The H-mode discharges with high edge pressure gradients are expected for the economic feasibility of future fusion reactors. However, the high edge pressure gradients easily produce ELM instability , which generally c...The H-mode discharges with high edge pressure gradients are expected for the economic feasibility of future fusion reactors. However, the high edge pressure gradients easily produce ELM instability , which generally can expel large, heat and particle loading to the divertor targets. These ELMs limit the core plasma performance and reduce the lifetime of divertor target plates. The transports of heat and particles outward across plasma boundary are useful to control density and impurity profiles for achieving steady state, high performance plasmas. Consequently, any technique to eliminate or mitigate large fast ELM impulses must replace the transient heat and particle transports with another slow process. Such a technique is high priority for a burning plasma device such as ITER.展开更多
文摘The H-mode discharges with high edge pressure gradients are expected for the economic feasibility of future fusion reactors. However, the high edge pressure gradients easily produce ELM instability , which generally can expel large, heat and particle loading to the divertor targets. These ELMs limit the core plasma performance and reduce the lifetime of divertor target plates. The transports of heat and particles outward across plasma boundary are useful to control density and impurity profiles for achieving steady state, high performance plasmas. Consequently, any technique to eliminate or mitigate large fast ELM impulses must replace the transient heat and particle transports with another slow process. Such a technique is high priority for a burning plasma device such as ITER.