In order to study the deformation of algebras the notions of Hom-algebras are introduced.The Hom-algebra is a generalization of the classical associative algebra.First the Hom-type generalization of dimodules which is...In order to study the deformation of algebras the notions of Hom-algebras are introduced.The Hom-algebra is a generalization of the classical associative algebra.First the Hom-type generalization of dimodules which is called the Hom-dimodule is introduced and its properties are discussed Moreover the category of Hom-dimodules in connection with the Hom D-equation R12 R23 =R23 R12 for R∈Endk M⊙M and a Hom-module M is investigated.Some solutions of the Hom D-equation from Hom-dimodules over Hom-bialgebras are given and the FRT-type theorem is constructed in the category of Hom-dimodules. The results generalize and improve the FRT-type theorem in the category of dimodules.展开更多
In this paper, the dispersionless D-type Drinfeld–Sokolov hierarchy, i.e. a reduction of the dispersionless two-component BKP hierarchy, is studied. The additional symmetry flows of this hierarchy are presented. Thes...In this paper, the dispersionless D-type Drinfeld–Sokolov hierarchy, i.e. a reduction of the dispersionless two-component BKP hierarchy, is studied. The additional symmetry flows of this hierarchy are presented. These flows form an infinite-dimensional Lie algebra of Block type as well as a Lie algebra of Hamiltonian type.展开更多
基金The National Natural Science Foundation of China(No.11371089)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120092110020)the Postdoctoral Innovation Funds of Southeast University(No.3207013601)
文摘In order to study the deformation of algebras the notions of Hom-algebras are introduced.The Hom-algebra is a generalization of the classical associative algebra.First the Hom-type generalization of dimodules which is called the Hom-dimodule is introduced and its properties are discussed Moreover the category of Hom-dimodules in connection with the Hom D-equation R12 R23 =R23 R12 for R∈Endk M⊙M and a Hom-module M is investigated.Some solutions of the Hom D-equation from Hom-dimodules over Hom-bialgebras are given and the FRT-type theorem is constructed in the category of Hom-dimodules. The results generalize and improve the FRT-type theorem in the category of dimodules.
基金Supported by the National Natural Science Foundation of China under Grant No.11201251the National Natural Science Foundation of China under Grant No.11271210+5 种基金Zhejiang Provincial Natural Science Foundation under Grant No.LY12A01007the Natural Science Foundation of Ningbo under Grant No.2013A610105K.C.Wong Magna Fund in Ningbo Universitythe National Science Foundation of China under Grant No.11371278the Shanghai Municipal Science and Technology Commission under Grant No.12XD1405000the Fundamental Research Funds for the Central Universities of China
文摘In this paper, the dispersionless D-type Drinfeld–Sokolov hierarchy, i.e. a reduction of the dispersionless two-component BKP hierarchy, is studied. The additional symmetry flows of this hierarchy are presented. These flows form an infinite-dimensional Lie algebra of Block type as well as a Lie algebra of Hamiltonian type.