期刊文献+
共找到883篇文章
< 1 2 45 >
每页显示 20 50 100
Stress-corrosion coupled damage localization induced by secondary phases in bio-degradable Mg alloys:phase-field modeling
1
作者 Chao Xie Shijie Bai +2 位作者 Xiao Liu Minghua Zhang Jianke Du 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期361-383,共23页
In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the... In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the deformation,phase-field damage,mass transfer,and electrostatic field are derived from the entropy inequality.The SCCD localization induced by secondary phases in Mg is numerically simulated using the implicit iterative algorithm of the self-defined finite elements.The quantitative evaluation of the SCCD of a C-ring is in good agreement with the experimental results.To capture the damage localization,a micro-galvanic corrosion domain is defined,and the buffering effect on charge migration is explored.Three cases are investigated to reveal the effect of localization on corrosion acceleration and provide guidance for the design for resistance to SCCD at the crystal scale. 展开更多
关键词 Phase field Mg alloys Stress-corrosion coupled damage damage localization Finite element method
下载PDF
THE VIRTUAL WORK PRINCIPLE AND LINEAR COMPLEMEN-TARY METHOD FOR COUPLING ANALYSIS OF ELASTO-PLASTIC DAMAGE STRUCTURE
2
作者 马景槐 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第2期185-192,共8页
The virtual displacement principle of elasto-plastic damage mechanics is presented. A linear complementary method for elasto-plastic damage problem is proposed by using FEM technique. This method is applicable to solv... The virtual displacement principle of elasto-plastic damage mechanics is presented. A linear complementary method for elasto-plastic damage problem is proposed by using FEM technique. This method is applicable to solving the damage structure analysis of hardened and softened nonlinear material. 展开更多
关键词 elasto-plastic damage mechanics virtual work principle FEM technique linear complementary method
下载PDF
A thermo-mechanical damage constitutive model for deep rock considering brittleness-ductility transition characteristics
3
作者 FENG Chen-chen WANG Zhi-liang +2 位作者 WANG Jian-guo LU Zhi-tang LI Song-yu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2379-2392,共14页
This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determi... This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determined through the extremum features of stress−strain curve.Subsequently,the model predictions were compared with experimental results of marble samples.It is found that when the treatment temperature rises,the coupling damage evolution curve shows an S-shape and the slope of ascending branch gradually decreases during the coupling damage evolution process.At a constant temperature,confining pressure can suppress the expansion of micro-fractures.As the confining pressure increases the rock exhibits ductility characteristics,and the shape of coupling damage curve changes from an S-shape into a quasi-parabolic shape.This model can well characterize the influence of high temperature on the mechanical properties of deep rock and its brittleness-ductility transition characteristics under confining pressure.Also,it is suitable for sandstone and granite,especially in predicting the pre-peak stage and peak stress of stress−strain curve under the coupling action of confining pressure and high temperature.The relevant results can provide a reference for further research on the constitutive relationship of rock-like materials and their engineering applications. 展开更多
关键词 deep rock crack initiation threshold thermo-mechanical coupling statistical damage model distortion energy theory
下载PDF
A 3D microseismic data-driven damage model for jointed rock mass under hydro-mechanical coupling conditions and its application 被引量:2
4
作者 Jingren Zhou Jinfu Lou +3 位作者 Jiong Wei Feng Dai Jiankang Chen Minsi Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期911-925,共15页
Rock mass is a fractured porous medium usually subjected to complex geostress and fluid pressure simultaneously.Moreover,the properties of rock mass change in time and space due to mining-induced fractures.Therefore,i... Rock mass is a fractured porous medium usually subjected to complex geostress and fluid pressure simultaneously.Moreover,the properties of rock mass change in time and space due to mining-induced fractures.Therefore,it is always challenging to accurately measure rock mass properties.In this study,a three-dimensional(3D)microseismic(MS)data-driven damage model for jointed rock mass under hydro-mechanical coupling conditions is proposed.It is a 3D finite element model that takes seepage,damage and stress field effects into account jointly.Multiple factors(i.e.joints,water and microseismicity)are used to optimize the rock mass mechanical parameters at different scales.The model is applied in Shirengou iron mine to study the damage evolution of rock mass and assess the crown pillar stability during the transition from open-pit to underground mining.It is found that the damage pattern is mostly controlled by the structure,water and rock mass parameters.The damage pattern is evidently different from the two-dimensional result and is more consistent with the field observations.This difference is caused by the MS-derived damage acting on the rock mass.MS data are responsible for gradually correcting the damage zone,changing the direction in which it expands,and promoting it to evolve close to reality.For the crown pillar,the proposed model yields a more trustworthy safety factor.In order to guarantee the stability of the pillar,it is suggested to take waterproof and reinforcement measures in areas with a high degree of damage. 展开更多
关键词 Microseismic monitoring Numerical simulation Rock damage Jointed rock mass Hydro-mechanical coupling
下载PDF
Cyclic constitutive equations of rock with coupled damage induced by compaction and cracking 被引量:6
5
作者 Chonghong Ren Jin Yu +2 位作者 Xueying Liu Zhuqing Zhang Yanyan Cai 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第5期1153-1165,共13页
In this paper,the cyclic constitutive equations were proposed to describe the constitutive behavior of cyclic loading and unloading.Firstly,a coupled damage variable was derived,which contains two parts,i.e.,the compa... In this paper,the cyclic constitutive equations were proposed to describe the constitutive behavior of cyclic loading and unloading.Firstly,a coupled damage variable was derived,which contains two parts,i.e.,the compaction-induced damage and the cracking-induced damage.The compaction-induced damage variable was derived from a nonlinear stress–strain relation of the initial compaction stage,and the cracking-induced damage variable was established based on the statistical damage theory.Secondly,based on the total damage variable,a damage constitutive equation was proposed to describe the constitutive relation of rock under the monotonic uniaxial compression conditions,whereafter,the application of this model is extended to cyclic loading and unloading conditions.To validate the proposed monotonic and cyclic constitutive equations,a series of mechanical tests for marble specimens were carried out,which contained the monotonic uniaxial compression(MUC)experiment,cyclic uniaxial compression experiments under the variable amplitude(CUC-VA)and constant amplitude(CUC-CA)conditions.The results show that the proposed total damage variable comprehensively reflects the damage evolution characteristic,i.e.,the damage variable firstly decreases,then increases no matter under the conditions of MUC,CUC-VA or CUC-CA.Then a reasonable consistency is observed between the experimental and theoretical curves.The proposed cyclic constitutive equations can simulate the whole cyclic loading and unloading behaviors,such as the initial compaction,the strain hardening and the strain softening.Furthermore,the shapes of the theoretical curves are controlled by the modified coefficient,compaction sensitivity coefficient and two Weibull distributed parameters. 展开更多
关键词 Cyclic constitutive equations ROCK coupled damage COMPACTION CRACKING
下载PDF
CONSTITUTIVE THEORY OF PLASTICITY COUPLED WITH ORTHOTROPIC DAMAGE FOR GEOMATERIALS 被引量:1
6
作者 沈新普 泽农·慕容子 徐秉业 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第9期1028-1034,共7页
Constitutive theory of plasticity coupled with orthotropic damage for geomaterials was established in the framework of irreversible thermodynamics. Prime results include I evolution laws are presented for coupled evol... Constitutive theory of plasticity coupled with orthotropic damage for geomaterials was established in the framework of irreversible thermodynamics. Prime results include I evolution laws are presented for coupled evolution of plasticity and orthotropic damage 2) the orthotropic damage tensor is introduced into the Mohr-Coulomb criterion through homogenization. Both the degradation of shear strength and degradation of friction angle caused by damage are included in this model. The dilatancy is calculated with the so-called damage strain. 展开更多
关键词 damage PLASTICITY coupling DILATANCY geomaterial
下载PDF
An elasto-plastic and viscoplastic damage constitutive model for dilatancy and fracturing behavior of soft rock squeezing deformation 被引量:1
7
作者 HUANG Xing LIU Quan-sheng +3 位作者 BO Yin LIU Bin DING Zi-wei ZHANG Quan-tai 《Journal of Mountain Science》 SCIE CSCD 2022年第3期826-848,共23页
Soft rock squeezing deformation mainly consists of pre-peak damage-dilatancy and post-peak fracture-bulking at the excavation unloading instant,and creep-dilatancy caused by time-dependent damage and fracturing.Based ... Soft rock squeezing deformation mainly consists of pre-peak damage-dilatancy and post-peak fracture-bulking at the excavation unloading instant,and creep-dilatancy caused by time-dependent damage and fracturing.Based on the classic elastoplastic and Perzyna over-stress viscoplastic theories,as well as triaxial unloading confining pressure test and triaxial unloading creep test results,an elastoplastic and viscoplastic damage constitutive model is established for the short-and long-term dilatancy and fracturing behavior of soft rock squeezing deformation.Firstly,the criteria for each deformation and failure stage are expressed as a linear function of confining pressure.Secondly,the total damage evolution equation considering time-dependent damage is proposed,including the initial damage produced at the excavation instant,in which the damage variable increases exponentially with the lateral strain,and creep damage.Thirdly,a transient five-stages elasto-plastic constitutive equation for the short-term deformation after excavation that comprised of elasticity,pre-peak damage-dilatancy,post-peak brittle-drop,linear strain-softening,and residual perfectly-plastic regimes is developed based on incremental elasto-plastic theory and the nonassociated flow rule.Fourthly,regarding the timedependent properties of soft rock,based on the Perzyna viscoplastic over-stress theory,a viscoplastic damage model is set up to capture creep damage and dilatancy behavior.Viscoplastic strain is produced when the stress exceeds the initial static yield surface fs;the distance between the static yield surface fs and the dynamic yield surface fd determines the viscoplastic strain rate.Finally,the established constitutive model is numerically implemented and field applied to the-848 m belt conveyer haulage roadway of Huainan Panyidong Coal Mine.Laboratory test results and in-situ monitoring results validate the rationality of the established constitutive model.The presented model takes both the transient and time-dependent damage and fracturing into consideration. 展开更多
关键词 Soft rock Squeezing deformation damage DILATANCY FRACTURING elasto-plastic and viscoplastic damage constitutive model
下载PDF
Calibration of coupled hydro-mechanical properties of grain-based model for simulating fracture process and associated pore pressure evolution in excavation damage zone around deep tunnels 被引量:2
8
作者 Kiarash Farahmand Mark S.Diederichs 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第1期60-83,共24页
The objective of this paper is to develop a methodology for calibration of a discrete element grain-based model(GBM)to replicate the hydro-mechanical properties of a brittle rock measured in the laboratory,and to appl... The objective of this paper is to develop a methodology for calibration of a discrete element grain-based model(GBM)to replicate the hydro-mechanical properties of a brittle rock measured in the laboratory,and to apply the calibrated model to simulating the formation of excavation damage zone(EDZ)around underground excavations.Firstly,a new cohesive crack model is implemented into the universal distinct element code(UDEC)to control the fracturing behaviour of materials under various loading modes.Next,a methodology for calibration of the components of the UDEC-Voronoi model is discussed.The role of connectivity of induced microcracks on increasing the permeability of laboratory-scale samples is investigated.The calibrated samples are used to investigate the influence of pore fluid pressure on weakening the drained strength of the laboratory-scale rock.The validity of the Terzaghi’s effective stress law for the drained peak strength of low-porosity rock is tested by performing a series of biaxial compression test simulations.Finally,the evolution of damage and pore pressure around two unsupported circular tunnels in crystalline granitic rock is studied. 展开更多
关键词 coupled hydro-mechanical properties Excavation damage zone(EDZ) Grain-based model(GBM)calibration Stress-fracturing of rock Cohesive crack model Stress-dependent permeability
下载PDF
Elasto-plastic postbuckling of damaged orthotropic plates
9
作者 田燕萍 傅衣铭 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第7期841-853,共13页
Based on the elasto-plastic mechanics and continuum damage theory, a yield criterion related to spherical tensor of stress is proposed to describe the mixed hardening of damaged orthotropic materials. Its dimensionles... Based on the elasto-plastic mechanics and continuum damage theory, a yield criterion related to spherical tensor of stress is proposed to describe the mixed hardening of damaged orthotropic materials. Its dimensionless form is isomorphic with the Mises criterion for isotropic materials. Furthermore, the incremental elasto-plastic damage constitutive equations and damage evolution equations are established. Based on the classical nonlinear plate theory, the incremental nonlinear equilibrium equations of orthotropic thin plates considering damage effect are obtained, and solved with the finite difference and iteration methods. In the numerical examples, the effects of damage evolution and initial deflection on the elasto-plastic postbuckling of orthotropic plates are discussed in detail. 展开更多
关键词 orthotropic plates elasto-plastic damage elasto-plastic postbuckling mixed hardening incremental theory
下载PDF
Seepage-Stress-Damage Coupled Model of Coal Under Geo-Stress Influence
10
作者 Yi Xue Faning Dang +4 位作者 Rongjian Li Liuming Fan Qin Hao Lin Mu Yuanyuan Xia 《Computers, Materials & Continua》 SCIE EI 2018年第1期43-59,共17页
In the seepage-stress-damage coupled process,the mechanical properties and seepage characteristics of coal are distinctly different between pre-peak stage and post-peak stage.This difference is mainly caused by damage... In the seepage-stress-damage coupled process,the mechanical properties and seepage characteristics of coal are distinctly different between pre-peak stage and post-peak stage.This difference is mainly caused by damage of coal.Therefore,in the process of seepage and stress analysis of coal under the influence of excavation or mining,we need to consider the weakening of mechanical properties and the development of fractures of damaged coal.Based on this understanding,this paper analyzes the influence of damage on mechanics and seepage behavior of coal.A coupled model is established to analyze the seepage-stress-damage coupled process of coal.This model implemented into COMSOL and MATLAB software to realize the numerical solving.Two examples are adopted to verify the correctness of the model and some useful conclusions are obtained.The numerical model establishes the relationship between microcosmic damage evolution and macroscopical fracture and simulates the whole process of coal from microcosmic damage to macroscopical fracture,and the dynamic simulation of fluid flow in this process.It provides a numerical tool for further research on the seepage-stress-damage analysis. 展开更多
关键词 PERMEABILITY POROSITY gas pressure damage coupled model
下载PDF
Isotropic Elastoplasticity Fully Coupled with Non-Local Damage
11
作者 M. Almansba K. Saanouni N. E. Hannachi 《Engineering(科研)》 2010年第6期420-431,共12页
This paper presents a simple damage-gradient based elastoplastic model with non linear isotropic hardening in order to regularize the associated initial and boundary value problem (IBVP). Using the total energy equiva... This paper presents a simple damage-gradient based elastoplastic model with non linear isotropic hardening in order to regularize the associated initial and boundary value problem (IBVP). Using the total energy equivalence hypothesis, fully coupled constitutive equations are used to describe the non local damage induced softening leading to a mesh independent solution. An additional partial differential equation governing the evolution of the non local isotropic damage is added to the classical equilibrium equations and associated weak forms derived. This leads to discretized IBVP governed by two algebric systems. The first one, associated with equilibrium equations, is highly non linear and can be solved by an iterative Newton Raphson method. The second one, related to the non local damage, is a linear algebric system and can be solved directly to compute the non local damage variable at each load increment. Two fields, linear interpolation triangular element with additional degree of freedom is terms of the non local damage variable is constructed. The non local damage variable is then transferred from mesh nodes to the quadrature (or Gauss) points to affect strongly the elastoplastic behavior. Two simple 2D examples are worked out in order to investigate the ability of proposed approach to deliver a mesh independent solution in the softening stage. 展开更多
关键词 ELASTOPLASTIC damage BEHAVIOUR coupling ISOTROPIC HARDENING damage GRADIENT Finis
下载PDF
Progressive Analysis of Bearing Failure in Pin-Loaded Composite Laminates Using an Elasto-Plastic Damage Model
12
作者 Kang Xue 《Materials Sciences and Applications》 2018年第7期576-595,共20页
Bearing failure of composite laminate is very complicated due to the complexity of different failure mechanisms and their interactions. In this paper, an elasto-plastic damage model is built up to describe the process... Bearing failure of composite laminate is very complicated due to the complexity of different failure mechanisms and their interactions. In this paper, an elasto-plastic damage model is built up to describe the process of failure in composite laminates subjected to bearing load. Non-linear behavior of composite before failure is taken into consideration by using a modified Sun-Chen one parameter plasticity model. LaRC05 failure criteria are employed to predict the initiation of failure and the evolution of failure is described by a CDM based stiffness degradation model. Both theory and some application issues like parameter determination are discussed according to phenomenon of experiments. The model is firstly validated by several experiment results of unidirectional laminate and then applicated into the progressive analysis of bearing failure in pin-loaded multidirectional laminates, both intralaminar and interlaminar damage are taken into consideration. The result of finite element analysis is compared with experiment results;it shows good agreements in both mechanical response and progress of failure, so the model can be evaluated to be effective and practical in bearing failure analysis of composite laminates. 展开更多
关键词 elasto-plastic damage Composite LAMINATES BEARING FAILURE PROGRESSIVE ANALYSIS
下载PDF
A SELF-CONSISTENT ANALYSIS FOR COUPLED ELASTOPLASTIC DAMAGE PROBLEMS
13
作者 黄模佳 扶名福 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第12期0-0,0-0+0-0+0-0+0-0,共10页
关键词 A SELF-CONSISTENT ANALYSIS FOR coupled ELASTOPLASTIC damage PROBLEMS
下载PDF
ELASTO-PLASTIC COUPLED ANALYSIS OF BURIED STRUCTURE AND SOIL MEDIUM BY PERTURBATIONAL SEMI-ANALYTIC METHOD
14
作者 吕安军 曹安远 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第4期361-366,共6页
In this paper, an effective numerical method for physically nonlinear interaction analysis is studied, in which the elasto-plastic problem of coupled analysis between the structure and medium may be transformed into s... In this paper, an effective numerical method for physically nonlinear interaction analysis is studied, in which the elasto-plastic problem of coupled analysis between the structure and medium may be transformed into several linear problems by means of the perturbation technique, then, the finite strip method and finite layer method are used to analyze the underground structure and rock medium, respectively, for their corresponding linear problems, so the purpose of simplifying the calculation can be achieved. This kind of method has made use of the twice semi-analytical technique: the perturbation and semi-analytic solution function to simplify 3-D nonlinear coupled problem into 1-D linear numerical one. In addition, this method is a new advance of semi-analytical method in the application to nonlinear problems by means of combinating with the analytical perturbation method, and it is also a branch of the perturbational numerical method developed in last years. 展开更多
关键词 PERTURBATION semi-analytic method elasto-plasticITY couplING
全文增补中
Elimination mechanism of coal and gas outburst based on geo‑dynamic system with stress–damage–seepage interactions 被引量:1
15
作者 Lingjin Xu Chaojun Fan +4 位作者 Mingkun Luo Sheng Li Jun Han Xiang Fu Bin Xiao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期47-61,共15页
Coal and gas outburst is a complex dynamic disaster during coal underground mining.Revealing the disaster mechanism is of great signifcance for accurate prediction and prevention of coal and gas outburst.The geo-dynam... Coal and gas outburst is a complex dynamic disaster during coal underground mining.Revealing the disaster mechanism is of great signifcance for accurate prediction and prevention of coal and gas outburst.The geo-dynamic system of coal and gas outburst is proposed.The framework of geo-dynamic system is composed of gassy coal mass,geological dynamic environment and mining disturbance.Equations of stress–damage–seepage interaction for gassy coal mass is constructed to resolve the outburst elimination process by gas extraction with boreholes through layer in foor roadway.The results show the occurrence of outburst is divided into the evolution process of gestation,formation,development and termination of geo-dynamic system.The scale range of outburst occurrence is determined,which provides a spatial basis for the prevention and control of outburst.The formation criterion and instability criterion of coal and gas outburst are established.The formation criterion F1 is defned as the scale of the geo-dynamic system,and the instability criterion F2 is defned as the scale of the outburst geo-body.According to the geo-dynamic system,the elimination mechanism of coal and gas outburst—‘unloading+depressurization’is established,and the gas extraction by boreholes through layer in foor roadway for outburst elimination is given.For the research case,when the gas extraction is 120 days,the gas pressure of the coal seam is reduced to below 0.4 MPa,and the outburst danger is eliminated efectively. 展开更多
关键词 Coal and gas outburst Geo-dynamic system Stress–damage–seepage coupling Elimination mechanism Instability criterion Gas extraction
下载PDF
Fluid solid coupling model based on endochronic damage for roller compacted concrete dam 被引量:4
16
作者 顾冲时 魏博文 +1 位作者 徐镇凯 刘大文 《Journal of Central South University》 SCIE EI CAS 2013年第11期3247-3255,共9页
According to the characteristics of thin-layer rolling and pouting construction technology and the complicated mechanical behavior of the roller compacted concrete dam (RCCD) construction interface, a constitutive m... According to the characteristics of thin-layer rolling and pouting construction technology and the complicated mechanical behavior of the roller compacted concrete dam (RCCD) construction interface, a constitutive model of endochronic damage was established based on the endochronic theory and damage mechanics. The proposed model abandons the traditional concept of elastic-plastic yield surface and can better reflect the real behavior of rolled control concrete. Basic equations were proposed for the fluid-solid coupling analysis, and the relationships among the corresponding key physical parameters were also put forward. One three-dimensional finite element method (FEM) program was obtained by studying the FEM type of the seepage-stress coupling intersection of the RCCD. The method was applied to an actual project, and the results show that the fluid-solid interaction influences dam deformation and dam abutment stability, which is in accordance with practice. Therefore, this model provides a new method for revealing the mechanical behavior of RCCD under the coupling field. 展开更多
关键词 roller compacted concrete dam endochronic damage fluid-solid coupling analytical model
下载PDF
Measurement of length-scale and solution of cantilever beam in couple stress elasto-plasticity 被引量:2
17
作者 Bin Ji Wanji Chen Jie Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第3期381-387,共7页
Owing to the absence of proper analytical solution of cantilever beams for couple stress/strain gradient elasto-plastic theory, experimental studies of the cantilever beam in the micro-scale are not suitable for the d... Owing to the absence of proper analytical solution of cantilever beams for couple stress/strain gradient elasto-plastic theory, experimental studies of the cantilever beam in the micro-scale are not suitable for the determination of material length-scale. Based on the couple stress elasto-plasticity, an analytical solution of thin cantilever beams is firstly presented, and the solution can be regarded as an extension of the elastic and rigid-plastic solutions of pure bending beam. A comparison with numerical results shows that the current analytical solution is reliable for the case of σ0 〈〈 H 〈〈 E, where σ0 is the initial yield strength, H is the hardening modulus and E is the elastic modulus. Fortunately, the above mentioned condition can be satisfied for many metal materials, and thus the solution can be used to determine the material length-scale of micro-structures in conjunction with the experiment of cantilever beams in the micro-scale. 展开更多
关键词 Material length-scale couple stress elasto-plasticity Analytical solution Cantilever beam
下载PDF
Interface bond degradation and damage characteristics of full-length grouted rock bolt in tunnels with high temperature
18
作者 Yunpeng Hu Mingming Zheng +5 位作者 Wenkai Feng Jianjun Tong Yicheng Wang Qiling Wang Kan Liu Longzhen Ye 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2639-2657,共19页
Full-length grouted bolts play a crucial role in geotechnical engineering thanks to their excellent stability.However,few studies have been concerned with the degrading performance of grouted rock bolts caused by exte... Full-length grouted bolts play a crucial role in geotechnical engineering thanks to their excellent stability.However,few studies have been concerned with the degrading performance of grouted rock bolts caused by extensive and continuous heat conduction from surrounding rocks in high-geothermal tunnels buried more than 100 m(temperature from 28C to 100C).To investigate the damage mechanism,we examined the time-varying behaviors of grouted rock bolts in both constant and variable temperature curing environments and their damage due to the coupling effects of high temperature and humidity through mechanical and micro-feature tests,including uniaxial compression test,pull-out test,computed tomography(CT)scans,X-ray diffraction(XRD)test,thermogravimetric analysis(TGA),etc.,and further analyzed the relationship between grout properties and anchorage capability.In order to facilitate a rapid assessment and control of the anchorage performance of anchors in different conditions,results of the interface bond degradation tests were correlated to environment parameters based on the damage model of interfacial bond stress proposed.Accordingly,a thermal hazard classification criterion for anchorage design in high-geothermal tunnels was suggested.Based on the reported results,although high temperature accelerated the early-stage hydration reaction of grouting materials,it affected the distribution and quantity of hydration products by inhibiting hydration degree,thus causing mechanical damage to the anchorage system.There was a significant positive correlation between the strength of the grouting material and the anchoring force.Influenced by the changes in grout properties,three failure patterns of rock bolts typically existed.Applying a hot-wet curing regime results in less reduction in anchorage force compared to the hot-dry curing conditions.The findings of this study would contribute to the design and investigations of grouted rock bolts in high-geothermal tunnels. 展开更多
关键词 High-geothermal tunnels Anchoring structure coupling effect of temperature and humidity Bond degradation Interfacial damage mechanism
下载PDF
Thermal-hydro-mechanical coupling damage model of brittle rock 被引量:1
19
作者 李鹏 饶秋华 +2 位作者 李卓 马雯波 马彬 《Journal of Central South University》 SCIE EI CAS 2014年第3期1136-1141,共6页
Based on fluid mechanics, thermodynamics and damage mechanics, thermal-hydro-mechanical (THM) coupling damage model of brittle rock is established by analyzing THM coupling mechanism, where THM coupling damage varia... Based on fluid mechanics, thermodynamics and damage mechanics, thermal-hydro-mechanical (THM) coupling damage model of brittle rock is established by analyzing THM coupling mechanism, where THM coupling damage variable DTHM is dominated by TH coupling damage variable DTH, TM coupling damage variable DTM and HM coupling damage variable DHM, and DTH is firstly expressed in term of dimensionless total thermal conductivity of the water Nu. Permeability test, uni-axial compression test and THM coupling test are conducted to measure the permeability, elastic modulus and THM coupling stress-strain curves of brittle rock. The tested values of THM coupling elastic modulus E'HM are in good agreement with the predicted values of THM coupling elastic modulus ETHM, which can verify the newly established THM coupling damage model. 展开更多
关键词 damage model THM coupling mechanism permeability test THM coupling test brittle rock
下载PDF
Experimental study of structural damage identification based on WPT and coupling NN 被引量:1
20
作者 郭健 陈勇 孙炳楠 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第7期663-669,共7页
Too many sensors and data information in structural health monitoring system raise the problem of how to realize multi-sensor information fusion. An experiment on a three-story frame structure was conducted to obtain ... Too many sensors and data information in structural health monitoring system raise the problem of how to realize multi-sensor information fusion. An experiment on a three-story frame structure was conducted to obtain vibration test data in 36damage cases. A coupling neural network (NN) based on multi-sensor information fusion is proposed to achieve identification of damage occurrence, damage localization and damage quantification, respectively. First, wavelet packet transform (WPT) is used to extract features of vibration test data from structure with different damage extent. Then, data fusion is conducted by assembling feature vectors of different type sensors. Finally, three sets of coupling NN are constructed to implement decision fusion and damage identification. The results of experimental study proved the validity and feasibility of the proposed methodology. 展开更多
关键词 damage identification Experimental study Wavelet packet transform (WPT) coupling neural network (NN)
下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部