In order to recover ore as much as possible, a computer-controlled truck real-time dispatching model is conducted under the conditions of Qidashan lron Mine. It can not only acquire the optimization of shovel and truc...In order to recover ore as much as possible, a computer-controlled truck real-time dispatching model is conducted under the conditions of Qidashan lron Mine. It can not only acquire the optimization of shovel and truck operation, but also satisfy requirements of blending ores.The simulation results indicate the effectiveness of the model developed.展开更多
The real-time risk-averse dispatch problem of an integrated electricity and natural gas system(IEGS)is studied in this paper.It is formulated as a real-time conditional value-at-risk(CVaR)-based risk-averse dis-patch ...The real-time risk-averse dispatch problem of an integrated electricity and natural gas system(IEGS)is studied in this paper.It is formulated as a real-time conditional value-at-risk(CVaR)-based risk-averse dis-patch model in the Markov decision process framework.Because of its stochasticity,nonconvexity and nonlinearity,the model is difficult to analyze by traditional algorithms in an acceptable time.To address this non-deterministic polynomial-hard problem,a CVaR-based lookup-table approximate dynamic programming(CVaR-ADP)algo-rithm is proposed,and the risk-averse dispatch problem is decoupled into a series of tractable subproblems.The line pack is used as the state variable to describe the impact of one period’s decision on the future.This facilitates the reduction of load shedding and wind power curtailment.Through the proposed method,real-time decisions can be made according to the current information,while the value functions can be used to overview the whole opti-mization horizon to balance the current cost and future risk loss.Numerical simulations indicate that the pro-posed method can effectively measure and control the risk costs in extreme scenarios.Moreover,the decisions can be made within 10 s,which meets the requirement of the real-time dispatch of an IEGS.Index Terms—Integrated electricity and natural gas system,approximate dynamic programming,real-time dispatch,risk-averse,conditional value-at-risk.展开更多
ELD (economic load dispatch) problem is one of the essential issues in power system operation. The objective of solving ELD problem is to allocate the generation output of the committed generating units. The main co...ELD (economic load dispatch) problem is one of the essential issues in power system operation. The objective of solving ELD problem is to allocate the generation output of the committed generating units. The main contribution of this work is to solve the ELD problem concerned with daily load pattern. The proposed solution technique, developed based PSO (particle swarm optimization) algorithm, is applied to search for the optimal schedule of all generations units that can supply the required load demand at minimum fuel cost while satisfying all unit and system operational constraints. The performance of the developed methodology is demonstrated by case studies in test system of six-generation units. The results obtained from the PSO are compared to those achieved from other approaches, such as QP (quadratic programming), and GA (genetic algorithm).展开更多
Along with the development of automatical truck dispatching in open pits, it is important to es-tablish general-gurpose criteria for truck dispatching optimization. The existing dispatching criteria are briefly introd...Along with the development of automatical truck dispatching in open pits, it is important to es-tablish general-gurpose criteria for truck dispatching optimization. The existing dispatching criteria are briefly introduced and optimal dispatching criteria for different haulage systems are recommended. Obvious economic results have been obtained from case studies applying the recommended dispatching criteria.展开更多
This paper develops a segmented real-time dispatch model for power-gas integrated systems(PGISs), where power-to-gas(P2G) devices and traditional automatic generation control units are cooperated to manage wind power ...This paper develops a segmented real-time dispatch model for power-gas integrated systems(PGISs), where power-to-gas(P2G) devices and traditional automatic generation control units are cooperated to manage wind power uncertainty. To improve the economics of the real-time dispatch in regard to the current high operation cost of P2Gs, the wind power uncertainty set is divided into several segments, and a segmented linear decision rule is developed, which assigns adjustment tasks differently when wind power uncertainty falls into different segments. Thus, the P2G operation with high costs can be reduced in real-time adjustment. Besides, a novel segmented stochastic robust optimization is proposed to improve the efficiency and robustness of PGIS dispatch under wind power uncertainty, which minimizes the expected cost under the empirical wind power distribution and builds up the security constraints based on the robust optimization. The expected cost is formulated using a Nataf conversion-based multi-point estimate method, and the optimal number of estimate points is determined through sensitivity analysis. Furthermore, a difference-ofconvex optimization with a partial relaxation rule is developed to solve the non-convex dispatch problem in a sequential optimization framework. Numerical simulations in two testing cases validate the effectiveness of the proposed model and solving method.展开更多
In order to study the interaction among the traction power supply,the train group and the operation dispatching of urban rail transit,a coupling simulation system of power supply system,trains and dispatching manageme...In order to study the interaction among the traction power supply,the train group and the operation dispatching of urban rail transit,a coupling simulation system of power supply system,trains and dispatching management is constructed.In order to solve the problems of different timescales and difficult cooperation operation for related subsystems,a multi-bus distributed real-time network architecture based on hierarchical management of communication data is established,and simulation management software is developed to facilitate the free expansion of the simulation system.Meanwhile,the track line,train operation and other large timescale subsystems are realized by the pure digital simulation.And the time-sensitive subsystems,such as train traction system,braking system,auxiliary power supply system and network system etc.,are built by the semi-physical simulation.In this article,the system structure and the main implementation principle of each simulation subsystem are given in detail,and the system is tested and verified at the end.The results show that the simulation system can meet the expected requirements.展开更多
As an emerging paradigm in distributed power systems,microgrids provide promising solutions to local renewable energy generation and load demand satisfaction.However,the intermittency of renewables and temporal uncert...As an emerging paradigm in distributed power systems,microgrids provide promising solutions to local renewable energy generation and load demand satisfaction.However,the intermittency of renewables and temporal uncertainty in electrical load create great challenges to energy scheduling,especially for small-scale microgrids.Instead of deploying stochastic models to cope with such challenges,this paper presents a retroactive approach to real-time energy scheduling,which is prediction-independent and computationally efficient.Extensive case studies were conducted using 3-year-long real-life system data,and the results of simulations show that the cost difference between the proposed retroactive approach and perfect dispatch is less than 11%on average,which suggests better performance than model predictive control with the cost difference at 30%compared to the perfect dispatch.展开更多
This paper proposes a dynamic-decision-based realtime dispatch method to coordinate the economic objective with multiple types of security dispatch objectives while reducing constraint violations in the process of adj...This paper proposes a dynamic-decision-based realtime dispatch method to coordinate the economic objective with multiple types of security dispatch objectives while reducing constraint violations in the process of adjusting the system operation point to the optimum.In each decision moment,the following tasks are executed in turn:①locally linearizing the system model at the current operation point with the online model identification by using measurements;②narrowing down the gaps between unsatisfied security requirements and their security thresholds in order of priority;③minimizing the generation cost;④minimizing the security indicators within their security thresholds.Compared with the existing real-time dispatch strategies,the proposed method can adjust the deviations caused by unpredictable power flow fluctuations,avoid dispatch bias caused by model parameter errors,and reduce the constraint violations in the dispatch decision process.The effectiveness of the proposed method is verified with the IEEE 39-bus system.展开更多
Given the different energy rates of multiple types of power generation units,different operation plans affect the economy of microgrids.Limited by load and power generation forecasting technologies,the economic superi...Given the different energy rates of multiple types of power generation units,different operation plans affect the economy of microgrids.Limited by load and power generation forecasting technologies,the economic superiority of day-ahead plans is unable to be fully utilized because of the fluctuation of loads and power sources.In this regard,a two-stage correction strategy-based real-time dispatch method for the economic operation of microgrids is proposed.Based on the optimal day-ahead economic operation plan,unbalanced power is validly allocated in two stages in terms of power increment and current power,which maintains the economy of the day-ahead plan.Further,for operating point offset during real-time correction,a rolling dispatch method is introduced to dynamically update the system operation plan.Finally,the results verify the effectiveness of the proposed method.展开更多
文摘In order to recover ore as much as possible, a computer-controlled truck real-time dispatching model is conducted under the conditions of Qidashan lron Mine. It can not only acquire the optimization of shovel and truck operation, but also satisfy requirements of blending ores.The simulation results indicate the effectiveness of the model developed.
基金supported by State Key Laboratory of HVDC under Grant SKLHVDC-2021-KF-09.
文摘The real-time risk-averse dispatch problem of an integrated electricity and natural gas system(IEGS)is studied in this paper.It is formulated as a real-time conditional value-at-risk(CVaR)-based risk-averse dis-patch model in the Markov decision process framework.Because of its stochasticity,nonconvexity and nonlinearity,the model is difficult to analyze by traditional algorithms in an acceptable time.To address this non-deterministic polynomial-hard problem,a CVaR-based lookup-table approximate dynamic programming(CVaR-ADP)algo-rithm is proposed,and the risk-averse dispatch problem is decoupled into a series of tractable subproblems.The line pack is used as the state variable to describe the impact of one period’s decision on the future.This facilitates the reduction of load shedding and wind power curtailment.Through the proposed method,real-time decisions can be made according to the current information,while the value functions can be used to overview the whole opti-mization horizon to balance the current cost and future risk loss.Numerical simulations indicate that the pro-posed method can effectively measure and control the risk costs in extreme scenarios.Moreover,the decisions can be made within 10 s,which meets the requirement of the real-time dispatch of an IEGS.Index Terms—Integrated electricity and natural gas system,approximate dynamic programming,real-time dispatch,risk-averse,conditional value-at-risk.
文摘ELD (economic load dispatch) problem is one of the essential issues in power system operation. The objective of solving ELD problem is to allocate the generation output of the committed generating units. The main contribution of this work is to solve the ELD problem concerned with daily load pattern. The proposed solution technique, developed based PSO (particle swarm optimization) algorithm, is applied to search for the optimal schedule of all generations units that can supply the required load demand at minimum fuel cost while satisfying all unit and system operational constraints. The performance of the developed methodology is demonstrated by case studies in test system of six-generation units. The results obtained from the PSO are compared to those achieved from other approaches, such as QP (quadratic programming), and GA (genetic algorithm).
文摘Along with the development of automatical truck dispatching in open pits, it is important to es-tablish general-gurpose criteria for truck dispatching optimization. The existing dispatching criteria are briefly introduced and optimal dispatching criteria for different haulage systems are recommended. Obvious economic results have been obtained from case studies applying the recommended dispatching criteria.
基金supported by the National Natural Science Foundation of China (No. 51907025)Fundamental Research Funds for the Central Universities。
文摘This paper develops a segmented real-time dispatch model for power-gas integrated systems(PGISs), where power-to-gas(P2G) devices and traditional automatic generation control units are cooperated to manage wind power uncertainty. To improve the economics of the real-time dispatch in regard to the current high operation cost of P2Gs, the wind power uncertainty set is divided into several segments, and a segmented linear decision rule is developed, which assigns adjustment tasks differently when wind power uncertainty falls into different segments. Thus, the P2G operation with high costs can be reduced in real-time adjustment. Besides, a novel segmented stochastic robust optimization is proposed to improve the efficiency and robustness of PGIS dispatch under wind power uncertainty, which minimizes the expected cost under the empirical wind power distribution and builds up the security constraints based on the robust optimization. The expected cost is formulated using a Nataf conversion-based multi-point estimate method, and the optimal number of estimate points is determined through sensitivity analysis. Furthermore, a difference-ofconvex optimization with a partial relaxation rule is developed to solve the non-convex dispatch problem in a sequential optimization framework. Numerical simulations in two testing cases validate the effectiveness of the proposed model and solving method.
文摘In order to study the interaction among the traction power supply,the train group and the operation dispatching of urban rail transit,a coupling simulation system of power supply system,trains and dispatching management is constructed.In order to solve the problems of different timescales and difficult cooperation operation for related subsystems,a multi-bus distributed real-time network architecture based on hierarchical management of communication data is established,and simulation management software is developed to facilitate the free expansion of the simulation system.Meanwhile,the track line,train operation and other large timescale subsystems are realized by the pure digital simulation.And the time-sensitive subsystems,such as train traction system,braking system,auxiliary power supply system and network system etc.,are built by the semi-physical simulation.In this article,the system structure and the main implementation principle of each simulation subsystem are given in detail,and the system is tested and verified at the end.The results show that the simulation system can meet the expected requirements.
基金partially supported by Hong Kong RGC Theme-based Research Scheme(No.T23-407/13N and No.T23-701/14N)SUSTech Faculty Startup Funding(No.Y01236135 and No.Y01236235).
文摘As an emerging paradigm in distributed power systems,microgrids provide promising solutions to local renewable energy generation and load demand satisfaction.However,the intermittency of renewables and temporal uncertainty in electrical load create great challenges to energy scheduling,especially for small-scale microgrids.Instead of deploying stochastic models to cope with such challenges,this paper presents a retroactive approach to real-time energy scheduling,which is prediction-independent and computationally efficient.Extensive case studies were conducted using 3-year-long real-life system data,and the results of simulations show that the cost difference between the proposed retroactive approach and perfect dispatch is less than 11%on average,which suggests better performance than model predictive control with the cost difference at 30%compared to the perfect dispatch.
基金This work was supported by the National Natural Science Foundation of China(No.51761145106)the Guangdong Provincial Natural Science Foundation of China(No.2018B030306041)+1 种基金the Fundamental Research Funds for the Central Universities(No.2019SJ01)the China Scholarship Council(No.201806155019).
文摘This paper proposes a dynamic-decision-based realtime dispatch method to coordinate the economic objective with multiple types of security dispatch objectives while reducing constraint violations in the process of adjusting the system operation point to the optimum.In each decision moment,the following tasks are executed in turn:①locally linearizing the system model at the current operation point with the online model identification by using measurements;②narrowing down the gaps between unsatisfied security requirements and their security thresholds in order of priority;③minimizing the generation cost;④minimizing the security indicators within their security thresholds.Compared with the existing real-time dispatch strategies,the proposed method can adjust the deviations caused by unpredictable power flow fluctuations,avoid dispatch bias caused by model parameter errors,and reduce the constraint violations in the dispatch decision process.The effectiveness of the proposed method is verified with the IEEE 39-bus system.
文摘Given the different energy rates of multiple types of power generation units,different operation plans affect the economy of microgrids.Limited by load and power generation forecasting technologies,the economic superiority of day-ahead plans is unable to be fully utilized because of the fluctuation of loads and power sources.In this regard,a two-stage correction strategy-based real-time dispatch method for the economic operation of microgrids is proposed.Based on the optimal day-ahead economic operation plan,unbalanced power is validly allocated in two stages in terms of power increment and current power,which maintains the economy of the day-ahead plan.Further,for operating point offset during real-time correction,a rolling dispatch method is introduced to dynamically update the system operation plan.Finally,the results verify the effectiveness of the proposed method.