Under-fitting problems usually occur in regression models for dam safety monitoring.To overcome the local convergence of the regression, a genetic algorithm (GA) was proposed using a real parameter coding, a ranking s...Under-fitting problems usually occur in regression models for dam safety monitoring.To overcome the local convergence of the regression, a genetic algorithm (GA) was proposed using a real parameter coding, a ranking selection operator, an arithmetical crossover operator and a uniform mutation operator, and calculated the least-square error of the observed and computed values as its fitness function. The elitist strategy was used to improve the speed of the convergence. After that, the modified genetic algorithm was applied to reassess the coefficients of the regression model and a genetic regression model was set up. As an example, a slotted gravity dam in the Northeast of China was introduced. The computational results show that the genetic regression model can solve the under-fitting problems perfectly.展开更多
Plenty of dams in China are in danger while there are few effective methods for underwater dam inspections of hidden problems such as conduits,cracks and inanitions.The dam safety inspection remotely operated vehicle(...Plenty of dams in China are in danger while there are few effective methods for underwater dam inspections of hidden problems such as conduits,cracks and inanitions.The dam safety inspection remotely operated vehicle(DSIROV) is designed to solve these problems which can be equipped with many advanced sensors such as acoustical,optical and electrical sensors for underwater dam inspection.A least-square parameter estimation method is utilized to estimate the hydrodynamic coefficients of DSIROV,and a four degree-of-freedom(DOF) simulation system is constructed.The architecture of DSIROV's motion control system is introduced,which includes hardware and software structures.The hardware based on PC104 BUS,uses AMD ELAN520 as the controller's embedded CPU and all control modules work in VxWorks real-time operating system.Information flow of the motion system of DSIROV,automatic control of dam scanning and dead-reckoning algorithm for navigation are also discussed.The reliability of DSIROV's control system can be verified and the control system can fulfill the motion control mission because embankment checking can be demonstrated by the lake trials.展开更多
To improve the effectiveness of dam safety monitoring database systems, the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mo...To improve the effectiveness of dam safety monitoring database systems, the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mode. The optimal data model was confirmed by identifying data objects, defining relations and reviewing entities. The conversion of relations among entities to external keys and entities and physical attributes to tables and fields was interpreted completely. On this basis, a multi-dimensional database that reflects the management and analysis of a dam safety monitoring system on monitoring data information has been established, for which factual tables and dimensional tables have been designed. Finally, based on service design and user interface design, the dam safety monitoring system has been developed with Delphi as the development tool. This development project shows that the multi-dimensional database can simplify the development process and minimize hidden dangers in the database structure design. It is superior to other dam safety monitoring system development models and can provide a new research direction for system developers.展开更多
The Lom Pangar dam, the largest reservoir in Cameroon with a storage capacity of 6 km3 and a 30 MW hydropower plant, primarily regulates the hydrologic regime of the Sanaga River to maintain hydropower efficiency duri...The Lom Pangar dam, the largest reservoir in Cameroon with a storage capacity of 6 km3 and a 30 MW hydropower plant, primarily regulates the hydrologic regime of the Sanaga River to maintain hydropower efficiency during dry seasons and enhance downstream hydropower plant performance. Understanding and managing sediments are crucial for the sustainability of dams, as indicated by numerous studies. This study assessed the granulometry of the sediments transported across the reservoir. For that purpose, 6 samples of fresh sediments were collected in the lacustrine and transitional sections of the reservoir using the standard method. Particles size was assessed using the laser diffusion technic after a 3 mm sieving. Various granulometric parameters were derived from the literature to analyze and characterize those sediments. Results show that silts are more than 70% of particles size and range between 2.19 - 60.26 µm. Size distribution also shows the same trend with D75 less than 51 µm. This is confirmed by the low values of Inman Skewness SkΦ (−0.168 to 0.303). The Sorting index S0 ranges from 0.31 to 0.53 µm, showing a very well-sorted sediments, aligning with low values of Krumbein index (0.906 - 1.683) that express the low heterometry of the particles. The consequence on the dam will be a quick clogging of the bottom of the reservoir. Their pH varies from 7.0 to 7.5. It also appears that the sandy fraction trend is higher in the right bank of the dam and reaches 22% on the right bank of Pangar River due to crystalline geology. Fraction greater than 3000 µm is negligible. The management of the dam has to keep attention to these results as siltation may close the safety outlet of the dam, damage turbines, and provoke recurrent technical and safety issues. Further, the clogging of the bottom of the reservoir may lead to an ecological problem with the limitation of hyporheic flow. Thus, water exchange with the underground water table and the natural purification of water reduce, while increasing sediments deposits change the biogeochemistry processes.展开更多
The 130m high Punt dal Gall dam is located at the Swiss-Italian border in the South-eastern part of Switzerland and was completed in 1969.The dam is founded on highly folded and partially crushed dolomite and limeston...The 130m high Punt dal Gall dam is located at the Swiss-Italian border in the South-eastern part of Switzerland and was completed in 1969.The dam is founded on highly folded and partially crushed dolomite and limestone formations.A grout curtain with an area of 120,000m^(2) was provided for controlling seepage.For the monitoring of the dam deformations five inverted pendulums were installed in the dam and three in the rock foundation of the right abutment outside of the dam.For a seasonal water level fluctuation in the reservoir of about 60 m the maximum amplitude of the radial displacement is 25 mm,which includes both the effects of the water load and temperature effects.Furthermore a comprehensive geodetic network was established,57 joint meters were installed and cracks in the crest gallery are monitored by crack meters.There are also thermometers,piczometers and rocmeters.Springs at the left and fight banks of the dam are monitored and chemical analyses of the seepage water and springs are performed regularly.The dam is equipped with strong motion instruments and several near-field earthquakes have been recorded in the past.The paper describes the long-term safety monitoring of this 42 years old arch dam.A short description of the Swiss practice in dam safety monitoring and emergency planning is also given.展开更多
Based on the principal component analysis, principal components that have major influence on data variance are determined by the energy percentage method according to the correlation between monitoring effects. Then p...Based on the principal component analysis, principal components that have major influence on data variance are determined by the energy percentage method according to the correlation between monitoring effects. Then principal components are extracted through reconstructing multi effects. Moreover, combining with the optimal estimation theory, the method of singular value diagnosis in dam safety monitoring effect values is proposed. After dam monitoring information matrix is obtained, single effect state estimation matrix and multi effect fusion estimation matrix are constructed to make diagnosis on singular values to reduce false alarm rate. And the diagnosis index is calculated by PCA. These methods have already been applied to an actual project and the result shows the ability of the monitoring effect reflecting dam evolution behavior is improved as dam safety monitoring effect fusion estimation can take accurate identification on singular values and achieve data reduction, filter out noise and lower false alarm rate effectively.展开更多
This paper describes some special features of the Wenchuan earthquake that affected dam safety. Damage and performance of dams, primarily for four dams over 100 m high located in the affected earthquake area, are brie...This paper describes some special features of the Wenchuan earthquake that affected dam safety. Damage and performance of dams, primarily for four dams over 100 m high located in the affected earthquake area, are briefly described. Lessons learned related to dam safety from this devastating earthquake are preliminarily drawn. As the seismic safety of high dams during strong earthquakes has gained more attention around the world, some critical issues related to dam construction in China are considered and extensively discussed. Questions such as "Why is dam construction necessary in earthquake prone countries such as China?", "Can we accurately evaluate the seismic safety of high dams in China?", "Did reservoir impounding of the Zipingpu and Three Gorges Projects trigger the Wenchuan Earthquake in some way?" and "What is the strategic priority of dam safety for large dams in China?" are discussed. Finally, the corresponding tactics with response to the challenge are suggested and recent preliminary progress mainly achieved in IWHR is briefly introduced.展开更多
The focus of this paper is the ill-conditioned problems in the dam safety monitoring model. The reasons to give rise to the ill-conditioned problems in statistical models,deterministic models and hybrid models are ana...The focus of this paper is the ill-conditioned problems in the dam safety monitoring model. The reasons to give rise to the ill-conditioned problems in statistical models,deterministic models and hybrid models are analyzed in detail,and the criterions for ill-conditioned models are investigated. It is shown that safety monitoring models are not easy to be ill-conditioned if the number of influence factors is less than seven. Moreover,the models have a high accuracy and can meet the engineering requirements. Another frequently encountered problem in establishing a safety monitoring model is the existence of inflection points,which are often present in the mathematical model for the hydraulic components in deterministic models and hybrid models. The conditions for inflection points are studied and their treatments are suggested. Numerical example indicates that the treatments proposed in this paper are effective in removing the ill-conditioned problems.展开更多
In order to accurately predict and control the aging process of dams, new information should be collected continuously to renew the quantitative evaluation of dam safety levels. Owing to the complex structural charact...In order to accurately predict and control the aging process of dams, new information should be collected continuously to renew the quantitative evaluation of dam safety levels. Owing to the complex structural characteristics of dams, it is quite difficult to predict the time-varying factors affecting their safety levels. It is not feasible to employ dynamic reliability indices to evaluate the actual safety levels of dams. Based on the relevant regulations for dam safety classification in China, a dynamic probability description of dam safety levels was developed. Using the Bayesian approach and effective information mining, as well as real-time information, this study achieved more rational evaluation and prediction of dam safety levels. With the Bayesian expression of discrete stochastic variables, the a priori probabilities of the dam safety levels determined by experts were combined wfth the likelihood probability of the real-time check information, and the probability information for the evaluation of dam safety levels was renewed. The probability index was then applied to dam rehabilitation decision-making. This method helps reduce the difficulty and uncertainty of the evaluation of dam safety levels and complies with the current safe decision-making regulations for dams in China. It also enhances the application of current risk analysis methods for dam safety levels.展开更多
Safe operation and performance of dams is one of the key issues in permafrost regions. At present, the existing dams are 40–45 years old and they are reaching their design life limit. Intensive geocryological proces...Safe operation and performance of dams is one of the key issues in permafrost regions. At present, the existing dams are 40–45 years old and they are reaching their design life limit. Intensive geocryological processes(thermokarst, thermal erosion, frost heaving, suffosion, concentrated seepage along the voids left by melt ice and others) begin to develop at the early stages of construction. These processes are even more intensive under severe climatic conditions of the permafrost zone due to the large thermal and moisture gradients and the resulting complex thermal stress-strain state in the structures. Determining safety criteria is a critical and difficult task in dam safety management. The existing procedures need to be continuously refined and improved depending on dam importance class. Some researchers recommend introducing process development criteria(stability, destabilization, and extremality) for more objective assessment of dam safety, in addition to the existing two condition criteria. In other words, they call for a multi-factor dam – environment interaction system. A case study of safety declaration for an existing dam is presented.展开更多
Dams are critical and essential elements in any infrastructure and, in front of accidents occurred in many countries, it is extremely important to know the risk of these structures. Inserted in this context, it was fo...Dams are critical and essential elements in any infrastructure and, in front of accidents occurred in many countries, it is extremely important to know the risk of these structures. Inserted in this context, it was found in the technical literature, methods and tools capable of measuring the exposure value by means of indicators. In the study, the highlights were 12 methods of qualitative, semiquantitative and quantitative risk analysis, representing an overview of risk analysis methods available in the literature with potential use in dams, that it has been done into electronic spreadsheets. The case study is performed on a sample of concrete dam and earth/rockfill built and operated by Eletrobr^s Furnas Company, supported by documentary research, projects, field inspections and interviews with experts. After applying the methods and the analysis thereof, has been prepared the Eletrobras Fumas dam risk analysis method which is characterized by adapting the criteria analyzed to the reality of the company's dams and it was also performed the portfolio risk analysis of 18 dams. In spite of the variety and subjectivity of qualitative and semiquantitative methods, the results show that they tend to converge on the analysis of dam based on risk. The application methodology demonstrates the feasibility assessment stage, covering the preliminary analysis for portfolio dams, followed by formal and individual risk analyzes for the most critical structures. These results confirm the applicability of risk analysis techniques, contributing to the consolidation of this toot as fundamental in the dam safety.展开更多
Based on microscopic damage theory and the finite element method, and using the Weibull distribution to characterize the random distribution of the mechanical properties of materials, the seismic response of a typical...Based on microscopic damage theory and the finite element method, and using the Weibull distribution to characterize the random distribution of the mechanical properties of materials, the seismic response of a typical Hardfill dam was analyzed through numerical simulation during the earthquakes with intensities of 8 degrees and even greater. The seismic failure modes and failure mechanism of the dam were explored as well. Numerical results show that the Hardfill dam remains at a low stress level and undamaged or slightly damaged during an earthquake with an intensity of 8 degrees. During overload earthquakes, tensile cracks occur at the dam surfaces and extend to inside the dam body, and the upstream dam body experiences more serious damage than the downstream dam body. Therefore, under the seismic conditions, the failure pattern of the Hardfill dam is the tensile fracture of the upstream regions and the dam toe. Compared with traditional gravity dams, Hardfill dams have better seismic performance and ~reater seismic safety.展开更多
The loss of life risk evaluation model for dam break is built in this paper.By using an improved Monte Carlo method,the overtopping probability induced by concurrent flood and wind is calculated,and the Latin Hypercub...The loss of life risk evaluation model for dam break is built in this paper.By using an improved Monte Carlo method,the overtopping probability induced by concurrent flood and wind is calculated,and the Latin Hypercube Sampling is used to generate random numbers.The Graham method is used to calculate the loss of life resulting from dam failure.With Dongwushi reservoir located at Hebei Province taken as an example,the overtopping probability induced by concurrent flood and wind is calculated as 4.77×10-6.Los...展开更多
Assessing subsurface characteristics and imaging geologic features (e.g., faults, cavities, low-velocity lay- ers, etc.) are typical problems in near-surface geophysics. These questions often have adverse geotechni-...Assessing subsurface characteristics and imaging geologic features (e.g., faults, cavities, low-velocity lay- ers, etc.) are typical problems in near-surface geophysics. These questions often have adverse geotechni-cal engineering implications, and can be especially acute when associated with high-hazard structures such as large earthen flood-control dams. Dam-related issues are becoming more frequent in the United States, because a large part of this major infrastructure was designed and constructed in the early- to mid-twentieth century; these dams are thus passing into the latter stages of their design life, where minute flaws that were overlooked or thought to be insignificant in design/construction are now proving problematic. The high-hydraulic heads associated with these structures can quicken degra-dation of weak areas and compromise long-term integrity. Addressing dam-related problems solely with traditional invasive drilling techniques is often inadequate (i.e., lack of lateral resolution) and]or econom- ically exorbitant at this scale. However, strategic geotechnical drilling integrated with the broad utility of near-surface geophysics, particularly the horizontally polarized shear-wave (SH-mode) seismic-reflection technique for imaging the internal structural detail and geological foundation conditions of earthfill embankment dams can cost-effectively improve the overall subsurface definition needed for remedial engineering. Demonstrative evidence for this supposition is provided in the form of SH-wave seismic-reflection imaging of in situ and engineered as-built components of flood-control embankment dams at two example sites in the central United States.展开更多
Starting with the Ertan arch dam (240 m high, 3300 MW) in 2000, China successfully built a total of seven ultra-high arch dams over 200 m tall by the end of 2014. Among these, the ]inping 1 (305 m), Xiaowan (294...Starting with the Ertan arch dam (240 m high, 3300 MW) in 2000, China successfully built a total of seven ultra-high arch dams over 200 m tall by the end of 2014. Among these, the ]inping 1 (305 m), Xiaowan (294.5m), and Xiluodu (285.5 m) arch dams have reached the 300 m height level (i.e., near or over 300 m), making them the tallest arch dams in the world. The design and construction of these 300 m ultra-high arch dams posed significant challenges, due to high water pressures, high seismic de- sign criteria, and complex geological conditions. The engineering team successfully tackled these chal- lenges and made critical breakthroughs, especially in the area of safety control. In this paper, the author summarizes various key technological aspects involved in the design and construction of 300 m ultra- high arch dams, including the strength and stability of foundation rock, excavation of the dam base and surface treatment, dam shape optimization, safety design guidelines, seismic analysis and design, treatment of a complex foundation, concrete temperature control, and crack prevention. The experience gained from these projects should be valuable for future practitioners.展开更多
This paper discusses the methods of establishing risk criteria for dams and reviews the application of dam risk criteria for individuals and societies in different countries or districts. Given the conditions in China...This paper discusses the methods of establishing risk criteria for dams and reviews the application of dam risk criteria for individuals and societies in different countries or districts. Given the conditions in China and considering the public safety and acceptance of dam risk, historical dam break data and current design standards, individual and societal risk criteria for dams are proposed. The tolerable dam risk criteria for individuals should be set to 10-5-10-7 per annum based on project scale, for ex- ample, approximately 1.0xl0 7 per annum, which corresponds to a reliability index of 4.2 based on a 100-year lifespan for a first-class or large project. The societal limit for risk tolerance for dams should be set to approximately 10-3-10-5 per annum, corresponding to the fatality range from 1 to 100 and be horizontally extended to 1000, and F-N curves are proposed. It was also found that the reliability indices of Chinese Standard (GB 50199-2013) and Eurocodel (2002) are different, but they have the same level of safety measured by the annual probability of failure. The research results have significance for establishing dam risk criteria.展开更多
Along with economic,social quick development and urbanization,dams and reservoirs are of strategic importance for flood control,water supply,electricity production,irrigation,etc.,both for developed countries and for ...Along with economic,social quick development and urbanization,dams and reservoirs are of strategic importance for flood control,water supply,electricity production,irrigation,etc.,both for developed countries and for developing countries.Climate change is a new challenging issue to be considered which will speed up the development of hydropower in developing countries.More and more attention will be paid on the long-term better behavior of dams to guarantee the safety of the people involved and the better development of the world.There are about 50000 old dams in the world and a lot of them have been completed and operated for more than 50 years.However,how do we evaluate the dams’safety?How do we make the decision to do rehabilitation work or to rebuild a new dam based on evaluation results?The life span and the real safety status of old dams becomes a challenging task for the dam society,especially for China because it has more than 6000 dams to be evaluated and rehabilitated within the next few years.Based on the investigation of the Fengman gravity dam,which is 91.7 m high,operated since 1943 and suffered uplift pressure,freeze and thaw problems,etc.,discussions on the life span evaluation of old concrete gravity dams have been made.The reasonable coefficient of dam safety has been discussed.The social decision for the final choice after comprehensive studies has been introduced.展开更多
文摘Under-fitting problems usually occur in regression models for dam safety monitoring.To overcome the local convergence of the regression, a genetic algorithm (GA) was proposed using a real parameter coding, a ranking selection operator, an arithmetical crossover operator and a uniform mutation operator, and calculated the least-square error of the observed and computed values as its fitness function. The elitist strategy was used to improve the speed of the convergence. After that, the modified genetic algorithm was applied to reassess the coefficients of the regression model and a genetic regression model was set up. As an example, a slotted gravity dam in the Northeast of China was introduced. The computational results show that the genetic regression model can solve the under-fitting problems perfectly.
基金Project(20100480964) supported by China Postdoctoral Science FoundationProjects(2002AA420090,2008AA092301) supported by the National High Technology Research and Development Program of China
文摘Plenty of dams in China are in danger while there are few effective methods for underwater dam inspections of hidden problems such as conduits,cracks and inanitions.The dam safety inspection remotely operated vehicle(DSIROV) is designed to solve these problems which can be equipped with many advanced sensors such as acoustical,optical and electrical sensors for underwater dam inspection.A least-square parameter estimation method is utilized to estimate the hydrodynamic coefficients of DSIROV,and a four degree-of-freedom(DOF) simulation system is constructed.The architecture of DSIROV's motion control system is introduced,which includes hardware and software structures.The hardware based on PC104 BUS,uses AMD ELAN520 as the controller's embedded CPU and all control modules work in VxWorks real-time operating system.Information flow of the motion system of DSIROV,automatic control of dam scanning and dead-reckoning algorithm for navigation are also discussed.The reliability of DSIROV's control system can be verified and the control system can fulfill the motion control mission because embankment checking can be demonstrated by the lake trials.
基金supported by the National Natural Science Foundation of China (Grant No. 50539010, 50539110, 50579010, 50539030 and 50809025)
文摘To improve the effectiveness of dam safety monitoring database systems, the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mode. The optimal data model was confirmed by identifying data objects, defining relations and reviewing entities. The conversion of relations among entities to external keys and entities and physical attributes to tables and fields was interpreted completely. On this basis, a multi-dimensional database that reflects the management and analysis of a dam safety monitoring system on monitoring data information has been established, for which factual tables and dimensional tables have been designed. Finally, based on service design and user interface design, the dam safety monitoring system has been developed with Delphi as the development tool. This development project shows that the multi-dimensional database can simplify the development process and minimize hidden dangers in the database structure design. It is superior to other dam safety monitoring system development models and can provide a new research direction for system developers.
文摘The Lom Pangar dam, the largest reservoir in Cameroon with a storage capacity of 6 km3 and a 30 MW hydropower plant, primarily regulates the hydrologic regime of the Sanaga River to maintain hydropower efficiency during dry seasons and enhance downstream hydropower plant performance. Understanding and managing sediments are crucial for the sustainability of dams, as indicated by numerous studies. This study assessed the granulometry of the sediments transported across the reservoir. For that purpose, 6 samples of fresh sediments were collected in the lacustrine and transitional sections of the reservoir using the standard method. Particles size was assessed using the laser diffusion technic after a 3 mm sieving. Various granulometric parameters were derived from the literature to analyze and characterize those sediments. Results show that silts are more than 70% of particles size and range between 2.19 - 60.26 µm. Size distribution also shows the same trend with D75 less than 51 µm. This is confirmed by the low values of Inman Skewness SkΦ (−0.168 to 0.303). The Sorting index S0 ranges from 0.31 to 0.53 µm, showing a very well-sorted sediments, aligning with low values of Krumbein index (0.906 - 1.683) that express the low heterometry of the particles. The consequence on the dam will be a quick clogging of the bottom of the reservoir. Their pH varies from 7.0 to 7.5. It also appears that the sandy fraction trend is higher in the right bank of the dam and reaches 22% on the right bank of Pangar River due to crystalline geology. Fraction greater than 3000 µm is negligible. The management of the dam has to keep attention to these results as siltation may close the safety outlet of the dam, damage turbines, and provoke recurrent technical and safety issues. Further, the clogging of the bottom of the reservoir may lead to an ecological problem with the limitation of hyporheic flow. Thus, water exchange with the underground water table and the natural purification of water reduce, while increasing sediments deposits change the biogeochemistry processes.
文摘The 130m high Punt dal Gall dam is located at the Swiss-Italian border in the South-eastern part of Switzerland and was completed in 1969.The dam is founded on highly folded and partially crushed dolomite and limestone formations.A grout curtain with an area of 120,000m^(2) was provided for controlling seepage.For the monitoring of the dam deformations five inverted pendulums were installed in the dam and three in the rock foundation of the right abutment outside of the dam.For a seasonal water level fluctuation in the reservoir of about 60 m the maximum amplitude of the radial displacement is 25 mm,which includes both the effects of the water load and temperature effects.Furthermore a comprehensive geodetic network was established,57 joint meters were installed and cracks in the crest gallery are monitored by crack meters.There are also thermometers,piczometers and rocmeters.Springs at the left and fight banks of the dam are monitored and chemical analyses of the seepage water and springs are performed regularly.The dam is equipped with strong motion instruments and several near-field earthquakes have been recorded in the past.The paper describes the long-term safety monitoring of this 42 years old arch dam.A short description of the Swiss practice in dam safety monitoring and emergency planning is also given.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51079046, 50909041, 50809025, and 50879024)the National Science and Technology Support Plan (Grant Nos. 2008BAB29B03and 2008BAB29B06)+6 种基金the Special Fund of State Key Laboratory of China (Grant Nos. 2009586012, 2009586912, and 2010585212)the Fundamental Research Funds for the Central Universities (Grant Nos. 2009B08514, 2010B20414, 2010B01414, and 2010B14114)the China Hydropower Engineering Consulting Group Co. Science and Technology Support Pro-ject (Grant No. CHC-KJ-2007-02)Jiangsu Province "333 High-Level Personnel Training Project" (Grant No. 2017-B08037)Graduate Innovation Program of Universities in Jiangsu Province (Grant No. CX09B_ 163Z)Dominant Discipline Construction Program Funded Projects of University in Jiangsu ProvineScience Foundation for the Excellent Youth Scholars of Ministry of Education of China (Grant No. 20070294023)
文摘Based on the principal component analysis, principal components that have major influence on data variance are determined by the energy percentage method according to the correlation between monitoring effects. Then principal components are extracted through reconstructing multi effects. Moreover, combining with the optimal estimation theory, the method of singular value diagnosis in dam safety monitoring effect values is proposed. After dam monitoring information matrix is obtained, single effect state estimation matrix and multi effect fusion estimation matrix are constructed to make diagnosis on singular values to reduce false alarm rate. And the diagnosis index is calculated by PCA. These methods have already been applied to an actual project and the result shows the ability of the monitoring effect reflecting dam evolution behavior is improved as dam safety monitoring effect fusion estimation can take accurate identification on singular values and achieve data reduction, filter out noise and lower false alarm rate effectively.
基金National Natural Science Foundation of China Under Grant No.90510017Public Welfare Project in Water Conservancy Under Grant No. 200701004
文摘This paper describes some special features of the Wenchuan earthquake that affected dam safety. Damage and performance of dams, primarily for four dams over 100 m high located in the affected earthquake area, are briefly described. Lessons learned related to dam safety from this devastating earthquake are preliminarily drawn. As the seismic safety of high dams during strong earthquakes has gained more attention around the world, some critical issues related to dam construction in China are considered and extensively discussed. Questions such as "Why is dam construction necessary in earthquake prone countries such as China?", "Can we accurately evaluate the seismic safety of high dams in China?", "Did reservoir impounding of the Zipingpu and Three Gorges Projects trigger the Wenchuan Earthquake in some way?" and "What is the strategic priority of dam safety for large dams in China?" are discussed. Finally, the corresponding tactics with response to the challenge are suggested and recent preliminary progress mainly achieved in IWHR is briefly introduced.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51079046, 50909041, 50809025, 50879024, 51139001)the National Science and Technology Support Plan (Grant Nos. 2008BAB29B03, 2008BAB29B06)+5 种基金the Special Fund of State Key Laboratory of China (Grant Nos. 2009586012, 2009586912, 2010585212)the Fundamental Research Funds for the Central Universities (Grant Nos. 2009B08514, 2010B20414, 2010B01414, 2010B14114)China Hydropower Engineering Consulting Group Co. Science and Technology Support Project (Grant No. CHC-KJ-2007-02)Jiangsu Province "333 High-Level Personnel Training Project" (Grant No. 2017-B08037)the Graduate Innovation Program of Universities in Jiangsu Province (Grant No. CX09B_163Z)the Science Foundation for the Excellent Youth Scholars of Ministry of Education of China (Grant No. 20070294023)
文摘The focus of this paper is the ill-conditioned problems in the dam safety monitoring model. The reasons to give rise to the ill-conditioned problems in statistical models,deterministic models and hybrid models are analyzed in detail,and the criterions for ill-conditioned models are investigated. It is shown that safety monitoring models are not easy to be ill-conditioned if the number of influence factors is less than seven. Moreover,the models have a high accuracy and can meet the engineering requirements. Another frequently encountered problem in establishing a safety monitoring model is the existence of inflection points,which are often present in the mathematical model for the hydraulic components in deterministic models and hybrid models. The conditions for inflection points are studied and their treatments are suggested. Numerical example indicates that the treatments proposed in this paper are effective in removing the ill-conditioned problems.
基金supported by the National Science and Technology Support Program of China (Program for the Eleventh Five-Year Plan, Grant No. 2006BAC14B03 and 2006BAC05B03)the National Natural Science Foundation of China (Grant No. 50679043)
文摘In order to accurately predict and control the aging process of dams, new information should be collected continuously to renew the quantitative evaluation of dam safety levels. Owing to the complex structural characteristics of dams, it is quite difficult to predict the time-varying factors affecting their safety levels. It is not feasible to employ dynamic reliability indices to evaluate the actual safety levels of dams. Based on the relevant regulations for dam safety classification in China, a dynamic probability description of dam safety levels was developed. Using the Bayesian approach and effective information mining, as well as real-time information, this study achieved more rational evaluation and prediction of dam safety levels. With the Bayesian expression of discrete stochastic variables, the a priori probabilities of the dam safety levels determined by experts were combined wfth the likelihood probability of the real-time check information, and the probability information for the evaluation of dam safety levels was renewed. The probability index was then applied to dam rehabilitation decision-making. This method helps reduce the difficulty and uncertainty of the evaluation of dam safety levels and complies with the current safe decision-making regulations for dams in China. It also enhances the application of current risk analysis methods for dam safety levels.
文摘Safe operation and performance of dams is one of the key issues in permafrost regions. At present, the existing dams are 40–45 years old and they are reaching their design life limit. Intensive geocryological processes(thermokarst, thermal erosion, frost heaving, suffosion, concentrated seepage along the voids left by melt ice and others) begin to develop at the early stages of construction. These processes are even more intensive under severe climatic conditions of the permafrost zone due to the large thermal and moisture gradients and the resulting complex thermal stress-strain state in the structures. Determining safety criteria is a critical and difficult task in dam safety management. The existing procedures need to be continuously refined and improved depending on dam importance class. Some researchers recommend introducing process development criteria(stability, destabilization, and extremality) for more objective assessment of dam safety, in addition to the existing two condition criteria. In other words, they call for a multi-factor dam – environment interaction system. A case study of safety declaration for an existing dam is presented.
文摘Dams are critical and essential elements in any infrastructure and, in front of accidents occurred in many countries, it is extremely important to know the risk of these structures. Inserted in this context, it was found in the technical literature, methods and tools capable of measuring the exposure value by means of indicators. In the study, the highlights were 12 methods of qualitative, semiquantitative and quantitative risk analysis, representing an overview of risk analysis methods available in the literature with potential use in dams, that it has been done into electronic spreadsheets. The case study is performed on a sample of concrete dam and earth/rockfill built and operated by Eletrobr^s Furnas Company, supported by documentary research, projects, field inspections and interviews with experts. After applying the methods and the analysis thereof, has been prepared the Eletrobras Fumas dam risk analysis method which is characterized by adapting the criteria analyzed to the reality of the company's dams and it was also performed the portfolio risk analysis of 18 dams. In spite of the variety and subjectivity of qualitative and semiquantitative methods, the results show that they tend to converge on the analysis of dam based on risk. The application methodology demonstrates the feasibility assessment stage, covering the preliminary analysis for portfolio dams, followed by formal and individual risk analyzes for the most critical structures. These results confirm the applicability of risk analysis techniques, contributing to the consolidation of this toot as fundamental in the dam safety.
基金supported by the research program of the National Dam Safety Research Center (Grants No.2011NDS021 and NDSKFJJ1103)the open fund of the State Key Laboratory of Hydraulics and Mountain River Engineering of Sichuan University (Grant No. 0912)the China Postdoctoral Science Foundation (Grant No. 2012M511594)
文摘Based on microscopic damage theory and the finite element method, and using the Weibull distribution to characterize the random distribution of the mechanical properties of materials, the seismic response of a typical Hardfill dam was analyzed through numerical simulation during the earthquakes with intensities of 8 degrees and even greater. The seismic failure modes and failure mechanism of the dam were explored as well. Numerical results show that the Hardfill dam remains at a low stress level and undamaged or slightly damaged during an earthquake with an intensity of 8 degrees. During overload earthquakes, tensile cracks occur at the dam surfaces and extend to inside the dam body, and the upstream dam body experiences more serious damage than the downstream dam body. Therefore, under the seismic conditions, the failure pattern of the Hardfill dam is the tensile fracture of the upstream regions and the dam toe. Compared with traditional gravity dams, Hardfill dams have better seismic performance and ~reater seismic safety.
基金Supported by Tianjin Natural Science Foundation(No.08JCZDJC25400,No.09JCYBJC08700)Major State Basic Research Development Program of China ("973" Program,No.2007CB714101)
文摘The loss of life risk evaluation model for dam break is built in this paper.By using an improved Monte Carlo method,the overtopping probability induced by concurrent flood and wind is calculated,and the Latin Hypercube Sampling is used to generate random numbers.The Graham method is used to calculate the loss of life resulting from dam failure.With Dongwushi reservoir located at Hebei Province taken as an example,the overtopping probability induced by concurrent flood and wind is calculated as 4.77×10-6.Los...
文摘Assessing subsurface characteristics and imaging geologic features (e.g., faults, cavities, low-velocity lay- ers, etc.) are typical problems in near-surface geophysics. These questions often have adverse geotechni-cal engineering implications, and can be especially acute when associated with high-hazard structures such as large earthen flood-control dams. Dam-related issues are becoming more frequent in the United States, because a large part of this major infrastructure was designed and constructed in the early- to mid-twentieth century; these dams are thus passing into the latter stages of their design life, where minute flaws that were overlooked or thought to be insignificant in design/construction are now proving problematic. The high-hydraulic heads associated with these structures can quicken degra-dation of weak areas and compromise long-term integrity. Addressing dam-related problems solely with traditional invasive drilling techniques is often inadequate (i.e., lack of lateral resolution) and]or econom- ically exorbitant at this scale. However, strategic geotechnical drilling integrated with the broad utility of near-surface geophysics, particularly the horizontally polarized shear-wave (SH-mode) seismic-reflection technique for imaging the internal structural detail and geological foundation conditions of earthfill embankment dams can cost-effectively improve the overall subsurface definition needed for remedial engineering. Demonstrative evidence for this supposition is provided in the form of SH-wave seismic-reflection imaging of in situ and engineered as-built components of flood-control embankment dams at two example sites in the central United States.
文摘Starting with the Ertan arch dam (240 m high, 3300 MW) in 2000, China successfully built a total of seven ultra-high arch dams over 200 m tall by the end of 2014. Among these, the ]inping 1 (305 m), Xiaowan (294.5m), and Xiluodu (285.5 m) arch dams have reached the 300 m height level (i.e., near or over 300 m), making them the tallest arch dams in the world. The design and construction of these 300 m ultra-high arch dams posed significant challenges, due to high water pressures, high seismic de- sign criteria, and complex geological conditions. The engineering team successfully tackled these chal- lenges and made critical breakthroughs, especially in the area of safety control. In this paper, the author summarizes various key technological aspects involved in the design and construction of 300 m ultra- high arch dams, including the strength and stability of foundation rock, excavation of the dam base and surface treatment, dam shape optimization, safety design guidelines, seismic analysis and design, treatment of a complex foundation, concrete temperature control, and crack prevention. The experience gained from these projects should be valuable for future practitioners.
基金supported by the National Key Basic Research Program of China(Grant No.2013CB036403)
文摘This paper discusses the methods of establishing risk criteria for dams and reviews the application of dam risk criteria for individuals and societies in different countries or districts. Given the conditions in China and considering the public safety and acceptance of dam risk, historical dam break data and current design standards, individual and societal risk criteria for dams are proposed. The tolerable dam risk criteria for individuals should be set to 10-5-10-7 per annum based on project scale, for ex- ample, approximately 1.0xl0 7 per annum, which corresponds to a reliability index of 4.2 based on a 100-year lifespan for a first-class or large project. The societal limit for risk tolerance for dams should be set to approximately 10-3-10-5 per annum, corresponding to the fatality range from 1 to 100 and be horizontally extended to 1000, and F-N curves are proposed. It was also found that the reliability indices of Chinese Standard (GB 50199-2013) and Eurocodel (2002) are different, but they have the same level of safety measured by the annual probability of failure. The research results have significance for establishing dam risk criteria.
基金This work was supported by the National Natural Science Foundation of China(Grant No.50879095)the National Key Technology R&D Program of China(No.2006BAC14B04).
文摘Along with economic,social quick development and urbanization,dams and reservoirs are of strategic importance for flood control,water supply,electricity production,irrigation,etc.,both for developed countries and for developing countries.Climate change is a new challenging issue to be considered which will speed up the development of hydropower in developing countries.More and more attention will be paid on the long-term better behavior of dams to guarantee the safety of the people involved and the better development of the world.There are about 50000 old dams in the world and a lot of them have been completed and operated for more than 50 years.However,how do we evaluate the dams’safety?How do we make the decision to do rehabilitation work or to rebuild a new dam based on evaluation results?The life span and the real safety status of old dams becomes a challenging task for the dam society,especially for China because it has more than 6000 dams to be evaluated and rehabilitated within the next few years.Based on the investigation of the Fengman gravity dam,which is 91.7 m high,operated since 1943 and suffered uplift pressure,freeze and thaw problems,etc.,discussions on the life span evaluation of old concrete gravity dams have been made.The reasonable coefficient of dam safety has been discussed.The social decision for the final choice after comprehensive studies has been introduced.