Background:Phosphorus(P) supplementation is costly and can result in excess P excretion.This study investigated the effects of reducing dietary P on milk production and P excretion in dairy cows over a full lactati...Background:Phosphorus(P) supplementation is costly and can result in excess P excretion.This study investigated the effects of reducing dietary P on milk production and P excretion in dairy cows over a full lactation.Method:Forty-five multiparous Holstein dairy cows were divided into 15 blocks according to expected calving date and previous milk yield,and assigned randomly to one of the three dietary treatments:0.37,0.47,and 0.57%P(DM basis);these P levels represent the NRC recommendations,Chinese recommendations,and the amount of dietary P commonly fed by Chinese dairy farmers,respectively.Average daily feed intake was calculated from monthly data on feed offered and refused.Milk yields of individual cows were recorded weekly,and milk samples were taken for analysis of protein,fat,solids-not-fat,lactose,and somatic cell count.Blood samples were collected on days-6,-3,0,3,6 relative to calving,and then monthly throughout lactation,and analyzed for P and Ca concentrations.Spot samples of feces and urine were collected for 3 consecutive d during weeks 12,24,and 36,and P concentrations were analyzed.Reproduction and health data were recorded.Results:Dietary P did not affect dry matter intake or milk yield(P〉 0.10).Milk fat content was slightly higher in cows fed 0.37%P than in cows fed 0.47%P(P = 0.05).Serum concentrations of P and Ca did not reflect dietary P content(P〉 0.10).Fecal and urinary P both declined linearly(P〈 0.05) as dietary P decreased from 0.57 to0.37%.Fecal P content was 25%less when dietary P was 0.37%compared to 0.57%.Health events and reproductive performance were not associated with dietary P content(P〉 0.05).Conclusions:Lowering dietary P from 0.57 to 0.37%did not negatively affect milk production,but did significantly reduce P excretion into environment.展开更多
Background: Modification of chemical composition of diets fed to dairy cows might be a good strategy to reduce methane(CH4) production in the rumen. Notable reductions of CH4 production compared to conventional hig...Background: Modification of chemical composition of diets fed to dairy cows might be a good strategy to reduce methane(CH4) production in the rumen. Notable reductions of CH4 production compared to conventional highroughages rations were more frequently observed for very concentrated diets or when fat supplements were used. In these cases, the reduction in the gas emission was mainly a consequence of an overall impairment of rumen function with a reduction of fiber digestibility. These strategies do not always comply with feeding standards used in intensive dairy farms and they are usually not applied owing to the risks of negative health and economic consequences.Thus, the present study evaluated the effects of seven commercial diets with contents of neutral detergent fiber(NDF),protein and lipids ranging 325 to 435 g/kg DM, 115 to 194 g/kg DM, and 26 to 61 g/kg DM, respectively, on in vitro degradability, gas(GP), and CH4 production.Results: In this experiment, changes in the dietary content of NDF, crude protein(CP) and lipids were always obtained at the expense or in favor of starch. A decreased of the dietary NDF content increased NDF(NDFd) and true DM(TDMd) degradability, and increased CH4 production per g of incubated DM(P 〈 0.001), but not that per g of TDMd. An increase of the dietary CP level did not change in vitro NDFd and TDMd, decreased GP per g of incubated DM(P 〈 0.001), but CH4 production per g of TDMd was not affected. An increased dietary lipid content reduced NDFd, TDMd,and GP per g of incubated DM, but it had no consequence on CH4 production per g of TDMd.Conclusions: It was concluded that, under commercial conditions, changes in dietary composition would produce small or negligible alterations of CH4 production per unit of TDMd, but greater differences in GP and CH4 production would be expected when these amounts are expressed per unit of DM intake. The use of TDMd as a standardizing parameter is proposed to account for possible difference in DM intake and productivity.展开更多
基金supported by the earmarked fund for China Agriculture Research System(CARS-37)the National Key Technologies R&D Program of China(2012BAD12B02)the Special Fund for Agro-scientific Research in the Public Interest(No.201303143)
文摘Background:Phosphorus(P) supplementation is costly and can result in excess P excretion.This study investigated the effects of reducing dietary P on milk production and P excretion in dairy cows over a full lactation.Method:Forty-five multiparous Holstein dairy cows were divided into 15 blocks according to expected calving date and previous milk yield,and assigned randomly to one of the three dietary treatments:0.37,0.47,and 0.57%P(DM basis);these P levels represent the NRC recommendations,Chinese recommendations,and the amount of dietary P commonly fed by Chinese dairy farmers,respectively.Average daily feed intake was calculated from monthly data on feed offered and refused.Milk yields of individual cows were recorded weekly,and milk samples were taken for analysis of protein,fat,solids-not-fat,lactose,and somatic cell count.Blood samples were collected on days-6,-3,0,3,6 relative to calving,and then monthly throughout lactation,and analyzed for P and Ca concentrations.Spot samples of feces and urine were collected for 3 consecutive d during weeks 12,24,and 36,and P concentrations were analyzed.Reproduction and health data were recorded.Results:Dietary P did not affect dry matter intake or milk yield(P〉 0.10).Milk fat content was slightly higher in cows fed 0.37%P than in cows fed 0.47%P(P = 0.05).Serum concentrations of P and Ca did not reflect dietary P content(P〉 0.10).Fecal and urinary P both declined linearly(P〈 0.05) as dietary P decreased from 0.57 to0.37%.Fecal P content was 25%less when dietary P was 0.37%compared to 0.57%.Health events and reproductive performance were not associated with dietary P content(P〉 0.05).Conclusions:Lowering dietary P from 0.57 to 0.37%did not negatively affect milk production,but did significantly reduce P excretion into environment.
基金the project “ARCHAEA - Feeding strategies to reduce methane emissions from dairy cows” – Veneto Region Rural Development Programme (RDP) 2007–2013
文摘Background: Modification of chemical composition of diets fed to dairy cows might be a good strategy to reduce methane(CH4) production in the rumen. Notable reductions of CH4 production compared to conventional highroughages rations were more frequently observed for very concentrated diets or when fat supplements were used. In these cases, the reduction in the gas emission was mainly a consequence of an overall impairment of rumen function with a reduction of fiber digestibility. These strategies do not always comply with feeding standards used in intensive dairy farms and they are usually not applied owing to the risks of negative health and economic consequences.Thus, the present study evaluated the effects of seven commercial diets with contents of neutral detergent fiber(NDF),protein and lipids ranging 325 to 435 g/kg DM, 115 to 194 g/kg DM, and 26 to 61 g/kg DM, respectively, on in vitro degradability, gas(GP), and CH4 production.Results: In this experiment, changes in the dietary content of NDF, crude protein(CP) and lipids were always obtained at the expense or in favor of starch. A decreased of the dietary NDF content increased NDF(NDFd) and true DM(TDMd) degradability, and increased CH4 production per g of incubated DM(P 〈 0.001), but not that per g of TDMd. An increase of the dietary CP level did not change in vitro NDFd and TDMd, decreased GP per g of incubated DM(P 〈 0.001), but CH4 production per g of TDMd was not affected. An increased dietary lipid content reduced NDFd, TDMd,and GP per g of incubated DM, but it had no consequence on CH4 production per g of TDMd.Conclusions: It was concluded that, under commercial conditions, changes in dietary composition would produce small or negligible alterations of CH4 production per unit of TDMd, but greater differences in GP and CH4 production would be expected when these amounts are expressed per unit of DM intake. The use of TDMd as a standardizing parameter is proposed to account for possible difference in DM intake and productivity.