Even though a large number of large-scale arch dams with height larger than 200 m have been built in the world, the transient groundwater flow behaviors and the seepage control effects in the dam foundations under dif...Even though a large number of large-scale arch dams with height larger than 200 m have been built in the world, the transient groundwater flow behaviors and the seepage control effects in the dam foundations under difficult geological conditions are rarely reported. This paper presents a case study on the transient groundwater flow behaviors in the rock foundation of Jinping I double-curvature arch dam, the world's highest dam of this type to date that has been completed. Taking into account the geological settings at the site, an inverse modeling technique utilizing the time series measurements of both hydraulic head and discharge was adopted to back-calculate the permeability of the foundation rocks,which effectively improves the uniqueness and reliability of the inverse modeling results. The transient seepage flow in the dam foundation during the reservoir impounding was then modeled with a parabolic variational inequality(PVI) method. The distribution of pore water pressure, the amount of leakage, and the performance of the seepage control system in the dam foundation during the entire impounding process were finally illustrated with the numerical results.展开更多
For an overtopped rock-fill dam, the flow field consists of open flow and seepage flow, which have different properties. The overflow is characterized as variable flow and the seepage flow is not the Darcy flow, but n...For an overtopped rock-fill dam, the flow field consists of open flow and seepage flow, which have different properties. The overflow is characterized as variable flow and the seepage flow is not the Darcy flow, but non-Darcy flow. For the analysis of the flow characters, using the energy theory and the FEM, the author presents a method to calculate the combined flow (i. e. flow over and through a dam ) in this paper. The experimental work shows that, the calculated results agree well with the experimental ones.Therefore, it is not only possible, but also feasible to solve this problem with the presented method.展开更多
基金financially supported through NSERC Discovery Grant(RGPIN/4994-2014)
文摘Even though a large number of large-scale arch dams with height larger than 200 m have been built in the world, the transient groundwater flow behaviors and the seepage control effects in the dam foundations under difficult geological conditions are rarely reported. This paper presents a case study on the transient groundwater flow behaviors in the rock foundation of Jinping I double-curvature arch dam, the world's highest dam of this type to date that has been completed. Taking into account the geological settings at the site, an inverse modeling technique utilizing the time series measurements of both hydraulic head and discharge was adopted to back-calculate the permeability of the foundation rocks,which effectively improves the uniqueness and reliability of the inverse modeling results. The transient seepage flow in the dam foundation during the reservoir impounding was then modeled with a parabolic variational inequality(PVI) method. The distribution of pore water pressure, the amount of leakage, and the performance of the seepage control system in the dam foundation during the entire impounding process were finally illustrated with the numerical results.
文摘For an overtopped rock-fill dam, the flow field consists of open flow and seepage flow, which have different properties. The overflow is characterized as variable flow and the seepage flow is not the Darcy flow, but non-Darcy flow. For the analysis of the flow characters, using the energy theory and the FEM, the author presents a method to calculate the combined flow (i. e. flow over and through a dam ) in this paper. The experimental work shows that, the calculated results agree well with the experimental ones.Therefore, it is not only possible, but also feasible to solve this problem with the presented method.