In this paper, concerned with the Cauchy problem for 2D nonlinear hyperbolic conservation laws,we construct a class of uniformly second order accurate finite difference schemes, which are based on the E-schemes. By ap...In this paper, concerned with the Cauchy problem for 2D nonlinear hyperbolic conservation laws,we construct a class of uniformly second order accurate finite difference schemes, which are based on the E-schemes. By applying the conver gence theorem of Coquel-Le Floch [1], the family of approximate solutions defined by the scheme is proven to converge to the unique entropy weak L∞-solution. Furthermore, some numerical experiments on the Cauchy problem for the advection equation and the Riemann problem for the 2D Burgers equation are given and the relatively satisfied result is obtained.展开更多
文摘In this paper, concerned with the Cauchy problem for 2D nonlinear hyperbolic conservation laws,we construct a class of uniformly second order accurate finite difference schemes, which are based on the E-schemes. By applying the conver gence theorem of Coquel-Le Floch [1], the family of approximate solutions defined by the scheme is proven to converge to the unique entropy weak L∞-solution. Furthermore, some numerical experiments on the Cauchy problem for the advection equation and the Riemann problem for the 2D Burgers equation are given and the relatively satisfied result is obtained.