The physical properties of ZrxTi1-x(x=0.0, 0.33, 0.5, 0.67, 0.75 and 1.00) alloys were sinmlated by virtual crystal approximation (VCA) methods which is generally used for disordered solid solutions modeling. The ...The physical properties of ZrxTi1-x(x=0.0, 0.33, 0.5, 0.67, 0.75 and 1.00) alloys were sinmlated by virtual crystal approximation (VCA) methods which is generally used for disordered solid solutions modeling. The elastic constant, electronic structure and thermal Equation of state (EOS) of disor- dered ZrxTi1-x alloys under pressure are investigated by plane-wave pseudo-potentia1 method. Our simulations reveal increasement of variations of the calculated equilibrium volumes and decrease- ment of Bulk modulus as a function of the alloy compositions. Lattice parameters a and c of alloys with differentZr concentrations decrease linearly with pressure increasing, but the c/avalues are increasing as pressure increases, indicating no phase transitions under pressure from 0 GPa to 100 GPa. The elastic constants and the Bulk modulus to the Shear modulus ratios (B/G) indicate good ductility of Zr, Zr0.33 Ti0.67 Zr0.5Ti0.5, Zr0.75Ti0.25 and Ti, but the Zr0.67Ti0.33 alloy is brittle under 0 K and 0 GPa. The metallic behavior of these alloys was also proved by analyzing partial and total DOS.展开更多
基金The first author greatly thanks Dr. Ruo- Xu Gu for his help with English language editing. The work was supported by Postdoctoral Science Foundation of China (Grant No. 2013M541596), Jiangsu Planned Projects for Postdoctoral Re- search Funds (Grant No. 1202105C), National Basic Research Pro- gram of China (Grant No. 2010CB731600), the National Natural Science Foundation of China (Grant Nos. 51209080, 10776022, and 20773085), China Academy of Engineering Physics (CAEP), and China Postdoctoral Science Foundation funded project (Grant No. 2012M511192).
文摘The physical properties of ZrxTi1-x(x=0.0, 0.33, 0.5, 0.67, 0.75 and 1.00) alloys were sinmlated by virtual crystal approximation (VCA) methods which is generally used for disordered solid solutions modeling. The elastic constant, electronic structure and thermal Equation of state (EOS) of disor- dered ZrxTi1-x alloys under pressure are investigated by plane-wave pseudo-potentia1 method. Our simulations reveal increasement of variations of the calculated equilibrium volumes and decrease- ment of Bulk modulus as a function of the alloy compositions. Lattice parameters a and c of alloys with differentZr concentrations decrease linearly with pressure increasing, but the c/avalues are increasing as pressure increases, indicating no phase transitions under pressure from 0 GPa to 100 GPa. The elastic constants and the Bulk modulus to the Shear modulus ratios (B/G) indicate good ductility of Zr, Zr0.33 Ti0.67 Zr0.5Ti0.5, Zr0.75Ti0.25 and Ti, but the Zr0.67Ti0.33 alloy is brittle under 0 K and 0 GPa. The metallic behavior of these alloys was also proved by analyzing partial and total DOS.