1.07×1019 n/cm3) were studied. The results show that the VO is one of the main defects formed in neutron irradiated Czochralski silicon (CZ-Si). In this defect, oxygen atom shares a vacancy, it is bonded to two silicon neighbors. Annealed at 200 ℃, divacancies are trapped by interstitial oxygen(Oi) to form V2O (840 cm-1). With the decrease of the 829 cm-1 (VO) three infrared absorption bands at 825 cm-1 (V2O2), 834 cm-1 (V2O3) and 840 cm-1 (V2O) will rise after annealed at temperature range of 200-500 ℃. After annealed at 450-500 ℃ the main absorption bands in S1 sample are 834 cm-1, 825 cm-1 and 889 cm-1 (VO2), in S2 is 825 cm-1. Annealing of A-center in varied neutron irradiated CZ-Si is suggested to consist of two processes. The first is due to trapping of VO by Oi in low dose neutron irradiated CZ-Si (S1) and the second is due to capture the wandering vacancy by VO, etc, in high dose neutron irradiated CZ-Si (S2), the VO2 plays an important role in the annealing of A-center. With the increase of the irradiation dose, the annealing behavior of A-center is changed.展开更多
A rapid thermal process (RTP) was first introduced into the intrinsic gettering (IG) processes of fast neutron irradiated Czochralski (CZ) silicon. The effect of RTP conditions on bulk microdefects (BMDs) and denuded ...A rapid thermal process (RTP) was first introduced into the intrinsic gettering (IG) processes of fast neutron irradiated Czochralski (CZ) silicon. The effect of RTP conditions on bulk microdefects (BMDs) and denuded zone (DZ) was investigated. Fourier transform infrared absorption spectrometer (FTIR) was used to measure the concentration of interstitial oxygen ([Oi]). Bulk microdefects were observed by optical microscope. The results show that, according to the variation of [Oi], it is found that RTP doesn’t change the processes of oxygen precipitation in fast neutron irradiated Czochralski silicon. Perfect denuded zone, dense oxygen precipitates and defects form in the bulk of irradiated samples. With increasing temperature of RTP, the width of denuded zone decreases. Increasing RTP cooling rate, the density of Bulk microdefects increases. DZ forms in the sample that annealed in nitrogen atmosphere.展开更多
The influence of co-precipitation of copper and nickel on the formation of a denuded zone (DZ) in Czochralski silicon (Cz Si) was systematically investigated by means of etching and optical microscopy (OM). It w...The influence of co-precipitation of copper and nickel on the formation of a denuded zone (DZ) in Czochralski silicon (Cz Si) was systematically investigated by means of etching and optical microscopy (OM). It was found that, for conventional high-low-high annealing (CFA), the DZ could be obtained in all specimens contaminated by copper and nickel co-impurity at different steps of the heat treatment, indicating that no copper precipitates or nickel precipitates were generated in the region just below the surface. However, for rapid thermal annealing (RTA)-low-high annealing, the tendency is not the same; the DZ could not be found in the specimen which was contaminated by copper and nickel contamination before the first RTA annealing. On the basis of the experimental results, it was supposed that the concentration and distribution of the vacancies generating during the RTA can influence the distribution of copper precipitation and nickel precipitation along the cross-section of Cz Si significantly, and thus influence the formation of the DZ to a great extent.展开更多
This paper presents the application of lifetime spectroscopy to the study of carrier-induced degradation ascribed to the boron-oxygen (BO) defect. Specifically, a large data set of p-type silicon samples is used to ...This paper presents the application of lifetime spectroscopy to the study of carrier-induced degradation ascribed to the boron-oxygen (BO) defect. Specifically, a large data set of p-type silicon samples is used to investigate two important aspects of carrier lifetime analysis: ① the methods used to extract the recombination lifetime associated with the defect and ② the underlying assumption that cartier injection does not affect lifetime components unrelated to the defect. The results demonstrate that the capture cross section ratio associated with the donor level of the BO defect (kl) vary widely depending on the specific method used to extract the defect-specific recombination lifetime. For the data set studied here, it was also found that illumination used to form the defect caused minor, but statistically significant changes in the surface passivation used. This violation of the fundamental assumption could be accounted for by applying appropriate curve fitting methods, resulting in an improved estimate of k1 (11.90±0.45) for the fully formed BO defect when modeled using the donor level alone. Illumination also appeared to cause a minor, apparently injectionindependent change in lifetime that could not be attributed to the donor level of the BO defect alone and is likely related to the acceptor level of the BO defect. While specific to the BO defect, this study has implications for the use of lifetime spectroscopy to study other carrier induced defects. Finally, we demonstrate the use of a unit-less regression goodness-of-fit metric for lifetime data that is easy to interpret and accounts for repeatability error.展开更多
The morphology and microstructure of flow pattern defects (FPDs) in lightly boron-doped Czochralski-grown silicon (Cz-Si) crystals were investigated using optical microscopy and atomic force microscopy. The experi...The morphology and microstructure of flow pattern defects (FPDs) in lightly boron-doped Czochralski-grown silicon (Cz-Si) crystals were investigated using optical microscopy and atomic force microscopy. The experimental results showed that the morphology of FPDs was parabola-like with several steps. Single-type and dual-type voids were found on the tip of FPDs and two heaves exist on the left and right sides of the void. All the results have proved that FPDs were void-type defects. These results are very useful to investigate FPDs in Cz-Si wafers further and explain the annihilation of FPDs during high-temperature annealing.展开更多
Single-crystalline silicon materials with large dimensions have been widely used as assemblies in plasma silicon etching machines.However,information about large-diameter low-cost preparation technology has not been s...Single-crystalline silicon materials with large dimensions have been widely used as assemblies in plasma silicon etching machines.However,information about large-diameter low-cost preparation technology has not been sufficiently reported.In this paper,it was focused on the preparation of 400-mm silicon(100) crystal lightly doped with boron from 28-in.hot zones.Resistivity uniformity and oxygen concentration of the silicon crystal were investigated by direct-current(DC) four-point probes method and Fourier transform infrared spectroscopy(FTIR),respectively.The global heat transfer,melt flow and oxygen distribution were calculated by finite element method(FEM).The results show that 28-in.hot zones can replace conventional 32 in.ones to grow 400-mm-diameter silicon single crystals.The change in crucible diameter can save energy,reduce cost and improve efficiency.The trend of oxygen distribution obtained in calculations is in good agreement with experimental values.The present model can well predict the 400-mm-diameter silicon crystal growth and is essential for the optimization of furnace design and process condition.展开更多
The morphology and microstructure of flow pattern defects (FPDs) in lightly boron-doped Czochralski-grown silicon (Cz-Si) crystals were investigated using optical microscopy and atomic force microscopy. The experiment...The morphology and microstructure of flow pattern defects (FPDs) in lightly boron-doped Czochralski-grown silicon (Cz-Si) crystals were investigated using optical microscopy and atomic force microscopy. The experimental results showed that the morphology of FPDs was parabola-like with several steps. Single-type and dual-type voids were found on the tip of FPDs and two heaves exist on the left and right sides of the void. All the results have proved that FPDs were void-type defects. These results are very useful to investigate FPDs in Cz-Si wafers further and explain the annihilation of FPDs during high-temperature annealing.展开更多
p -type CZ silicon crystals annealed at 450℃ have been investigated by low temperature infrared spectroscopy with high resolusion. It has been shown that the 2p± and 3p± bands of neutral thermal donors TD~&...p -type CZ silicon crystals annealed at 450℃ have been investigated by low temperature infrared spectroscopy with high resolusion. It has been shown that the 2p± and 3p± bands of neutral thermal donors TD~° are all split into two bands, which have not been reported before. In addition, the concentrations ofindi- vidual TD_i and total TD have been derived from the heights of 2po bands, and the boron concentrations de- rived from that of 320 cm^(-1) band. The room temperature resistivities of samples have been evaluated and the comparison with practically measured resistivities have been made.展开更多
We observe a strong correlation between the ring oxidation-induced stack faults (OISF) formed in the course of phosphor diffusion and the efficiency of Czochralski-grown silicon solar cells. The main reason for ring...We observe a strong correlation between the ring oxidation-induced stack faults (OISF) formed in the course of phosphor diffusion and the efficiency of Czochralski-grown silicon solar cells. The main reason for ring-OISF formation and growth in substrate is the silicon oxidation and phosphorus diffusion process induced silicon selfinterstitial point defect during POCI3 diffusion. The decreasing of minority carrier diffusion length in crystal silicon solar cell induced by ring-OISF defects is identified to be one of the major causes of efficiency loss.展开更多
基金Project supported by the National Nature Science Foundation of China(50472034)the Natural Science Foundation of Hebei Province(E2005000048)Education Ministry Doctoral Program Foundation of China(20050080006)
文摘Fast-neutron irradiated nitrogen-doped Czochralski silicon(NCZ-Si)was annealed at 1100℃for different time,then FTIR and optical microscope were used to study the behavior of oxygen.It is found that[Oi]increase at the early stage then decrease along with the increasing of anneal time.High density induced-defects can be found in the cleavage plane.By comparing NCZ-Si with Czochralski silicon(CZ-Si),[Oi]in NCZ-Si decrease more after anneal 24 h.
基金Supported by National Natural Science Foundation of China(Grant Nos.61075044,F0304)
文摘Further development of the photovoltaic industry is restricted by the productivity of mono-crystalline silicon technology due to its requirements of low cost and high efficient photocells. The heat shield is not only the important part of the thermal field in Czochralski(Cz) mono-crystalline silicon furnace, but also one of the most important factors influencing the silicon crystal growth. Large-diameter Cz-Si crystal growth process is taken as the study object, Based on FEM numerical simulation, different heat shield structures are analyzed to investigate the heater power, the melt-crystal interface shape, the argon flow field, and the oxygen concentration at the melt-crystal interface in the process of large Cz-Si crystal growth. The impact of these factors on the growth efficiency and crystal quality are analyzed. The results show that the oxygen concentration on the melt-crystal interface and the power consumption of the heater stay high due to the lack of a heat shield in the crystal growth system. Argon circumfluence is generated on the external side of the right angle heat shield. By the right-angle heat shield, the speed of gas flow is lowered on the melt free surface, and the temperature gradient of the free surface is increased around the melt-crystal interface. It is not conducive for the stable growth of crystal. The shape of the melt-crystal interface and the argon circulation above the melt free surface are improved by the inclined heat shield. Compared with the others, the system pulling rate is increased and the lowest oxygen concentration is achieved at the melt-crystal interface with the composite heat shield. By the adoption of the optimized composite heat shield in experiment, the real melt-crystal interface shapes and its deformation laws obtained by Quick Pull Separation Method at different pulling rates agree with the simulation results. The results show that the method of simulation is feasible. The proposed research provides the theoretical foundation for the thermal field design of the large diameter Cz-Si monocrystalline growth.
基金Project(50472034) supported by the National Natural Science Foundation of China Project(E2005000048) supported by the Natural Science Foundation of Hebei Province, China Project(20050080006) supported by the Specialized Research Fund for the Doctoral Program of Higher Education, China.
文摘The difference of annealing behaviors of vacancy-oxygen complex (VO) in varied dose neutron irradiated Czochralski silicon: (S1 5×1017 n/cm3 and S2 1.07×1019 n/cm3) were studied. The results show that the VO is one of the main defects formed in neutron irradiated Czochralski silicon (CZ-Si). In this defect, oxygen atom shares a vacancy, it is bonded to two silicon neighbors. Annealed at 200 ℃, divacancies are trapped by interstitial oxygen(Oi) to form V2O (840 cm-1). With the decrease of the 829 cm-1 (VO) three infrared absorption bands at 825 cm-1 (V2O2), 834 cm-1 (V2O3) and 840 cm-1 (V2O) will rise after annealed at temperature range of 200-500 ℃. After annealed at 450-500 ℃ the main absorption bands in S1 sample are 834 cm-1, 825 cm-1 and 889 cm-1 (VO2), in S2 is 825 cm-1. Annealing of A-center in varied neutron irradiated CZ-Si is suggested to consist of two processes. The first is due to trapping of VO by Oi in low dose neutron irradiated CZ-Si (S1) and the second is due to capture the wandering vacancy by VO, etc, in high dose neutron irradiated CZ-Si (S2), the VO2 plays an important role in the annealing of A-center. With the increase of the irradiation dose, the annealing behavior of A-center is changed.
基金Project (50472034) supported by the National Natural Science Foundation of China Project(E2005000048) supported by the Natural Science Foundation of Hebei Province, China Project(20050080006) supported by the Specialized Research Fund for the Doctoral Program of Higher Education, China
文摘A rapid thermal process (RTP) was first introduced into the intrinsic gettering (IG) processes of fast neutron irradiated Czochralski (CZ) silicon. The effect of RTP conditions on bulk microdefects (BMDs) and denuded zone (DZ) was investigated. Fourier transform infrared absorption spectrometer (FTIR) was used to measure the concentration of interstitial oxygen ([Oi]). Bulk microdefects were observed by optical microscope. The results show that, according to the variation of [Oi], it is found that RTP doesn’t change the processes of oxygen precipitation in fast neutron irradiated Czochralski silicon. Perfect denuded zone, dense oxygen precipitates and defects form in the bulk of irradiated samples. With increasing temperature of RTP, the width of denuded zone decreases. Increasing RTP cooling rate, the density of Bulk microdefects increases. DZ forms in the sample that annealed in nitrogen atmosphere.
基金supported by the National Natural Science Foundation of China(No.50902116)the Opening Project of State Key Laboratory of Silicon Materials,China(No.SKL2012-17)
文摘The influence of co-precipitation of copper and nickel on the formation of a denuded zone (DZ) in Czochralski silicon (Cz Si) was systematically investigated by means of etching and optical microscopy (OM). It was found that, for conventional high-low-high annealing (CFA), the DZ could be obtained in all specimens contaminated by copper and nickel co-impurity at different steps of the heat treatment, indicating that no copper precipitates or nickel precipitates were generated in the region just below the surface. However, for rapid thermal annealing (RTA)-low-high annealing, the tendency is not the same; the DZ could not be found in the specimen which was contaminated by copper and nickel contamination before the first RTA annealing. On the basis of the experimental results, it was supposed that the concentration and distribution of the vacancies generating during the RTA can influence the distribution of copper precipitation and nickel precipitation along the cross-section of Cz Si significantly, and thus influence the formation of the DZ to a great extent.
文摘This paper presents the application of lifetime spectroscopy to the study of carrier-induced degradation ascribed to the boron-oxygen (BO) defect. Specifically, a large data set of p-type silicon samples is used to investigate two important aspects of carrier lifetime analysis: ① the methods used to extract the recombination lifetime associated with the defect and ② the underlying assumption that cartier injection does not affect lifetime components unrelated to the defect. The results demonstrate that the capture cross section ratio associated with the donor level of the BO defect (kl) vary widely depending on the specific method used to extract the defect-specific recombination lifetime. For the data set studied here, it was also found that illumination used to form the defect caused minor, but statistically significant changes in the surface passivation used. This violation of the fundamental assumption could be accounted for by applying appropriate curve fitting methods, resulting in an improved estimate of k1 (11.90±0.45) for the fully formed BO defect when modeled using the donor level alone. Illumination also appeared to cause a minor, apparently injectionindependent change in lifetime that could not be attributed to the donor level of the BO defect alone and is likely related to the acceptor level of the BO defect. While specific to the BO defect, this study has implications for the use of lifetime spectroscopy to study other carrier induced defects. Finally, we demonstrate the use of a unit-less regression goodness-of-fit metric for lifetime data that is easy to interpret and accounts for repeatability error.
基金This work was financially supported by the National Natural Science Foundation of China (No. 60076001 and No.50032010), the Natural Science Foundation of Tianjin (No. 043602511) and the Natural Science Foundation of Hebei Province of China (No. E2005000057).
文摘The morphology and microstructure of flow pattern defects (FPDs) in lightly boron-doped Czochralski-grown silicon (Cz-Si) crystals were investigated using optical microscopy and atomic force microscopy. The experimental results showed that the morphology of FPDs was parabola-like with several steps. Single-type and dual-type voids were found on the tip of FPDs and two heaves exist on the left and right sides of the void. All the results have proved that FPDs were void-type defects. These results are very useful to investigate FPDs in Cz-Si wafers further and explain the annihilation of FPDs during high-temperature annealing.
基金financially supported by the Major National Science and Technology Projects(No.2008ZX02401)
文摘Single-crystalline silicon materials with large dimensions have been widely used as assemblies in plasma silicon etching machines.However,information about large-diameter low-cost preparation technology has not been sufficiently reported.In this paper,it was focused on the preparation of 400-mm silicon(100) crystal lightly doped with boron from 28-in.hot zones.Resistivity uniformity and oxygen concentration of the silicon crystal were investigated by direct-current(DC) four-point probes method and Fourier transform infrared spectroscopy(FTIR),respectively.The global heat transfer,melt flow and oxygen distribution were calculated by finite element method(FEM).The results show that 28-in.hot zones can replace conventional 32 in.ones to grow 400-mm-diameter silicon single crystals.The change in crucible diameter can save energy,reduce cost and improve efficiency.The trend of oxygen distribution obtained in calculations is in good agreement with experimental values.The present model can well predict the 400-mm-diameter silicon crystal growth and is essential for the optimization of furnace design and process condition.
文摘The morphology and microstructure of flow pattern defects (FPDs) in lightly boron-doped Czochralski-grown silicon (Cz-Si) crystals were investigated using optical microscopy and atomic force microscopy. The experimental results showed that the morphology of FPDs was parabola-like with several steps. Single-type and dual-type voids were found on the tip of FPDs and two heaves exist on the left and right sides of the void. All the results have proved that FPDs were void-type defects. These results are very useful to investigate FPDs in Cz-Si wafers further and explain the annihilation of FPDs during high-temperature annealing.
文摘p -type CZ silicon crystals annealed at 450℃ have been investigated by low temperature infrared spectroscopy with high resolusion. It has been shown that the 2p± and 3p± bands of neutral thermal donors TD~° are all split into two bands, which have not been reported before. In addition, the concentrations ofindi- vidual TD_i and total TD have been derived from the heights of 2po bands, and the boron concentrations de- rived from that of 320 cm^(-1) band. The room temperature resistivities of samples have been evaluated and the comparison with practically measured resistivities have been made.
基金Supported by the National Natural Science Foundation of China under Grant No 60576065, and the National High-Technology Research and Development Programme of China under Grant Nos 2006AA05Z405 and 2006AA04Z345.
文摘We observe a strong correlation between the ring oxidation-induced stack faults (OISF) formed in the course of phosphor diffusion and the efficiency of Czochralski-grown silicon solar cells. The main reason for ring-OISF formation and growth in substrate is the silicon oxidation and phosphorus diffusion process induced silicon selfinterstitial point defect during POCI3 diffusion. The decreasing of minority carrier diffusion length in crystal silicon solar cell induced by ring-OISF defects is identified to be one of the major causes of efficiency loss.