We report 75As-nuclear magnetic resonance(NMR)and nuclear quadrupole resonance(NQR)measurements on transition-metal arsenides LaRu2As2,KCa2Fe4As4F2,and A2Cr3As3.In the superconducting state of LaRu2As2,a Hebel–Slicht...We report 75As-nuclear magnetic resonance(NMR)and nuclear quadrupole resonance(NQR)measurements on transition-metal arsenides LaRu2As2,KCa2Fe4As4F2,and A2Cr3As3.In the superconducting state of LaRu2As2,a Hebel–Slichter coherence peak is found in the temperature dependence of the spin-lattice relaxation rate 1/T1 just below Tc,which indicates that LaRu2As2 is a full-gap superperconducor.For KCa2Fe4As4F2,antiferromagnetic spin fluctuations are observed in the normal state.We further find that the anisotropy rate RAF=Tc 1/Tab 1 is small and temperature independent,implying that the low energy spin fluctuations are isotropic in spin space.Our results indicate that KCa2Fe4As4F2 is a moderately overdoped iron-arsenide high-temperature superconductor with a stoichiometric composition.For A2Cr3As3(A=Na,K,Rb,Cs),we calculate the electric field gradient by first-principle method and assign the 75As-NQR peaks to two crystallographically different As sites,paving the way for further NMR investigation.展开更多
Spin engineering is recognized as a promising strategy that modulates the association between d‐orbital electrons and the oxygenated species,and enhances the catalytic kinetics.However,few efforts have been made to c...Spin engineering is recognized as a promising strategy that modulates the association between d‐orbital electrons and the oxygenated species,and enhances the catalytic kinetics.However,few efforts have been made to clarify whether spin engineering could make a considerable enhancement for electrocatalytic water oxidation.Herein,we report the spin engineering of a nanocage‐structured(Co,Ni)Se_(2)/C@FeOOH,that showed significant oxygen evolution reaction(OER)activity.Magnetization measurement presented that the(Co,Ni)Se_(2)/C@FeOOH sample possesses higher polarization spin number(μb=6.966μB/f.u.)compared with that of the(Co,Ni)Se_(2)/C sample(μb=6.398μB/f.u.),for which the enlarged spin polarization number favors the adsorption and desorption energy of the intermediate oxygenated species,as confirmed by surface valance band spectra.Consequently,the(Co,Ni)Se_(2)/C@FeOOH affords remarkable OER product with a low overpotential of 241 mV at a current of 10 mA cm^(-2) and small Tafel slope of 44 mV dec^(-1) in 1.0 mol/L KOH alkaline solution,significantly surpassing the parent(Co,Ni)Se_(2)/C catalyst.This work will trigger a solid step for the design of highly‐efficient OER electrocatalysts.展开更多
By means of both a theory for pressure-induced shifts (PS) of energy spectra and a theory for shifts of energy spectra due to electron-phonon interaction (EPI), the 'pure electronic' PS and the PS due to EPI o...By means of both a theory for pressure-induced shifts (PS) of energy spectra and a theory for shifts of energy spectra due to electron-phonon interaction (EPI), the 'pure electronic' PS and the PS due to EPI of R<SUB>1</SUB> line of GSGG:Cr<SUP>3+</SUP> at 70 K have been calculated, respectively. Their physical origins have been revealed. It is found that the admixture of and base-wavefunctions in the wavefunctions of R<SUB>1</SUB> level of GSGG:Cr<SUP>3+</SUP> at 70 K is remarkable under the normal pressure, and the degree of the admixture rapidly decreases with increasing pressure. The change of the degree of the admixture with the pressure plays a key role for not only the pure electronic PS of R<SUB>1</SUB> line but also the PS of R<SUB>1</SUB> line due to EPI. The detailed calculations and analyses show that the pressure-dependent behaviors of the pure electronic PS of R<SUB>1</SUB> line and the PS of R<SUB>1</SUB> line due to EPI are quite different. It is the combined effect of them that gives rise to the total PS of R<SUB>1</SUB> line, which has satisfactorily explained the experimental data (including a reversal of PS of R<SUB>1</SUB> line). In contributions to PS of R<SUB>1</SUB> line due to EPI at 70 K, the temperature-independent contribution is much larger than the temperature-dependent contribution. The former results from the interaction between the zero-point vibration of the lattice and localized electronic state.展开更多
By means of both a theory for pressure-induced shifts (PS) of energy spectra and a theory for shifts of energy spectra due to electron-phonon interaction (EPI), the 'pure electronic' PS and the PS due to EPI o...By means of both a theory for pressure-induced shifts (PS) of energy spectra and a theory for shifts of energy spectra due to electron-phonon interaction (EPI), the 'pure electronic' PS and the PS due to EPI of R<SUB>1</SUB> line, R<SUB>2</SUB> line, and U band of GSGG:Cr<SUP>3+</SUP> at 300 K have been calculated, respectively. The calculated results are in good agreement with all the experimental data. Their physical origins have also been explained. It is found that the mixing-degree of and base-wavefunctions in the wavefunctions of R<SUB>1</SUB> level of GSGG:Cr<SUP>3+</SUP> at 300 K is remarkable under normal pressure, and the mixing-degree rapidly decreases with increasing pressure. The change of the mixing-degree with pressure plays a key role not only for the 'pure electronic' PS of R<SUB>1</SUB> line and R<SUB>2</SUB> line but also the PS of R<SUB>1</SUB> line and R<SUB>2</SUB> line due to EPI. The pressure-dependent behaviors of the 'pure electronic' PS of R<SUB>1</SUB> line (or R<SUB>2</SUB> line) and the PS of R<SUB>1</SUB> line (or R<SUB>2</SUB> line) due to EPI are quite different. It is the combined effect of them that gives rise to the total PS of R<SUB>1</SUB> line (or R<SUB>2</SUB> line). In the range of about 15 kbar ~ 45 kbar, the mergence and/or order-reversal between levels and levels take place, which cause the fluctuation of the rate of PS for with pressure. At 300 K, both the temperature-dependent contribution to R<SUB>1</SUB> line (or R<SUB>2</SUB> line or U band) from EPI and the temperature-independent one are important.展开更多
Ab initio LCAO-MO-SCF calculations for several typical molecules containing phosphorus have been undertaken to study the role of phosphorus 3d orbitals in the bonding.It is emphasized that the discussion about the 3d ...Ab initio LCAO-MO-SCF calculations for several typical molecules containing phosphorus have been undertaken to study the role of phosphorus 3d orbitals in the bonding.It is emphasized that the discussion about the 3d orbital participation in bonding should be based on a reasonable choice of basis sets and it seems suitable to choose the atomic orbitals in proper molecular environment as the basis set.As an approximation,the optimized minimal STO-NG basis sets have been adopted in the present paper.The results obtained well exhibit the model of 3d orbital participation in bonding. It is shown that under the influence of highly electronegative ligands the phosphorus 3d orbitals con- tract greatly,their energy levels drop considerably,and thus they can effectively participate in bond- ing.The presence of highly electronegative ligands seems necessary.The contribution of 3d orbitals to bonding is achieved mainly through the concertedformation of σ bonds and p-d backbonds,though the contribution to σ bonding is minor.The three-center,four-electron bond modelis only approxi- mately correct.The results of the present paper demonstrate that the model of 3d orbital participation in bonding favoured by experimental chemists is reasonable and possesses sound ground.展开更多
The role of the sulfur 3d orbitals in bond formation is discussed by taking into account the influence of the environment on the orbitals of the sulfur atom in the molecules. The ca cula- tion results of a series of p...The role of the sulfur 3d orbitals in bond formation is discussed by taking into account the influence of the environment on the orbitals of the sulfur atom in the molecules. The ca cula- tion results of a series of prototype molecules containing sulfur such as SF_2, SF_4, NSF_3, SF_1, H_2S are reported. It is convincingly shown that in highly electronegative environment the energy levels of the sulfur 3d orbitals are reduced to the vicinity of those of the ligand valence orbitals and their spatial distributions are contracted to the bonding area, and therefore they can participate in bond formation to a certain extent, which is enhanced by the formation of the d-p π back bonds. It seems that the result reported in this paper is helpful for the solution of the long-standing debate about the sulfur 3d orbital participation in bond formation.展开更多
The high unoccupied d band energy of Ni_(3)N basically results in weak orbital coupling with water molecule,consequently leading to slow water dissociation kinetics.Herein,we demonstrate Cr doping can downshift the un...The high unoccupied d band energy of Ni_(3)N basically results in weak orbital coupling with water molecule,consequently leading to slow water dissociation kinetics.Herein,we demonstrate Cr doping can downshift the unoccupied d orbitals and strengthen the interfacial orbital coupling to boost the water dissociation kinetics.The prepared Cr-Ni_(3)N/Ni displays an impressive overpotential of 37 mV at 10 mA·cmgeo-2,close to the benchmark Pt/C in 1.0 M KOH solution.Refined structural analysis reveals the Cr dopant exists as the Cr-N_(6)states and the average d band energy of Ni_(3)N is also lowered.Density functional theory calculation further confirms the downshifted d band energy can strengthen the orbital coupling between the unpaired electrons in O 2p and the unoccupied state of Ni 3d,which thus facilitates the water adsorption and dissociation.The work provides a new concept to achieve on-demand functions for hydrogen evolution catalysis and beyond,by regulating the interfacial orbital coupling.展开更多
基金National Natural Science Foundation of China(Grant Nos.11674377,11634015,and 11974405)the National Key R&D Program of China(Grant Nos.2017YFA0302904 and 2016YFA0300502)J.Y.also acknowledges support by the Youth Innovation Promotion Association of Chinese Academy of Sciences.
文摘We report 75As-nuclear magnetic resonance(NMR)and nuclear quadrupole resonance(NQR)measurements on transition-metal arsenides LaRu2As2,KCa2Fe4As4F2,and A2Cr3As3.In the superconducting state of LaRu2As2,a Hebel–Slichter coherence peak is found in the temperature dependence of the spin-lattice relaxation rate 1/T1 just below Tc,which indicates that LaRu2As2 is a full-gap superperconducor.For KCa2Fe4As4F2,antiferromagnetic spin fluctuations are observed in the normal state.We further find that the anisotropy rate RAF=Tc 1/Tab 1 is small and temperature independent,implying that the low energy spin fluctuations are isotropic in spin space.Our results indicate that KCa2Fe4As4F2 is a moderately overdoped iron-arsenide high-temperature superconductor with a stoichiometric composition.For A2Cr3As3(A=Na,K,Rb,Cs),we calculate the electric field gradient by first-principle method and assign the 75As-NQR peaks to two crystallographically different As sites,paving the way for further NMR investigation.
文摘Spin engineering is recognized as a promising strategy that modulates the association between d‐orbital electrons and the oxygenated species,and enhances the catalytic kinetics.However,few efforts have been made to clarify whether spin engineering could make a considerable enhancement for electrocatalytic water oxidation.Herein,we report the spin engineering of a nanocage‐structured(Co,Ni)Se_(2)/C@FeOOH,that showed significant oxygen evolution reaction(OER)activity.Magnetization measurement presented that the(Co,Ni)Se_(2)/C@FeOOH sample possesses higher polarization spin number(μb=6.966μB/f.u.)compared with that of the(Co,Ni)Se_(2)/C sample(μb=6.398μB/f.u.),for which the enlarged spin polarization number favors the adsorption and desorption energy of the intermediate oxygenated species,as confirmed by surface valance band spectra.Consequently,the(Co,Ni)Se_(2)/C@FeOOH affords remarkable OER product with a low overpotential of 241 mV at a current of 10 mA cm^(-2) and small Tafel slope of 44 mV dec^(-1) in 1.0 mol/L KOH alkaline solution,significantly surpassing the parent(Co,Ni)Se_(2)/C catalyst.This work will trigger a solid step for the design of highly‐efficient OER electrocatalysts.
文摘By means of both a theory for pressure-induced shifts (PS) of energy spectra and a theory for shifts of energy spectra due to electron-phonon interaction (EPI), the 'pure electronic' PS and the PS due to EPI of R<SUB>1</SUB> line of GSGG:Cr<SUP>3+</SUP> at 70 K have been calculated, respectively. Their physical origins have been revealed. It is found that the admixture of and base-wavefunctions in the wavefunctions of R<SUB>1</SUB> level of GSGG:Cr<SUP>3+</SUP> at 70 K is remarkable under the normal pressure, and the degree of the admixture rapidly decreases with increasing pressure. The change of the degree of the admixture with the pressure plays a key role for not only the pure electronic PS of R<SUB>1</SUB> line but also the PS of R<SUB>1</SUB> line due to EPI. The detailed calculations and analyses show that the pressure-dependent behaviors of the pure electronic PS of R<SUB>1</SUB> line and the PS of R<SUB>1</SUB> line due to EPI are quite different. It is the combined effect of them that gives rise to the total PS of R<SUB>1</SUB> line, which has satisfactorily explained the experimental data (including a reversal of PS of R<SUB>1</SUB> line). In contributions to PS of R<SUB>1</SUB> line due to EPI at 70 K, the temperature-independent contribution is much larger than the temperature-dependent contribution. The former results from the interaction between the zero-point vibration of the lattice and localized electronic state.
文摘By means of both a theory for pressure-induced shifts (PS) of energy spectra and a theory for shifts of energy spectra due to electron-phonon interaction (EPI), the 'pure electronic' PS and the PS due to EPI of R<SUB>1</SUB> line, R<SUB>2</SUB> line, and U band of GSGG:Cr<SUP>3+</SUP> at 300 K have been calculated, respectively. The calculated results are in good agreement with all the experimental data. Their physical origins have also been explained. It is found that the mixing-degree of and base-wavefunctions in the wavefunctions of R<SUB>1</SUB> level of GSGG:Cr<SUP>3+</SUP> at 300 K is remarkable under normal pressure, and the mixing-degree rapidly decreases with increasing pressure. The change of the mixing-degree with pressure plays a key role not only for the 'pure electronic' PS of R<SUB>1</SUB> line and R<SUB>2</SUB> line but also the PS of R<SUB>1</SUB> line and R<SUB>2</SUB> line due to EPI. The pressure-dependent behaviors of the 'pure electronic' PS of R<SUB>1</SUB> line (or R<SUB>2</SUB> line) and the PS of R<SUB>1</SUB> line (or R<SUB>2</SUB> line) due to EPI are quite different. It is the combined effect of them that gives rise to the total PS of R<SUB>1</SUB> line (or R<SUB>2</SUB> line). In the range of about 15 kbar ~ 45 kbar, the mergence and/or order-reversal between levels and levels take place, which cause the fluctuation of the rate of PS for with pressure. At 300 K, both the temperature-dependent contribution to R<SUB>1</SUB> line (or R<SUB>2</SUB> line or U band) from EPI and the temperature-independent one are important.
基金The National Natural Science Foundation of China.
文摘Ab initio LCAO-MO-SCF calculations for several typical molecules containing phosphorus have been undertaken to study the role of phosphorus 3d orbitals in the bonding.It is emphasized that the discussion about the 3d orbital participation in bonding should be based on a reasonable choice of basis sets and it seems suitable to choose the atomic orbitals in proper molecular environment as the basis set.As an approximation,the optimized minimal STO-NG basis sets have been adopted in the present paper.The results obtained well exhibit the model of 3d orbital participation in bonding. It is shown that under the influence of highly electronegative ligands the phosphorus 3d orbitals con- tract greatly,their energy levels drop considerably,and thus they can effectively participate in bond- ing.The presence of highly electronegative ligands seems necessary.The contribution of 3d orbitals to bonding is achieved mainly through the concertedformation of σ bonds and p-d backbonds,though the contribution to σ bonding is minor.The three-center,four-electron bond modelis only approxi- mately correct.The results of the present paper demonstrate that the model of 3d orbital participation in bonding favoured by experimental chemists is reasonable and possesses sound ground.
文摘The role of the sulfur 3d orbitals in bond formation is discussed by taking into account the influence of the environment on the orbitals of the sulfur atom in the molecules. The ca cula- tion results of a series of prototype molecules containing sulfur such as SF_2, SF_4, NSF_3, SF_1, H_2S are reported. It is convincingly shown that in highly electronegative environment the energy levels of the sulfur 3d orbitals are reduced to the vicinity of those of the ligand valence orbitals and their spatial distributions are contracted to the bonding area, and therefore they can participate in bond formation to a certain extent, which is enhanced by the formation of the d-p π back bonds. It seems that the result reported in this paper is helpful for the solution of the long-standing debate about the sulfur 3d orbital participation in bond formation.
基金The work was supported by the National Natural Science Foundation of China(Nos.21771169 and 11722543)the National Key Research and Development Program of China(No.2017YFA0206703)+1 种基金Anhui Provincial Natural Science Foundation(No.BJ2060190077)Collaborative Innovation Program of Hefei Science Center,CAS,and the Fundamental Research Funds for the Central Universities(Nos.WK2060190074,WK2060190081,WK2310000066,and WK2060000015).
文摘The high unoccupied d band energy of Ni_(3)N basically results in weak orbital coupling with water molecule,consequently leading to slow water dissociation kinetics.Herein,we demonstrate Cr doping can downshift the unoccupied d orbitals and strengthen the interfacial orbital coupling to boost the water dissociation kinetics.The prepared Cr-Ni_(3)N/Ni displays an impressive overpotential of 37 mV at 10 mA·cmgeo-2,close to the benchmark Pt/C in 1.0 M KOH solution.Refined structural analysis reveals the Cr dopant exists as the Cr-N_(6)states and the average d band energy of Ni_(3)N is also lowered.Density functional theory calculation further confirms the downshifted d band energy can strengthen the orbital coupling between the unpaired electrons in O 2p and the unoccupied state of Ni 3d,which thus facilitates the water adsorption and dissociation.The work provides a new concept to achieve on-demand functions for hydrogen evolution catalysis and beyond,by regulating the interfacial orbital coupling.