Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input t...Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input to augment the RGB images.Depth-based methods attempt to convert estimated depth maps to pseudo-LiDAR and then use LiDAR-based object detectors or focus on the perspective of image and depth fusion learning.However,they demonstrate limited performance and efficiency as a result of depth inaccuracy and complex fusion mode with convolutions.Different from these approaches,our proposed depth-guided vision transformer with a normalizing flows(NF-DVT)network uses normalizing flows to build priors in depth maps to achieve more accurate depth information.Then we develop a novel Swin-Transformer-based backbone with a fusion module to process RGB image patches and depth map patches with two separate branches and fuse them using cross-attention to exchange information with each other.Furthermore,with the help of pixel-wise relative depth values in depth maps,we develop new relative position embeddings in the cross-attention mechanism to capture more accurate sequence ordering of input tokens.Our method is the first Swin-Transformer-based backbone architecture for monocular 3D object detection.The experimental results on the KITTI and the challenging Waymo Open datasets show the effectiveness of our proposed method and superior performance over previous counterparts.展开更多
Visualization experiments were conducted to clarify the operational characteristics of a polymer pulsating heat pipe(PHP).Hydrofluoroether(HFE)-7100 was used as a working fluid,and its filling ratio was 50%of the enti...Visualization experiments were conducted to clarify the operational characteristics of a polymer pulsating heat pipe(PHP).Hydrofluoroether(HFE)-7100 was used as a working fluid,and its filling ratio was 50%of the entire PHP channel.A semi-transparent PHP was fabricated using a transparent polycarbonate sheet and a plastic 3D printer,and the movements of liquid slugs and vapor plugs of the working fluid were captured with a high-speed camera.The video images were then analyzed to obtain the flow patterns in the PHP.The heat transfer characteristics of the PHPwere discussed based on the flowpatterns and temperature distributions obtainedwith thermocouples.Before starting heating,because of high wettability,large liquid slugs positioned at the evaporator section of the PHP.After starting heating,since the occurrence of boiling divided the large liquid slugs,oscillatory flowof smaller liquid slugs and vapor plugs was found in the PHP.Clear circulation flow of liquid slugs and vapor plugs was observed when the power input to the PHP was larger than 12.0 W.The flow patterns and temperature distributions confirmed that the circulation flow enhanced the heat transfer from the evaporator section to the condenser section of the PHP.In the circulation flow mode,large growth and contraction of vapor plugs were found one after another in all even-numbered PHP channels.However,the analysis of flow patterns clarified that the phase-change heat transfer rate by large growth and contraction of vapor plugs was 19%of the total heat transfer rate of the PHP.Although the generation of large vapor plugs was found in the PHP,most of the heat was transferred by the sensible heat of the working fluid.展开更多
This study investigated the effects of weathering depth and thickness on the failure mechanisms of rock samples through experimental and numerical methods.The first configuration involved conducting artificial weather...This study investigated the effects of weathering depth and thickness on the failure mechanisms of rock samples through experimental and numerical methods.The first configuration involved conducting artificial weathering on limestone using the freezing and thawing(F-T)for 40 cycles.The mechanical parameters of the samples were measured at the end of the 40th cycle.In the second configuration,a series of specimens underwent salt crystallization(S-C)tests for 20 cycles.Experimental results were validated using discrete element method(DEM).Next,the weathered limestone model with dimensions of 108 mm54 mm were prepared.The weathering layers were tested at four different thicknesses(i.e.2.5 mm,5 mm,7.5 mm,and 10 mm)and three different positions(at the surface,5 mm under the rock surface,and 10 mm under the rock surface).According to the results,weathering depth and thickness have a considerable effect on the failure process.The results also showed a correlation between the values of compressive strength and failure mechanisms associated with the weathering layer.The numerical results revealed that the tension crack was the dominant factor.Additionally,with increasing weathering thickness,Young's modulus,crack initiation stress,and final strength decreased in constant weathering depth.The results also demonstrated that the failure progress of the numerical models was similar to that observed in the laboratory.展开更多
An improved algorithm for computing multiphase flows is presented in which the multimaterial Moment-of-Fluid(MOF)algorithm for multiphase flows,initially described by Li et al.(2015),is enhanced addressing existing MO...An improved algorithm for computing multiphase flows is presented in which the multimaterial Moment-of-Fluid(MOF)algorithm for multiphase flows,initially described by Li et al.(2015),is enhanced addressing existing MOF difficulties in computing solutions to problems in which surface tension forces are crucial for understanding salient flow mechanisms.The Continuous MOF(CMOF)method is motivated in this article.The CMOF reconstruction method inherently removes the"checkerboard instability"that persists when using the MOF method on surface tension driven multiphase(multimaterial)flows.The CMOF reconstruction algorithm is accelerated by coupling the CMOF method to the level set method and coupling the CMOF method to a decision tree machine learning(ML)algorithm.Multiphase flow examples are shown in the two-dimensional(2D),three-dimensional(3D)axisymmetric"RZ",and 3D coordinate systems.Examples include two material and three material multiphase flows:bubble formation,the impingement of a liquid jet on a gas bubble in a cryogenic fuel tank,freezing,and liquid lens dynamics.展开更多
The ternary-element storage and flow concept for shale oil reservoirs in Jiyang Depression of Bohai Bay Basin,East China,was proposed based on the data of more than 10000 m cores and the production of more than 60 hor...The ternary-element storage and flow concept for shale oil reservoirs in Jiyang Depression of Bohai Bay Basin,East China,was proposed based on the data of more than 10000 m cores and the production of more than 60 horizontal wells.The synergy of three elements(storage,fracture and pressure)contributes to the enrichment and high production of shale oil in Jiyang Depression.The storage element controls the enrichment of shale oil;specifically,the presence of inorganic pores and fractures,as well as laminae of lime-mud rocks,in the saline lake basin,is conducive to the storage of shale oil,and the high hydrocarbon generating capacity and free hydrocarbon content are the material basis for high production.The fracture element controls the shale oil flow;specifically,natural fractures act as flow channels for shale oil to migrate and accumulate,and induced fractures communicate natural fractures to form complex fracture network,which is fundamental to high production.The pressure element controls the high and stable production of shale oil;specifically,the high formation pressure provides the drive force for the migration and accumulation of hydrocarbons,and fracturing stimulation significantly increases the elastic energy of rock and fluid,improves the imbibition replacement of oil in the pores/fractures,and reduces the stress sensitivity,guaranteeing the stable production of shale oil for a long time.Based on the ternary-element storage and flow concept,a 3D development technology was formed,with the core techniques of 3D well pattern optimization,3D balanced fracturing,and full-cycle optimization of adjustment and control.This technology effectively guides the production and provides a support to the large-scale beneficial development of shale oil in Jiyang Depression.展开更多
Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement m...Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.展开更多
Numerical simulation has been widely applied to the assessment of debris flow hazards. In East Asia and especially Taiwan, the most widely used numerical programs are FLO-2D and Debris-aD. Although these two programs ...Numerical simulation has been widely applied to the assessment of debris flow hazards. In East Asia and especially Taiwan, the most widely used numerical programs are FLO-2D and Debris-aD. Although these two programs are applied to the same engineering tasks, they are different in many aspects. These two programs were compared according to their fundamental theories, input and output data, computational algorithms and results. Using both programs, the simulations of a real debris flow with abundant granular material induced by landslides at Xinfa village in southern Taiwan are performed for comparison. The simulation results show that Debris- 2D gives better assessment in hazard area delineating and flow depth predicting. Therefore, Debris-2D is better for simulation of granular debris flows.展开更多
The design of remediation works for the mitigation and prevention of the associated risk is needed where these geological hazards affect anthropized areas. Remedial measures for landslides commonly include slope resha...The design of remediation works for the mitigation and prevention of the associated risk is needed where these geological hazards affect anthropized areas. Remedial measures for landslides commonly include slope reshaping, plumbing, drainage, retaining structures and internal slope reinforcement, while debris flow control works consist in open or closed control structures. The effectiveness of the remedial works implemented must be assessed by evaluating the reduction of the risk over time. The choice of the most appropriate and cost-effective intervention must consider the type of hazard and environmental issues, and selects, wherever possible, naturalistic engineering operations that are consequently implemented according to the environmental regulations or the design and specification standards imposed by the competent public administrations. The mitigation procedures consist of five basic steps:(a) acquisition of the knowledge of the hazard process;(b) risk assessment with identification of possible disaster scenarios;(c) planning and designing of specific remedial measures to reduce and/or eliminate the potential risk;(d) slope monitoring after application of remedial measures,(e) transfer of knowledge to the stakeholders. This paper presents two case studies describing the practice for the design of the mitigation measures adopted for debris flow and active landslide sites in North-Eastern Italy. The first case study is a debris flow site, for which, based on observation of past events and numerical simulations using the software FLOW-2D, the most suitable mitigation measures were found to be the construction of a debris basin, barriers and breakers. The second case study deals with an active landslide threatening a village. Based on the landslide kinematics and the results of numerical simulations performed with the code FLAC, hard engineering remedial works were planned to reduce the driving forces with benching and by increasing the available resisting forces using jet grout piles and deep drainage.展开更多
In a magnetohydrodynamic(MHD)driven fluid cell,a plane non-parallel flow in a square domain satisfying a free-slip boundary condition is examined.The energy dissipation of the flow is controlled by the viscosity and l...In a magnetohydrodynamic(MHD)driven fluid cell,a plane non-parallel flow in a square domain satisfying a free-slip boundary condition is examined.The energy dissipation of the flow is controlled by the viscosity and linear friction.The latter arises from the influence of the Hartmann bottom boundary layer in a three-dimensional(3D)MHD experiment in a square bottomed cell.The basic flow in this fluid system is a square eddy flow exhibiting a network of N~2 vortices rotating alternately in clockwise and anticlockwise directions.When N is odd,the instability of the flow gives rise to secondary steady-state flows and secondary time-periodic flows,exhibiting similar characteristics to those observed when N=3.For this reason,this study focuses on the instability of the square eddy flow of nine vortices.It is shown that there exist eight bi-critical values corresponding to the existence of eight neutral eigenfunction spaces.Especially,there exist non-real neutral eigenfunctions,which produce secondary time-periodic flows exhibiting vortices merging in an oscillatory manner.This Hopf bifurcation phenomenon has not been observed in earlier investigations.展开更多
On 4th November 2OLO, a debris flow detached from a large debris cover accumulated above the lowermost portion of the Rotolon landslide (Vicentine Pre-AIps, NE Italy) and channelized in the valley below within the R...On 4th November 2OLO, a debris flow detached from a large debris cover accumulated above the lowermost portion of the Rotolon landslide (Vicentine Pre-AIps, NE Italy) and channelized in the valley below within the Rotolon Creek riverbed. Such event evolved into a highly mobile and sudden debris flow, damaging some hydraulic works and putting at high risk four villages located along the creek banks. A monitoring campaign was carried out by means of a ground based radar interferometer (GB-InSAR) to evaluate any residual displacement risk in the affected area and in the undisturbed neighbouring materials. Moreover, starting from the current slope condition, a landslide runout numerical modelling was performed by means of DAN-3D code to assess the impacted areas, flow velocity, and deposit distribution of the simulated events. The rheological parameters necessary for an accurate modelling were obtained through the back analysis of the 2010 debris flow event. Back analysis was calibrated with all of the available terrain data coming from field surveys and ancillary documents, such as topographic, geomorphological and geological maps, with pre- and post-event LiDAR derived DTMs, and with orthophotos. Finally, to identify new possible future debris flow source areas as input data for the new modelling, all the obtained terrain data were reanalysed and integrated with the GB-InSAR displacement maps; consequently, new simulations were made to forecast future events. The results show that the integration of the selected modelling technique with ancillary data and radar displacement maps can be a very useful tool for managing problems related to debris flow events in the examined area.展开更多
Debris flows are rapid mass movements with a mixture of rock,soil and water.High-intensity rainfall events have triggered multiple debris flows around the globe,making it an important concern from the disaster managem...Debris flows are rapid mass movements with a mixture of rock,soil and water.High-intensity rainfall events have triggered multiple debris flows around the globe,making it an important concern from the disaster management perspective.This study presents a numerical model called debris flow simulation 2D(DFS 2D)and applicability of the proposed model is investigated through the values of the model parameters used for the reproduction of an occurred debris flow at Yindongzi gully in China on 13 August 2010.The model can be used to simulate debris flows using three different rheologies and has a userfriendly interface for providing the inputs.Using DFS 2D,flow parameters can be estimated with respect to space and time.The values of the flow resistance parameters of model,dry-Coulomb and turbulent friction,were calibrated through the back analysis and the values obtained are 0.1 and 1000 m/s^(2),respectively.Two new methods of calibration are proposed in this study,considering the crosssectional area of flow and topographical changes induced by the debris flow.The proposed methods of calibration provide an effective solution to the cumulative errors induced by coarse-resolution digital elevation models(DEMs)in numerical modelling of debris flows.The statistical indices such as Willmott's index of agreement,mean-absolute-error,and normalized-root-mean-square-error of the calibrated model are 0.5,1.02 and 1.44,respectively.The comparison between simulated and observed values of topographic changes indicates that DFS 2D provides satisfactory results and can be used for dynamic modelling of debris flows.展开更多
基金supported in part by the Major Project for New Generation of AI (2018AAA0100400)the National Natural Science Foundation of China (61836014,U21B2042,62072457,62006231)the InnoHK Program。
文摘Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input to augment the RGB images.Depth-based methods attempt to convert estimated depth maps to pseudo-LiDAR and then use LiDAR-based object detectors or focus on the perspective of image and depth fusion learning.However,they demonstrate limited performance and efficiency as a result of depth inaccuracy and complex fusion mode with convolutions.Different from these approaches,our proposed depth-guided vision transformer with a normalizing flows(NF-DVT)network uses normalizing flows to build priors in depth maps to achieve more accurate depth information.Then we develop a novel Swin-Transformer-based backbone with a fusion module to process RGB image patches and depth map patches with two separate branches and fuse them using cross-attention to exchange information with each other.Furthermore,with the help of pixel-wise relative depth values in depth maps,we develop new relative position embeddings in the cross-attention mechanism to capture more accurate sequence ordering of input tokens.Our method is the first Swin-Transformer-based backbone architecture for monocular 3D object detection.The experimental results on the KITTI and the challenging Waymo Open datasets show the effectiveness of our proposed method and superior performance over previous counterparts.
基金supported by JSPS KAKENHI Grant Number 22K03947.
文摘Visualization experiments were conducted to clarify the operational characteristics of a polymer pulsating heat pipe(PHP).Hydrofluoroether(HFE)-7100 was used as a working fluid,and its filling ratio was 50%of the entire PHP channel.A semi-transparent PHP was fabricated using a transparent polycarbonate sheet and a plastic 3D printer,and the movements of liquid slugs and vapor plugs of the working fluid were captured with a high-speed camera.The video images were then analyzed to obtain the flow patterns in the PHP.The heat transfer characteristics of the PHPwere discussed based on the flowpatterns and temperature distributions obtainedwith thermocouples.Before starting heating,because of high wettability,large liquid slugs positioned at the evaporator section of the PHP.After starting heating,since the occurrence of boiling divided the large liquid slugs,oscillatory flowof smaller liquid slugs and vapor plugs was found in the PHP.Clear circulation flow of liquid slugs and vapor plugs was observed when the power input to the PHP was larger than 12.0 W.The flow patterns and temperature distributions confirmed that the circulation flow enhanced the heat transfer from the evaporator section to the condenser section of the PHP.In the circulation flow mode,large growth and contraction of vapor plugs were found one after another in all even-numbered PHP channels.However,the analysis of flow patterns clarified that the phase-change heat transfer rate by large growth and contraction of vapor plugs was 19%of the total heat transfer rate of the PHP.Although the generation of large vapor plugs was found in the PHP,most of the heat was transferred by the sensible heat of the working fluid.
文摘This study investigated the effects of weathering depth and thickness on the failure mechanisms of rock samples through experimental and numerical methods.The first configuration involved conducting artificial weathering on limestone using the freezing and thawing(F-T)for 40 cycles.The mechanical parameters of the samples were measured at the end of the 40th cycle.In the second configuration,a series of specimens underwent salt crystallization(S-C)tests for 20 cycles.Experimental results were validated using discrete element method(DEM).Next,the weathered limestone model with dimensions of 108 mm54 mm were prepared.The weathering layers were tested at four different thicknesses(i.e.2.5 mm,5 mm,7.5 mm,and 10 mm)and three different positions(at the surface,5 mm under the rock surface,and 10 mm under the rock surface).According to the results,weathering depth and thickness have a considerable effect on the failure process.The results also showed a correlation between the values of compressive strength and failure mechanisms associated with the weathering layer.The numerical results revealed that the tension crack was the dominant factor.Additionally,with increasing weathering thickness,Young's modulus,crack initiation stress,and final strength decreased in constant weathering depth.The results also demonstrated that the failure progress of the numerical models was similar to that observed in the laboratory.
基金supported by the National Aeronautics and Space Administration under grant number 80NSSC20K0352.
文摘An improved algorithm for computing multiphase flows is presented in which the multimaterial Moment-of-Fluid(MOF)algorithm for multiphase flows,initially described by Li et al.(2015),is enhanced addressing existing MOF difficulties in computing solutions to problems in which surface tension forces are crucial for understanding salient flow mechanisms.The Continuous MOF(CMOF)method is motivated in this article.The CMOF reconstruction method inherently removes the"checkerboard instability"that persists when using the MOF method on surface tension driven multiphase(multimaterial)flows.The CMOF reconstruction algorithm is accelerated by coupling the CMOF method to the level set method and coupling the CMOF method to a decision tree machine learning(ML)algorithm.Multiphase flow examples are shown in the two-dimensional(2D),three-dimensional(3D)axisymmetric"RZ",and 3D coordinate systems.Examples include two material and three material multiphase flows:bubble formation,the impingement of a liquid jet on a gas bubble in a cryogenic fuel tank,freezing,and liquid lens dynamics.
基金Supported by Sinopec Key Science and Technology Research Project(P21060)。
文摘The ternary-element storage and flow concept for shale oil reservoirs in Jiyang Depression of Bohai Bay Basin,East China,was proposed based on the data of more than 10000 m cores and the production of more than 60 horizontal wells.The synergy of three elements(storage,fracture and pressure)contributes to the enrichment and high production of shale oil in Jiyang Depression.The storage element controls the enrichment of shale oil;specifically,the presence of inorganic pores and fractures,as well as laminae of lime-mud rocks,in the saline lake basin,is conducive to the storage of shale oil,and the high hydrocarbon generating capacity and free hydrocarbon content are the material basis for high production.The fracture element controls the shale oil flow;specifically,natural fractures act as flow channels for shale oil to migrate and accumulate,and induced fractures communicate natural fractures to form complex fracture network,which is fundamental to high production.The pressure element controls the high and stable production of shale oil;specifically,the high formation pressure provides the drive force for the migration and accumulation of hydrocarbons,and fracturing stimulation significantly increases the elastic energy of rock and fluid,improves the imbibition replacement of oil in the pores/fractures,and reduces the stress sensitivity,guaranteeing the stable production of shale oil for a long time.Based on the ternary-element storage and flow concept,a 3D development technology was formed,with the core techniques of 3D well pattern optimization,3D balanced fracturing,and full-cycle optimization of adjustment and control.This technology effectively guides the production and provides a support to the large-scale beneficial development of shale oil in Jiyang Depression.
基金supported by the National Natural Science Foundation of China(Grant Nos.22275092,52102107 and 52372084)the Fundamental Research Funds for the Central Universities(Grant No.30923010920)。
文摘Energetic Semiconductor bridge(ESCB)based on reactive multilayered films(RMFs)has a promising application in the miniature and intelligence of initiator and pyrotechnics device.Understanding the ignition enhancement mechanism of RMFs on semiconductor bridge(SCB)during the ignition process is crucial for the engineering and practical application of advanced initiator and pyrotechnics devices.In this study,a one-dimensional(1D)gas-solid two-phase flow ignition model was established to study the ignition process of ESCB to charge particles based on the reactivity of Al/MoO_(3) RMFs.In order to fully consider the coupled exothermic between the RMFs and the SCB plasma during the ignition process,the heat release of chemical reaction in RMFs was used as an internal heat source in this model.It is found that the exothermal reaction in RMFs improved the ignition performance of SCB.In the process of plasma rapid condensation with heat release,the product of RMFs enhanced the heat transfer process between the gas phase and the solid charge particle,which accelerated the expansion of hot plasma,and heated the solid charge particle as well as gas phase region with low temperature.In addition,it made up for pressure loss in the gas phase.During the plasma dissipation process,the exothermal chemical reaction in RMFs acted as the main heating source to heat the charge particle,making the surface temperature of the charge particle,gas pressure,and gas temperature rise continuously.This result may yield significant advantages in providing a universal ignition model for miniaturized ignition devices.
文摘目的探讨原发性干燥综合征(primary Sj gren syndrome,pSS)患者唾液胱抑素D水平与唾液腺损伤的相关性。方法纳入2022年9月1日至2023年6月30日就诊于西安交通大学第一附属医院风湿免疫科pSS组患者51例及年龄、性别匹配的来院健康体检对照组人员51例。检测唾液中胱抑素D水平,采用独立样本t检验评估两组胱抑素D水平的差异,采用Pearson相关性检验评估pSS组胱抑素D与临床指标的关系。结果pSS组唾液中胱抑素D水平明显低于对照组(206.55±108.11 vs 374.32±172.24 pg/mL,P<0.01)。pSS患者胱抑素D水平与其静态唾液流率(r=0.433,P=0.002)及动态唾液流率(r=0.363,P=0.009)呈正相关。高唾液腺超声检查评分的pSS患者唾液胱抑素D水平明显低于低评分患者(腮腺:160.75±85.56 vs 290.53±95.17 pg/mL,P<0.01;颌下腺:157.76±87.59 vs 276.25±97.06 pg/mL,P<0.01)。pSS患者胱抑素D水平与外周血IL-6水平(r=-0.453,P=0.001)及CD4+T细胞计数(r=-0.396,P=0.005)呈负相关。结论pSS患者唾液胱抑素D水平可作为反映唾液腺损伤的指标。
基金support from National Science Council of Chinese Taipei(Grant No.NSC 96-2625-Z-002-006-MY3)
文摘Numerical simulation has been widely applied to the assessment of debris flow hazards. In East Asia and especially Taiwan, the most widely used numerical programs are FLO-2D and Debris-aD. Although these two programs are applied to the same engineering tasks, they are different in many aspects. These two programs were compared according to their fundamental theories, input and output data, computational algorithms and results. Using both programs, the simulations of a real debris flow with abundant granular material induced by landslides at Xinfa village in southern Taiwan are performed for comparison. The simulation results show that Debris- 2D gives better assessment in hazard area delineating and flow depth predicting. Therefore, Debris-2D is better for simulation of granular debris flows.
文摘The design of remediation works for the mitigation and prevention of the associated risk is needed where these geological hazards affect anthropized areas. Remedial measures for landslides commonly include slope reshaping, plumbing, drainage, retaining structures and internal slope reinforcement, while debris flow control works consist in open or closed control structures. The effectiveness of the remedial works implemented must be assessed by evaluating the reduction of the risk over time. The choice of the most appropriate and cost-effective intervention must consider the type of hazard and environmental issues, and selects, wherever possible, naturalistic engineering operations that are consequently implemented according to the environmental regulations or the design and specification standards imposed by the competent public administrations. The mitigation procedures consist of five basic steps:(a) acquisition of the knowledge of the hazard process;(b) risk assessment with identification of possible disaster scenarios;(c) planning and designing of specific remedial measures to reduce and/or eliminate the potential risk;(d) slope monitoring after application of remedial measures,(e) transfer of knowledge to the stakeholders. This paper presents two case studies describing the practice for the design of the mitigation measures adopted for debris flow and active landslide sites in North-Eastern Italy. The first case study is a debris flow site, for which, based on observation of past events and numerical simulations using the software FLOW-2D, the most suitable mitigation measures were found to be the construction of a debris basin, barriers and breakers. The second case study deals with an active landslide threatening a village. Based on the landslide kinematics and the results of numerical simulations performed with the code FLAC, hard engineering remedial works were planned to reduce the driving forces with benching and by increasing the available resisting forces using jet grout piles and deep drainage.
基金Project supported by the National Natural Science Foundation of China(No.11571240)the Shenzhen Natural Science Fund of China(the Stable Support Plan Program No.20220805175116001)。
文摘In a magnetohydrodynamic(MHD)driven fluid cell,a plane non-parallel flow in a square domain satisfying a free-slip boundary condition is examined.The energy dissipation of the flow is controlled by the viscosity and linear friction.The latter arises from the influence of the Hartmann bottom boundary layer in a three-dimensional(3D)MHD experiment in a square bottomed cell.The basic flow in this fluid system is a square eddy flow exhibiting a network of N~2 vortices rotating alternately in clockwise and anticlockwise directions.When N is odd,the instability of the flow gives rise to secondary steady-state flows and secondary time-periodic flows,exhibiting similar characteristics to those observed when N=3.For this reason,this study focuses on the instability of the square eddy flow of nine vortices.It is shown that there exist eight bi-critical values corresponding to the existence of eight neutral eigenfunction spaces.Especially,there exist non-real neutral eigenfunctions,which produce secondary time-periodic flows exhibiting vortices merging in an oscillatory manner.This Hopf bifurcation phenomenon has not been observed in earlier investigations.
文摘On 4th November 2OLO, a debris flow detached from a large debris cover accumulated above the lowermost portion of the Rotolon landslide (Vicentine Pre-AIps, NE Italy) and channelized in the valley below within the Rotolon Creek riverbed. Such event evolved into a highly mobile and sudden debris flow, damaging some hydraulic works and putting at high risk four villages located along the creek banks. A monitoring campaign was carried out by means of a ground based radar interferometer (GB-InSAR) to evaluate any residual displacement risk in the affected area and in the undisturbed neighbouring materials. Moreover, starting from the current slope condition, a landslide runout numerical modelling was performed by means of DAN-3D code to assess the impacted areas, flow velocity, and deposit distribution of the simulated events. The rheological parameters necessary for an accurate modelling were obtained through the back analysis of the 2010 debris flow event. Back analysis was calibrated with all of the available terrain data coming from field surveys and ancillary documents, such as topographic, geomorphological and geological maps, with pre- and post-event LiDAR derived DTMs, and with orthophotos. Finally, to identify new possible future debris flow source areas as input data for the new modelling, all the obtained terrain data were reanalysed and integrated with the GB-InSAR displacement maps; consequently, new simulations were made to forecast future events. The results show that the integration of the selected modelling technique with ancillary data and radar displacement maps can be a very useful tool for managing problems related to debris flow events in the examined area.
基金financially supported by Department of Space,India(Grant No.ISRO/RES/4/663/18-19)。
文摘Debris flows are rapid mass movements with a mixture of rock,soil and water.High-intensity rainfall events have triggered multiple debris flows around the globe,making it an important concern from the disaster management perspective.This study presents a numerical model called debris flow simulation 2D(DFS 2D)and applicability of the proposed model is investigated through the values of the model parameters used for the reproduction of an occurred debris flow at Yindongzi gully in China on 13 August 2010.The model can be used to simulate debris flows using three different rheologies and has a userfriendly interface for providing the inputs.Using DFS 2D,flow parameters can be estimated with respect to space and time.The values of the flow resistance parameters of model,dry-Coulomb and turbulent friction,were calibrated through the back analysis and the values obtained are 0.1 and 1000 m/s^(2),respectively.Two new methods of calibration are proposed in this study,considering the crosssectional area of flow and topographical changes induced by the debris flow.The proposed methods of calibration provide an effective solution to the cumulative errors induced by coarse-resolution digital elevation models(DEMs)in numerical modelling of debris flows.The statistical indices such as Willmott's index of agreement,mean-absolute-error,and normalized-root-mean-square-error of the calibrated model are 0.5,1.02 and 1.44,respectively.The comparison between simulated and observed values of topographic changes indicates that DFS 2D provides satisfactory results and can be used for dynamic modelling of debris flows.