To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main compon...To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.展开更多
We present a model of non-uniform granular gases in one-dimensional case, whose granularity distribution has the fractal characteristic. We have studied the nonequilibrium properties of the system by means of Monte Ca...We present a model of non-uniform granular gases in one-dimensional case, whose granularity distribution has the fractal characteristic. We have studied the nonequilibrium properties of the system by means of Monte Carlo method. When the typical relaxation time T of the Brownian process is greater than the mean collision time To, the energy evolution of the system exponentially decays, with a tendency to achieve a stable asymptotic value, and the system finally reaches a nonequilibrium steady state in which the velocity distribution strongly deviates from the Gaussian one. Three other aspects have also been studied for the steady state: the visualized change of the particle density, the entropy of the system and the correlations in the velocity of particles. And the results of simulations indicate that the system has strong spatial clustering; Furthermore, the influence of the inelasticity and inhomogeneity on dynamic behaviors have also been extensively investigated, especially the dependence of the entropy and the correlations in the velocity of particles on the restitute coefficient e and the fractal dimension D.展开更多
The celebrated(1+1)-dimensional Korteweg de-Vries(KdV)equation and its(2+1)-dimensional extension,the Kadomtsev-Petviashvili(KP)equation,are two of the most important models in physical science.The KP hierarchy is exp...The celebrated(1+1)-dimensional Korteweg de-Vries(KdV)equation and its(2+1)-dimensional extension,the Kadomtsev-Petviashvili(KP)equation,are two of the most important models in physical science.The KP hierarchy is explicitly written out by means of the linearized operator of the KP equation.A novel(2+1)-dimensional KdV extension,the cKP3-4 equation,is obtained by combining the third member(KP3,the usual KP equation)and the fourth member(KP4)of the KP hierarchy.The integrability of the cKP3-4 equation is guaranteed by the existence of the Lax pair and dual Lax pair.The cKP3-4 system can be bilinearized by using Hirota's bilinear operators after introducing an additional auxiliary variable.Exact solutions of the cKP3-4 equation possess some peculiar and interesting properties which are not valid for the KP3 and KP4 equations.For instance,the soliton molecules and the missing D'Alembert type solutions(the arbitrary travelling waves moving in one direction with a fixed model dependent velocity)including periodic kink molecules,periodic kink-antikink molecules,few-cycle solitons,and envelope solitons exist for the cKP3-4 equation but not for the separated KP3 equation and the KP4 equation.展开更多
In the reversed field pinch(RFP),plasmas exhibit various self-organized states.Among these,the three-dimensional(3D)helical state known as the“quasi-single-helical”(QSH)state enhances RFP confinement.However,accurat...In the reversed field pinch(RFP),plasmas exhibit various self-organized states.Among these,the three-dimensional(3D)helical state known as the“quasi-single-helical”(QSH)state enhances RFP confinement.However,accurately describing the equilibrium is challenging due to the presence of 3D structures,magnetic islands,and chaotic regions.It is difficult to obtain a balance between the available diagnostic and the real equilibrium structure.To address this issue,we introduce KTX3DFit,a new 3D equilibrium reconstruction code specifically designed for the Keda Torus eXperiment(KTX)RFP.KTX3DFit utilizes the stepped-pressure equilibrium code(SPEC)to compute 3D equilibria and uses polarimetric interferometer signals from experiments.KTX3DFit is able to reconstruct equilibria in various states,including axisymmetric,doubleaxis helical(DAx),and single-helical-axis(SHAx)states.Notably,this study marks the first integration of the SPEC code with internal magnetic field data for equilibrium reconstruction and could be used for other 3D configurations.展开更多
We report the implementation of qubit-lubit coupling in a three-dimensional (3D) cavity, using the exchange of virtual photons, to realize logical operations. We measure single photon and multi-photon transitions in...We report the implementation of qubit-lubit coupling in a three-dimensional (3D) cavity, using the exchange of virtual photons, to realize logical operations. We measure single photon and multi-photon transitions in this qubit-qubit coupling system and obtain its energy avoided-crossing spectrum. With ac-Stark effect, fast control of the qubits is achieved to tune the effective coupling on and off and the state-swap gate SWAP is successfully constructed. Moreover, using two-photon transition between the ground state and doubly observed. A quarter period of this oscillation corresponds to states, bSWAP and are the foundations of future gate excited states, a kind of two-photon Rabi-like oscillation is the logical gate bSbSWAP, which is used for generating Bell preparation of two-qubit Bell states and realization of CNOT展开更多
The Painlevé property for a(2+1)-dimensional Korteweg–de Vries(KdV) extension, the combined KP3(Kadomtsev–Petviashvili) and KP4(cKP3-4), is proved by using Kruskal’s simplification. The truncated Painlevé...The Painlevé property for a(2+1)-dimensional Korteweg–de Vries(KdV) extension, the combined KP3(Kadomtsev–Petviashvili) and KP4(cKP3-4), is proved by using Kruskal’s simplification. The truncated Painlevé expansion is used to find the Schwartz form, the Bäcklund/Levi transformations, and the residual nonlocal symmetry. The residual symmetry is localized to find its finite Bäcklund transformation. The local point symmetries of the model constitute a centerless Kac–Moody–Virasoro algebra. The local point symmetries are used to find the related group-invariant reductions including a new Lax integrable model with a fourth-order spectral problem. The finite transformation theorem or the Lie point symmetry group is obtained by using a direct method.展开更多
We construct a general form of propagator in arbitrary dimensions and give an exact wavefunction of a time- dependent forced harmonic oscillator in D(D ≥ 1) dimensions. The coherent states, defined as the eigenstat...We construct a general form of propagator in arbitrary dimensions and give an exact wavefunction of a time- dependent forced harmonic oscillator in D(D ≥ 1) dimensions. The coherent states, defined as the eigenstates of annihilation operator, of the D-dimensional harmonic oscillator are derived. These coherent states correspond to the minimum uncertainty states and the relation between them is investigated.展开更多
We present a new approximation scheme for the centrifugal term, and apply this new approach to the SchrSdinger equation with the modified P5schl Teller potential in the -dimension for arbitrary angular momentum state...We present a new approximation scheme for the centrifugal term, and apply this new approach to the SchrSdinger equation with the modified P5schl Teller potential in the -dimension for arbitrary angular momentum states. The approximate analytical solutions of the scattering states are derived. The normalized wave functions expressed in terms of the hypergeometric functions of the scattering states on the 2 scale and the calculation formula of the phase shifts are given. The numerical results show that our results are in good agreement with those obtained by using the amplitude-phase method (APM).展开更多
We present a new approximation scheme for the centrifugal term,and apply this new approach to the Schrdinger equation with the modified Pschl-Teller potential in the D-dimension for arbitrary angular momentum states.T...We present a new approximation scheme for the centrifugal term,and apply this new approach to the Schrdinger equation with the modified Pschl-Teller potential in the D-dimension for arbitrary angular momentum states.The approximate analytical solutions of the scattering states are derived.The normalized wave functions expressed in terms of the hypergeometric functions of the scattering states on the k/2π scale and the calculation formula of the phase shifts are given.The numerical results show that our results are in good agreement with those obtained by using the amplitude-phase method(APM).展开更多
Previously the 5D homogeneous space-time metric was introduced with explicitly given projection operators in matrix form which map the 5D space-time manifold into a Lorentzian space-time. Based on this projection mode...Previously the 5D homogeneous space-time metric was introduced with explicitly given projection operators in matrix form which map the 5D space-time manifold into a Lorentzian space-time. Based on this projection model, vector field and spinor solutions are found to be expressible in terms of SU(2)xL and SU(3)xL, where L is the 4D Lorentz space-time group. The spinor solutions give the SU(2) leptonic states arising from space-time projection, whereas the SU(3) representation arises from conformal projection and gives the quarks, and due to gauge requirement leads to mesons and baryons. This process of mapping the 5D space-time manifold into the 4D space-time is at the basis of an analysis of the recent CERN experimental results, the presence of neutrino oscillations and the observed 125 GeV resonance in the p-p collisions, respectively. In fact, it is found that the spinor solution contains an oscillating phase, and the 125 GeV resonance is shown to be predictable, thereby 1) eliminating the need to introduce a Higgs vacuum, and 2) can be shown possibly to be an indicator for a missing heavy baryon octet.展开更多
Damage to elevated water tanks in past earthquakes can be attributed to the poor performance of their supporting frame staging. In order to ascertain the performance of these elevated water tanks, it is crucial to cat...Damage to elevated water tanks in past earthquakes can be attributed to the poor performance of their supporting frame staging. In order to ascertain the performance of these elevated water tanks, it is crucial to categorize the damage in quantifiable damage states. Among various parameters to quantify the damage states, the top drift of frame staging can be conveniently correlated to the different damage levels. In literature, drift limits corresponding to different damage states of the frame staging of the elevated water tank are not available. In the present study, drift limits for RC frame staging in elevated water tanks corresponding to different seismic damage states have been proposed. Various damage states of the elevated water tank have been determined using the Park and Ang damage index. The Park and Ang damage index utilizes results of both pushover analysis and incremental dynamic analysis. Twelve models of elevated water tanks have been developed considering variation in staging height and tank capacity. Incremental dynamic analysis has been performed using the suite of twelve actual earthquake ground motions. Based on the regression analysis between damage indexes and drift, limiting drift values for each damage state are proposed.展开更多
As one of the most important ways to reduce the greenhouse gas emission,carbon dioxide(CO2)enhanced gas recovery(CO2-EGR) is attractive since the gas recovery can be enhanced simultaneously with CO2sequestration.B...As one of the most important ways to reduce the greenhouse gas emission,carbon dioxide(CO2)enhanced gas recovery(CO2-EGR) is attractive since the gas recovery can be enhanced simultaneously with CO2sequestration.Based on the existing equation of state(EOS) module of TOUGH2 MP,extEOS7C is developed to calculate the phase partition of H2O-CO2-CH4-NaCl mixtures accurately with consideration of dissolved NaCI and brine properties at high pressure and temperature conditions.Verifications show that it can be applied up to the pressure of 100 MPa and temperature of 150℃.The module was implemented in the linked simulator TOUGH2MP-FLAC3 D for the coupled hydro-mechanical simulations.A simplified three-dimensional(3D)1/4 model(2.2 km×1 km×1 km) which consists of the whole reservoir,caprock and baserock was generated based on the geological conditions of a gas field in the North German Basin.The simulation results show that,under an injection rate of 200,000 t/yr and production rate of 200,000 sm3/d,CO2breakthrough occurred in the case with the initial reservoir pressure of 5 MPa but did not occur in the case of 42 MPa.Under low pressure conditions,the pressure driven horizontal transport is the dominant process;while under high pressure conditions,the density driven vertical flow is dominant.Under the considered conditions,the CO2-EGR caused only small pressure changes.The largest pore pressure increase(2 MPa) and uplift(7 mm) occurred at the caprock bottom induced by only CO2injection.The caprock had still the primary stress state and its integrity was not affected.The formation water salinity and temperature variations of ±20℃ had small influences on the CO2-EGR process.In order to slow down the breakthrough,it is suggested that CO2-EGR should be carried out before the reservoir pressure drops below the critical pressure of CO2.展开更多
In order to make full use of heterogeneous multi-sensor data to serve urban intelligent transportation systems, a real-time urban traffic state fusion model was proposed, named federated evidence fusion model. The mod...In order to make full use of heterogeneous multi-sensor data to serve urban intelligent transportation systems, a real-time urban traffic state fusion model was proposed, named federated evidence fusion model. The model improves conventional D-S evidence theory in temporal domain, such that it can satisfy the requirement of real-time processing and utilize traffic detection information more efficaciously. The model frame and computational procedures are given. In addition, a generalized reliability weight matrix of evidence is also presented to increase the accuracy of estimation. After that, a simulation test is presented to explain the advantage of the proposed method in comparison with conventional D-S evidence theory. Besides, the validity of the model is proven by the use of the data of loop detectors and GPS probe vehicles collected from an urban link in Shanghai. Results of the experiment show that the proposed approach can well embody and track traffic state at character level in real-time conditions.展开更多
As a successive work a modified D pair independent of the S pair treated in our previous papers is introduced to avoid the seniority mixing problem. The structure amplitudes of this D pair and S pair are determined si...As a successive work a modified D pair independent of the S pair treated in our previous papers is introduced to avoid the seniority mixing problem. The structure amplitudes of this D pair and S pair are determined simultaneously and self-consistently by iteration,展开更多
The fluid variational theory and effective one-component model have been used to calculate the Hugoniot equation of state (EOS) of fluid He, D2, and He+D2 mixtures with different He:D2 compositions under high pressu...The fluid variational theory and effective one-component model have been used to calculate the Hugoniot equation of state (EOS) of fluid He, D2, and He+D2 mixtures with different He:D2 compositions under high pressures and temperatures. An examination of the confidence of above computation is performed by comparing experiment and calculation, in which the similar calculation procedure used for He+D2 is adopted, of He and D2 each, since no experimental data are available to conduct this kind of comparison. Good agreement in both comparisons is found. This fact may be looked as if an indirect positive verification of calculation procedure used here at least in the pressure and temperature domain covered by the experimental data of He and D2 used for comparison, numerically nearly up to 35 GPa and 105K.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52125903)the China Postdoctoral Science Foundation(Grant No.2023M730367)the Fundamental Research Funds for Central Public Welfare Research Institutes of China(Grant No.CKSF2023323/YT).
文摘To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.
基金The project supported by National Natural Science of China under Grant No. 10675408 and Natural Science Foundation of Xianning College under Grant No. KZ0627
文摘We present a model of non-uniform granular gases in one-dimensional case, whose granularity distribution has the fractal characteristic. We have studied the nonequilibrium properties of the system by means of Monte Carlo method. When the typical relaxation time T of the Brownian process is greater than the mean collision time To, the energy evolution of the system exponentially decays, with a tendency to achieve a stable asymptotic value, and the system finally reaches a nonequilibrium steady state in which the velocity distribution strongly deviates from the Gaussian one. Three other aspects have also been studied for the steady state: the visualized change of the particle density, the entropy of the system and the correlations in the velocity of particles. And the results of simulations indicate that the system has strong spatial clustering; Furthermore, the influence of the inelasticity and inhomogeneity on dynamic behaviors have also been extensively investigated, especially the dependence of the entropy and the correlations in the velocity of particles on the restitute coefficient e and the fractal dimension D.
基金the National Natural Science Foundation of China(Grant Nos.11975131 and 11435005)and K.C.Wong Magna Fund in Ningbo University.
文摘The celebrated(1+1)-dimensional Korteweg de-Vries(KdV)equation and its(2+1)-dimensional extension,the Kadomtsev-Petviashvili(KP)equation,are two of the most important models in physical science.The KP hierarchy is explicitly written out by means of the linearized operator of the KP equation.A novel(2+1)-dimensional KdV extension,the cKP3-4 equation,is obtained by combining the third member(KP3,the usual KP equation)and the fourth member(KP4)of the KP hierarchy.The integrability of the cKP3-4 equation is guaranteed by the existence of the Lax pair and dual Lax pair.The cKP3-4 system can be bilinearized by using Hirota's bilinear operators after introducing an additional auxiliary variable.Exact solutions of the cKP3-4 equation possess some peculiar and interesting properties which are not valid for the KP3 and KP4 equations.For instance,the soliton molecules and the missing D'Alembert type solutions(the arbitrary travelling waves moving in one direction with a fixed model dependent velocity)including periodic kink molecules,periodic kink-antikink molecules,few-cycle solitons,and envelope solitons exist for the cKP3-4 equation but not for the separated KP3 equation and the KP4 equation.
基金supported by National Natural Science Foundation of China(Nos.12175227 and 12375226)the National Magnetic Confinement Fusion Program of China(No.2022YFE03100004)+1 种基金the Fundamental Research Funds for the Central Universities(No.USTC 20210079)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2022HSC-CIP022)。
文摘In the reversed field pinch(RFP),plasmas exhibit various self-organized states.Among these,the three-dimensional(3D)helical state known as the“quasi-single-helical”(QSH)state enhances RFP confinement.However,accurately describing the equilibrium is challenging due to the presence of 3D structures,magnetic islands,and chaotic regions.It is difficult to obtain a balance between the available diagnostic and the real equilibrium structure.To address this issue,we introduce KTX3DFit,a new 3D equilibrium reconstruction code specifically designed for the Keda Torus eXperiment(KTX)RFP.KTX3DFit utilizes the stepped-pressure equilibrium code(SPEC)to compute 3D equilibria and uses polarimetric interferometer signals from experiments.KTX3DFit is able to reconstruct equilibria in various states,including axisymmetric,doubleaxis helical(DAx),and single-helical-axis(SHAx)states.Notably,this study marks the first integration of the SPEC code with internal magnetic field data for equilibrium reconstruction and could be used for other 3D configurations.
基金Project supported by the National Basic Research and Development Program of China(Grant No.2011CBA00304)the National Natural Science Foundation of China(Grant Nos.60836001 and 61174084)the Tsinghua University Initiative Scientific Research Program,China(Grant No.20131089314)
文摘We report the implementation of qubit-lubit coupling in a three-dimensional (3D) cavity, using the exchange of virtual photons, to realize logical operations. We measure single photon and multi-photon transitions in this qubit-qubit coupling system and obtain its energy avoided-crossing spectrum. With ac-Stark effect, fast control of the qubits is achieved to tune the effective coupling on and off and the state-swap gate SWAP is successfully constructed. Moreover, using two-photon transition between the ground state and doubly observed. A quarter period of this oscillation corresponds to states, bSWAP and are the foundations of future gate excited states, a kind of two-photon Rabi-like oscillation is the logical gate bSbSWAP, which is used for generating Bell preparation of two-qubit Bell states and realization of CNOT
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11975131 and 11435005)the K C Wong Magna Fund in Ningbo University。
文摘The Painlevé property for a(2+1)-dimensional Korteweg–de Vries(KdV) extension, the combined KP3(Kadomtsev–Petviashvili) and KP4(cKP3-4), is proved by using Kruskal’s simplification. The truncated Painlevé expansion is used to find the Schwartz form, the Bäcklund/Levi transformations, and the residual nonlocal symmetry. The residual symmetry is localized to find its finite Bäcklund transformation. The local point symmetries of the model constitute a centerless Kac–Moody–Virasoro algebra. The local point symmetries are used to find the related group-invariant reductions including a new Lax integrable model with a fourth-order spectral problem. The finite transformation theorem or the Lie point symmetry group is obtained by using a direct method.
基金Project supported by the National Natural Science Foundation of China (Grant No 60261004) and Yunnan Province Science Foundation (Grant No 2002E0008M).
文摘We construct a general form of propagator in arbitrary dimensions and give an exact wavefunction of a time- dependent forced harmonic oscillator in D(D ≥ 1) dimensions. The coherent states, defined as the eigenstates of annihilation operator, of the D-dimensional harmonic oscillator are derived. These coherent states correspond to the minimum uncertainty states and the relation between them is investigated.
基金Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010291).
文摘We present a new approximation scheme for the centrifugal term, and apply this new approach to the SchrSdinger equation with the modified P5schl Teller potential in the -dimension for arbitrary angular momentum states. The approximate analytical solutions of the scattering states are derived. The normalized wave functions expressed in terms of the hypergeometric functions of the scattering states on the 2 scale and the calculation formula of the phase shifts are given. The numerical results show that our results are in good agreement with those obtained by using the amplitude-phase method (APM).
基金Project supported by the Natural Science Foundation of Jiangsu Province,China (Grant No. BK2010291)
文摘We present a new approximation scheme for the centrifugal term,and apply this new approach to the Schrdinger equation with the modified Pschl-Teller potential in the D-dimension for arbitrary angular momentum states.The approximate analytical solutions of the scattering states are derived.The normalized wave functions expressed in terms of the hypergeometric functions of the scattering states on the k/2π scale and the calculation formula of the phase shifts are given.The numerical results show that our results are in good agreement with those obtained by using the amplitude-phase method(APM).
文摘Previously the 5D homogeneous space-time metric was introduced with explicitly given projection operators in matrix form which map the 5D space-time manifold into a Lorentzian space-time. Based on this projection model, vector field and spinor solutions are found to be expressible in terms of SU(2)xL and SU(3)xL, where L is the 4D Lorentz space-time group. The spinor solutions give the SU(2) leptonic states arising from space-time projection, whereas the SU(3) representation arises from conformal projection and gives the quarks, and due to gauge requirement leads to mesons and baryons. This process of mapping the 5D space-time manifold into the 4D space-time is at the basis of an analysis of the recent CERN experimental results, the presence of neutrino oscillations and the observed 125 GeV resonance in the p-p collisions, respectively. In fact, it is found that the spinor solution contains an oscillating phase, and the 125 GeV resonance is shown to be predictable, thereby 1) eliminating the need to introduce a Higgs vacuum, and 2) can be shown possibly to be an indicator for a missing heavy baryon octet.
文摘Damage to elevated water tanks in past earthquakes can be attributed to the poor performance of their supporting frame staging. In order to ascertain the performance of these elevated water tanks, it is crucial to categorize the damage in quantifiable damage states. Among various parameters to quantify the damage states, the top drift of frame staging can be conveniently correlated to the different damage levels. In literature, drift limits corresponding to different damage states of the frame staging of the elevated water tank are not available. In the present study, drift limits for RC frame staging in elevated water tanks corresponding to different seismic damage states have been proposed. Various damage states of the elevated water tank have been determined using the Park and Ang damage index. The Park and Ang damage index utilizes results of both pushover analysis and incremental dynamic analysis. Twelve models of elevated water tanks have been developed considering variation in staging height and tank capacity. Incremental dynamic analysis has been performed using the suite of twelve actual earthquake ground motions. Based on the regression analysis between damage indexes and drift, limiting drift values for each damage state are proposed.
基金funded by the National Natural Science Foundation of China(Grant No.NSFC51374147)the German Society for Petroleum and Coal Science and Technology(Grant No.DGMK680-4)
文摘As one of the most important ways to reduce the greenhouse gas emission,carbon dioxide(CO2)enhanced gas recovery(CO2-EGR) is attractive since the gas recovery can be enhanced simultaneously with CO2sequestration.Based on the existing equation of state(EOS) module of TOUGH2 MP,extEOS7C is developed to calculate the phase partition of H2O-CO2-CH4-NaCl mixtures accurately with consideration of dissolved NaCI and brine properties at high pressure and temperature conditions.Verifications show that it can be applied up to the pressure of 100 MPa and temperature of 150℃.The module was implemented in the linked simulator TOUGH2MP-FLAC3 D for the coupled hydro-mechanical simulations.A simplified three-dimensional(3D)1/4 model(2.2 km×1 km×1 km) which consists of the whole reservoir,caprock and baserock was generated based on the geological conditions of a gas field in the North German Basin.The simulation results show that,under an injection rate of 200,000 t/yr and production rate of 200,000 sm3/d,CO2breakthrough occurred in the case with the initial reservoir pressure of 5 MPa but did not occur in the case of 42 MPa.Under low pressure conditions,the pressure driven horizontal transport is the dominant process;while under high pressure conditions,the density driven vertical flow is dominant.Under the considered conditions,the CO2-EGR caused only small pressure changes.The largest pore pressure increase(2 MPa) and uplift(7 mm) occurred at the caprock bottom induced by only CO2injection.The caprock had still the primary stress state and its integrity was not affected.The formation water salinity and temperature variations of ±20℃ had small influences on the CO2-EGR process.In order to slow down the breakthrough,it is suggested that CO2-EGR should be carried out before the reservoir pressure drops below the critical pressure of CO2.
文摘In order to make full use of heterogeneous multi-sensor data to serve urban intelligent transportation systems, a real-time urban traffic state fusion model was proposed, named federated evidence fusion model. The model improves conventional D-S evidence theory in temporal domain, such that it can satisfy the requirement of real-time processing and utilize traffic detection information more efficaciously. The model frame and computational procedures are given. In addition, a generalized reliability weight matrix of evidence is also presented to increase the accuracy of estimation. After that, a simulation test is presented to explain the advantage of the proposed method in comparison with conventional D-S evidence theory. Besides, the validity of the model is proven by the use of the data of loop detectors and GPS probe vehicles collected from an urban link in Shanghai. Results of the experiment show that the proposed approach can well embody and track traffic state at character level in real-time conditions.
基金The project supported by National Natural Science Foundation of China under Grant No. 10375003 .
文摘As a successive work a modified D pair independent of the S pair treated in our previous papers is introduced to avoid the seniority mixing problem. The structure amplitudes of this D pair and S pair are determined simultaneously and self-consistently by iteration,
文摘The fluid variational theory and effective one-component model have been used to calculate the Hugoniot equation of state (EOS) of fluid He, D2, and He+D2 mixtures with different He:D2 compositions under high pressures and temperatures. An examination of the confidence of above computation is performed by comparing experiment and calculation, in which the similar calculation procedure used for He+D2 is adopted, of He and D2 each, since no experimental data are available to conduct this kind of comparison. Good agreement in both comparisons is found. This fact may be looked as if an indirect positive verification of calculation procedure used here at least in the pressure and temperature domain covered by the experimental data of He and D2 used for comparison, numerically nearly up to 35 GPa and 105K.