Stroke is a significant leading cause of death and disability in the United States(Tsao et al.,2022).Approximately 87% of strokes fall into the ischemic category,mainly caused by arterial blockage(Jayaraj et al.,2019)...Stroke is a significant leading cause of death and disability in the United States(Tsao et al.,2022).Approximately 87% of strokes fall into the ischemic category,mainly caused by arterial blockage(Jayaraj et al.,2019).Although the only FDA-approved effective medication is tissue plasminogen activator(tPA),it should be administrated within 4.5 hours of ischemic stroke.Furthermore,tPA has been an integral part of managing acute ischemic stro ke.展开更多
Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present u...Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage.展开更多
Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Ta...Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Taking two diversion tunnels of Jinping II hydropower station for example,the relationship between rockburst pit depth and excavation damage effect is first surveyed.The results indicate that the rockburst pit depth in tunnels with severe damage to rock masses is relatively large.Subsequently,the excavation-induced damage effect is characterized by disturbance factor D based on the Hoek-Brown criterion and wave velocity method.It is found that the EDZ could be further divided into a high-damage zone(HDZ)with D=1 and weak-damage zone(WDZ),and D decays from one to zero linearly.For this,a quantitative evaluation method for potential rockburst pit depth is established by presenting a three-element rockburst criterion considering rock strength,geostress and disturbance factor.The evaluation results obtained by this method match well with actual observations.In addition,the weakening of rock mass strength promotes the formation and expansion of potential rockburst pits.The potential rockburst pit depth is positively correlated with HDZ and WDZ depths,and the HDZ depth has a significant contribution to the potential rockburst pit depth.展开更多
A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was s...A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.展开更多
We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensiti...We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels.展开更多
Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB ...Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB structures,a series of triaxial stepwise-increasing-amplitude cyclic loading experiments was conducted with cylindrical RB specimens(rock on outside,backfill on inside)with different volume fractions of rock(VF=0.48,0.61,0.73,and 0.84),confining pressures(0,6,9,and 12 MPa),and cyclic loading rates(200,300,400,and 500 N/s).The damage evolution and meso-crack formation during the cyclic tests were analyzed with results from stress-strain hysteresis loops,acoustic emission events,and post-failure X-ray 3D fracture morphology.The results showed significant differences between cyclic and monotonic loadings of RB specimens,particularly with regard to the generation of shear microcracks,the development of stress memory and strain hardening,and the contact forces and associated friction that develops along the rock-backfill interface.One important finding is that as a function of the number of cycles,the elastic strain increases linearly and the dissipated energy increases exponentially.Also,compared with monotonic loading,the cyclic strain hardening characteristics are more sensitive to rising confining pressures during the initial compaction stage.Another finding is that compared with monotonic loading,more shear microcracks are generated during every reloading stage,but these microcracks tend to be dispersed and lessen the likelihood of large shear fracture formation.The transition from elastic to plastic behavior varies depending on the parameters of each test(confinement,volume fraction,and cyclic rate),and an interesting finding was that the transformation to plastic behavior is significantly lower under the conditions of 0.73 rock volume fraction,400 N/s cyclic loading rate,and 9 MPa confinement.All the findings have important practical implications on the ability of backfill to support underground excavations.展开更多
To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main compon...To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.展开更多
Four key stress thresholds exist in the compression process of rocks,i.e.,crack closure stress(σ_(cc)),crack initiation stress(σ_(ci)),crack damage stress(σ_(cd))and compressive strength(σ_(c)).The quantitative id...Four key stress thresholds exist in the compression process of rocks,i.e.,crack closure stress(σ_(cc)),crack initiation stress(σ_(ci)),crack damage stress(σ_(cd))and compressive strength(σ_(c)).The quantitative identifications of the first three stress thresholds are of great significance for characterizing the microcrack growth and damage evolution of rocks under compression.In this paper,a new method based on damage constitutive model is proposed to quantitatively measure the stress thresholds of rocks.Firstly,two different damage constitutive models were constructed based on acoustic emission(AE)counts and Weibull distribution function considering the compaction stages of the rock and the bearing capacity of the damage element.Then,the accumulative AE counts method(ACLM),AE count rate method(CRM)and constitutive model method(CMM)were introduced to determine the stress thresholds of rocks.Finally,the stress thresholds of 9 different rocks were identified by ACLM,CRM,and CMM.The results show that the theoretical stress−strain curves obtained from the two damage constitutive models are in good agreement with that of the experimental data,and the differences between the two damage constitutive models mainly come from the evolutionary differences of the damage variables.The results of the stress thresholds identified by the CMM are in good agreement with those identified by the AE methods,i.e.,ACLM and CRM.Therefore,the proposed CMM can be used to determine the stress thresholds of rocks.展开更多
Aiming at the requirement of damage testing and evaluation of equivalent target plate based on the explosion of intelligent ammunition, this paper proposes a novel method for damage testing and evaluation method of ci...Aiming at the requirement of damage testing and evaluation of equivalent target plate based on the explosion of intelligent ammunition, this paper proposes a novel method for damage testing and evaluation method of circumferential equivalent target plate. Leveraging the dispersion characteristics parameters of fragment, we establish a calculation model of the fragment power situation and the damage calculation model under the condition of fragment ultimate penetration equivalent target plate. The damage model of equivalent target plate involves the fragment dispersion density, the local perforation damage criterion, the tearing damage model, and the damage probability. We use the camera to obtain the image of the equivalent target plate with fragment perforation, and research the algorithm of fragment distribution position recognition and fragment perforation area calculation method on the equivalent target plate by image processing technology. Based on the obtained parameters of the breakdown position and perforation area of fragments on equivalent target plate, we apply to damage calculation model of equivalent target plate, and calculate the damage probability of each equivalent target plate, and use the combined probabilistic damage calculation method to obtain the damage evaluation results of the circumferential equivalent target plate in an intelligent ammunition explosion experiment. Through an experimental testing, we verify the feasibility and rationality of the proposed damage evaluation method by comparison, the calculation results can reflect the actual damage effect of the equivalent target plate.展开更多
In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the...In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the deformation,phase-field damage,mass transfer,and electrostatic field are derived from the entropy inequality.The SCCD localization induced by secondary phases in Mg is numerically simulated using the implicit iterative algorithm of the self-defined finite elements.The quantitative evaluation of the SCCD of a C-ring is in good agreement with the experimental results.To capture the damage localization,a micro-galvanic corrosion domain is defined,and the buffering effect on charge migration is explored.Three cases are investigated to reveal the effect of localization on corrosion acceleration and provide guidance for the design for resistance to SCCD at the crystal scale.展开更多
Damage to parcels reduces customer satisfactionwith delivery services and increases return-logistics costs.This can be prevented by detecting and addressing the damage before the parcels reach the customer.Consequentl...Damage to parcels reduces customer satisfactionwith delivery services and increases return-logistics costs.This can be prevented by detecting and addressing the damage before the parcels reach the customer.Consequently,various studies have been conducted on deep learning techniques related to the detection of parcel damage.This study proposes a deep learning-based damage detectionmethod for various types of parcels.Themethod is intended to be part of a parcel information-recognition systemthat identifies the volume and shipping information of parcels,and determines whether they are damaged;this method is intended for use in the actual parcel-transportation process.For this purpose,1)the study acquired image data in an environment simulating the actual parcel-transportation process,and 2)the training dataset was expanded based on StyleGAN3 with adaptive discriminator augmentation.Additionally,3)a preliminary distinction was made between the appearance of parcels and their damage status to enhance the performance of the parcel damage detection model and analyze the causes of parcel damage.Finally,using the dataset constructed based on the proposed method,a damage type detection model was trained,and its mean average precision was confirmed.This model can improve customer satisfaction and reduce return costs for parcel delivery companies.展开更多
The Zika virus(ZIKV),a member of the Flaviviridae family,attracted worldwide attention for its connection to severe neurological effects,notably microcephaly in newborns,first reported during the 2015 epidemic in Braz...The Zika virus(ZIKV),a member of the Flaviviridae family,attracted worldwide attention for its connection to severe neurological effects,notably microcephaly in newborns,first reported during the 2015 epidemic in Brazil.Yet,its impact goes beyond fetal and neonatal abnormalities,also affecting the central nervous system(CNS)in both children and adults,leading to enduring cognitive and behavioral impairments.展开更多
Cocoa farming faces numerous constraints that affect production levels. Among these constraints are termites, one of the biggest scourges in tropical agriculture and agroforestry. The aim of this study is to assess th...Cocoa farming faces numerous constraints that affect production levels. Among these constraints are termites, one of the biggest scourges in tropical agriculture and agroforestry. The aim of this study is to assess the level of damage caused by termites in cocoa plantations. To this end, 3 plantations were selected. In each of the 3 plantations, 18 plots containing an average of 47 ± 6 cocoa plants were delimited. Sampling was based on 25 cocoa plants per plot. The study consisted in sampling the termites observed on the plants and noting the type of damage caused by them, taking into account the density of the harvest veneers and, above all, the termites’ progress through the anatomical structures of the plant, i.e. the bark, sapwood and heartwood. A total of 8 termite species were collected from cocoa plants. These species are responsible for four types of damage (D1, D2, D3 and D4), grouped into minor damage (D1 and D2) and major damage (D3 and D4). D1 damage ranged from 24.67% ± 5.64% to 39.55% ± 7.43%. D2 damage ranged from 6.88% ± 1.31% to 9.33% ± 2.79%. D3 damage ranged from 2.88% ± 1.55% to 6.44% ± 1.55%. D4 damage ranged from 1.11% ± 1% to 3.11% ± 1.37%. Among the termite species collected, Microcerotermes sp, C. sjostedti, A. crucifer and P. militaris were the most formidable on cocoa trees in our study locality. In view of the extensive damage caused by termites, biological control measures should be considered, using insecticidal plants.展开更多
Cardiac arrest(CA)is a life-threatening condition with complex pathophysiology and limited treatment options.To gain deeper insights into the pathological state of vital organs,we employed a proteomics analysis in rod...Cardiac arrest(CA)is a life-threatening condition with complex pathophysiology and limited treatment options.To gain deeper insights into the pathological state of vital organs,we employed a proteomics analysis in rodents to assess proteome alterations in the brain,heart,kidney,and liver using a rat model of CA.The brain displayed severe protein alterations in essential cellular pathways,including three major energy-generating pathways after CA,which worsened after resuscitation,resulting in the most significant overall protein changes among the organs.Conversely,the liver,experiencing the most substantial protein alterations post-CA,demonstrated significant recovery,presenting the least protein changes post-resuscitation.展开更多
In a further aging society,excellent eyesight is an integral part of overall well-being and quality of life.Preserving good vision is crucial to maintaining mobility,independence,and mental health.There can be several...In a further aging society,excellent eyesight is an integral part of overall well-being and quality of life.Preserving good vision is crucial to maintaining mobility,independence,and mental health.There can be several reasons for visual impairment in elderly people,these include age-related macular degeneration,the leading cause of vision loss among older adults,cataract,glaucoma,diabetic retinopathy,retinal detachment,and others.展开更多
Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspect...Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspectionmethods have insufficient detection ability in cases of imbalanced samples.To solve this problem,we propose an approach based on deep convolutional neural networks(DCNNs),which consists of three stages:fastener localization,abnormal fastener sample generation based on saliency detection,and fastener state inspection.First,a lightweight YOLOv5s is designed to achieve fast and precise localization of fastener regions.Then,the foreground clip region of a fastener image is extracted by the designed fastener saliency detection network(F-SDNet),combined with data augmentation to generate a large number of abnormal fastener samples and balance the number of abnormal and normal samples.Finally,a fastener inspection model called Fastener ResNet-8 is constructed by being trained with the augmented fastener dataset.Results show the effectiveness of our proposed method in solving the problem of sample imbalance in fastener detection.Qualitative and quantitative comparisons show that the proposed F-SDNet outperforms other state-of-the-art methods in clip region extraction,reaching MAE and max F-measure of 0.0215 and 0.9635,respectively.In addition,the FPS of the fastener state inspection model reached 86.2,and the average accuracy reached 98.7%on 614 augmented fastener test sets and 99.9%on 7505 real fastener datasets.展开更多
Background Acute myocardial infarction(AMI)is a high-risk cardiovascular condition associated with increased cellular damage and oxidative stress.Aldo-Keto Reductase 1C3(AKR1C3)is a stress-regulating gene.Nevertheless...Background Acute myocardial infarction(AMI)is a high-risk cardiovascular condition associated with increased cellular damage and oxidative stress.Aldo-Keto Reductase 1C3(AKR1C3)is a stress-regulating gene.Nevertheless,its specific role and mechanisms regarding AMI remain unclear.Methods We assessed cardiac function through echocardiography;tissue damage was evaluated using Hematoxylin and Eosin(HE)and Masson trichrome staining.AKR1C3 expression levels were measured through Reverse transcription-quantitative polymerase chain reaction and western blot.Assessed cell viability using Cell Counting Kit-8 and lactate dehydrogenase(LDH)assays.The extent of ferroptosis was determined by measuring the levels of Fe2+,boron-dipyrromethane(BODIPY)and malondialdehyde(MDA),the glutathione/glutathione disulfide(GSH/GSSG)ratio,and the expression of Glutathione Peroxidase 4(GPX4)and Solute carrier 7A11(SLC7A11).Kelch-like ECH-associated protein 1-Nuclear factor erythroid 2-related factor 2-Antioxidant response element(Keap1-Nrf2-ARE)pathway activation was analyzed through western blotting.Nrf2 was inhibited with ML385and activated with(R)-Sulforaphane to investigate the Keap1-Nrf2-ARE pathway.Results The rats in the AMI group displayed reduced heart function,more tissue damage,and lower AKR1C3 expression compared to the Sham group.Similarly,hypoxia-treated H9C2 cells showed reduced viability,and decreased AKR1C3 expression.Overexpressing AKR1C3 in H9C2 cells enhanced viability.Knocking down AKR1C3 exhibited the opposite effect.Of the inhibitors tested,Ferrostatin-1 most effectively restored cell viability in hypoxia-treated H9C2 cells.Moreover,H9C2 cells subjected to hypoxia suggested Keap1-Nrf2-ARE pathway inhibition.Overexpressing AKR1C3 reduced ferroptosis and activated the Keap1-Nrf2-ARE pathway in hypoxia-treated cells,knocking down AKR1C3 exhibited the opposite effect.Further experiments using ML385 in hypoxia-treated H9C2 cells with overexpressed AKR1C3 showed decreased viability and increased ferroptosis compared to the control.Using(R)-Sulforaphane in hypoxia-treated H9C2 cells with knocked-down AKR1C3 exhibited the opposite effect.Conclusion This study's findings indicate that AKR1C3 plays a role in regulating ferroptosis in myocardial cells,with the Keap1-Nrf2-ARE pathway likely being a key mechanism behind it.展开更多
The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The bas...The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models.展开更多
Objective: To explore the comparative study of myocardial damage in children infected with COVID-19 and influenza A virus during the COVID-19 pandemic. Method: Retrospective analysis of myocardial injury caused by COV...Objective: To explore the comparative study of myocardial damage in children infected with COVID-19 and influenza A virus during the COVID-19 pandemic. Method: Retrospective analysis of myocardial injury caused by COVID-19 infection and influenza A virus infection in children during the COVID-19 from October 2022 to May 2023, including 106 cases of COVID-19 infection, that is, the COVID-19 group;And 164 cases of influenza A virus infection, namely, H1N1 group;Two groups were tested for various indicators of myocardial enzyme spectrum, and the situation of myocardial injury was compared between the two groups. Result: In the enrolled cases, there was no statistically significant difference in the prevalence rate of men and women in the COVID-19 group (P > 0.05);There was no statistically significant difference in the average age between men and women (P > 0.05);The comparison of the incidence rates between males and females in the H1N1 group showed a statistically significant difference (P 0.05);There was no statistically significant difference in the average age between the two groups of girls (P > 0.05). A comparison between two groups of various indicators of myocardial enzyme spectra showed that the results of AST, -HBDH and LDH were statistically significant (P 0.05). Conclusion: Both COVID-19 infection and influenza A virus infection in children have different degrees of myocardial damage, but COVID-19 infection causes more myocardial damage than influenza A virus infection, and influenza A virus is more prone to myocardial infarction, which deserves our attention.展开更多
Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechani...Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechanisms of water-related micro-crack and the constitutive behaviors of rocks.In this work,we shall propose an extended micromechanical-based plastic damage model for understanding weakening effect induced by the presence of water between micro-crack’s surfaces on quasi-brittle rocks,based on the Mori-Tanaka homogenization and irreversible thermodynamics framework.Regarding the physical mechanism,water strengthens micro-crack propagation,which induces damage evolution during the pre-and post-stage,and weakens the elastic effective properties of rock matrix.After proposing a special calibration procedure for the determination of model parameters based on the laboratory compression tests,the proposed micromechanical-based model is verified by comparing the model predictions to the experimental results.The model effectively captures the mechanical behaviors of quasibrittle rocks subjected to the weakening effects of water.展开更多
基金supported by the UTHSC Bridge funding award (E073005058 Bridge Support-2022)the National Institute of Health (R01-NS09 7800 and R56 NS127924-01) to TI。
文摘Stroke is a significant leading cause of death and disability in the United States(Tsao et al.,2022).Approximately 87% of strokes fall into the ischemic category,mainly caused by arterial blockage(Jayaraj et al.,2019).Although the only FDA-approved effective medication is tissue plasminogen activator(tPA),it should be administrated within 4.5 hours of ischemic stroke.Furthermore,tPA has been an integral part of managing acute ischemic stro ke.
基金Dao-Bing Wang was supported by the Beijing Natural Science Foundation Project(No.3222030)the National Natural Science Foundation of China(No.52274002)+1 种基金the PetroChina Science and Technology Innovation Foundation Project(No.2021DQ02-0201)Fu-Jian Zhou was supported by the National Natural Science Foundation of China(No.52174045).
文摘Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage.
基金supported by the National Natural Science Foundation of China(Grant No.42077244).
文摘Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Taking two diversion tunnels of Jinping II hydropower station for example,the relationship between rockburst pit depth and excavation damage effect is first surveyed.The results indicate that the rockburst pit depth in tunnels with severe damage to rock masses is relatively large.Subsequently,the excavation-induced damage effect is characterized by disturbance factor D based on the Hoek-Brown criterion and wave velocity method.It is found that the EDZ could be further divided into a high-damage zone(HDZ)with D=1 and weak-damage zone(WDZ),and D decays from one to zero linearly.For this,a quantitative evaluation method for potential rockburst pit depth is established by presenting a three-element rockburst criterion considering rock strength,geostress and disturbance factor.The evaluation results obtained by this method match well with actual observations.In addition,the weakening of rock mass strength promotes the formation and expansion of potential rockburst pits.The potential rockburst pit depth is positively correlated with HDZ and WDZ depths,and the HDZ depth has a significant contribution to the potential rockburst pit depth.
基金supported by the Youth Foundation of State Key Laboratory of Explosion Science and Technology (Grant No.QNKT22-12)the State Key Program of National Natural Science Foundation of China (Grant No.12132003)。
文摘A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.
基金funding received by a grant from the Natural Sciences and Engineering Research Council of Canada(NSERC)(Grant No.CRDPJ 469057e14).
文摘We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels.
基金We acknowledge the funding support from the National Natural Science Foundation of China Youth Fund(Grant No.52004019)the National Natural Science Foundation of China(Grant No.41825018)China Postdoctoral Science Foundation(Grant No.2023M733481).
文摘Rock-encased-backfill(RB)structures are common in underground mining,for example in the cut-andfill and stoping methods.To understand the effects of cyclic excavation and blasting activities on the damage of these RB structures,a series of triaxial stepwise-increasing-amplitude cyclic loading experiments was conducted with cylindrical RB specimens(rock on outside,backfill on inside)with different volume fractions of rock(VF=0.48,0.61,0.73,and 0.84),confining pressures(0,6,9,and 12 MPa),and cyclic loading rates(200,300,400,and 500 N/s).The damage evolution and meso-crack formation during the cyclic tests were analyzed with results from stress-strain hysteresis loops,acoustic emission events,and post-failure X-ray 3D fracture morphology.The results showed significant differences between cyclic and monotonic loadings of RB specimens,particularly with regard to the generation of shear microcracks,the development of stress memory and strain hardening,and the contact forces and associated friction that develops along the rock-backfill interface.One important finding is that as a function of the number of cycles,the elastic strain increases linearly and the dissipated energy increases exponentially.Also,compared with monotonic loading,the cyclic strain hardening characteristics are more sensitive to rising confining pressures during the initial compaction stage.Another finding is that compared with monotonic loading,more shear microcracks are generated during every reloading stage,but these microcracks tend to be dispersed and lessen the likelihood of large shear fracture formation.The transition from elastic to plastic behavior varies depending on the parameters of each test(confinement,volume fraction,and cyclic rate),and an interesting finding was that the transformation to plastic behavior is significantly lower under the conditions of 0.73 rock volume fraction,400 N/s cyclic loading rate,and 9 MPa confinement.All the findings have important practical implications on the ability of backfill to support underground excavations.
基金supported by the National Natural Science Foundation of China(Grant No.52125903)the China Postdoctoral Science Foundation(Grant No.2023M730367)the Fundamental Research Funds for Central Public Welfare Research Institutes of China(Grant No.CKSF2023323/YT).
文摘To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.
基金Projects(2021RC3007,2020RC3090)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProjects(52374150,52174099)supported by the National Natural Science Foundation of China。
文摘Four key stress thresholds exist in the compression process of rocks,i.e.,crack closure stress(σ_(cc)),crack initiation stress(σ_(ci)),crack damage stress(σ_(cd))and compressive strength(σ_(c)).The quantitative identifications of the first three stress thresholds are of great significance for characterizing the microcrack growth and damage evolution of rocks under compression.In this paper,a new method based on damage constitutive model is proposed to quantitatively measure the stress thresholds of rocks.Firstly,two different damage constitutive models were constructed based on acoustic emission(AE)counts and Weibull distribution function considering the compaction stages of the rock and the bearing capacity of the damage element.Then,the accumulative AE counts method(ACLM),AE count rate method(CRM)and constitutive model method(CMM)were introduced to determine the stress thresholds of rocks.Finally,the stress thresholds of 9 different rocks were identified by ACLM,CRM,and CMM.The results show that the theoretical stress−strain curves obtained from the two damage constitutive models are in good agreement with that of the experimental data,and the differences between the two damage constitutive models mainly come from the evolutionary differences of the damage variables.The results of the stress thresholds identified by the CMM are in good agreement with those identified by the AE methods,i.e.,ACLM and CRM.Therefore,the proposed CMM can be used to determine the stress thresholds of rocks.
基金supported by National Natural Science Foundation of China (Grant No. 62073256)the Shaanxi Provincial Science and Technology Department (Grant No. 2023-YBGY-342)。
文摘Aiming at the requirement of damage testing and evaluation of equivalent target plate based on the explosion of intelligent ammunition, this paper proposes a novel method for damage testing and evaluation method of circumferential equivalent target plate. Leveraging the dispersion characteristics parameters of fragment, we establish a calculation model of the fragment power situation and the damage calculation model under the condition of fragment ultimate penetration equivalent target plate. The damage model of equivalent target plate involves the fragment dispersion density, the local perforation damage criterion, the tearing damage model, and the damage probability. We use the camera to obtain the image of the equivalent target plate with fragment perforation, and research the algorithm of fragment distribution position recognition and fragment perforation area calculation method on the equivalent target plate by image processing technology. Based on the obtained parameters of the breakdown position and perforation area of fragments on equivalent target plate, we apply to damage calculation model of equivalent target plate, and calculate the damage probability of each equivalent target plate, and use the combined probabilistic damage calculation method to obtain the damage evaluation results of the circumferential equivalent target plate in an intelligent ammunition explosion experiment. Through an experimental testing, we verify the feasibility and rationality of the proposed damage evaluation method by comparison, the calculation results can reflect the actual damage effect of the equivalent target plate.
基金the National Natural Science Foundation of China(Nos.11872216 and 12272192)the Natural Science Foundation of Zhejiang Province(No.LY22A020002)+2 种基金the Natural Science Foundation of Ningbo City(No.202003N4083)the Scientific Research Foundation of Graduate School of Ningbo UniversityNingbo Science and Technology Major Project(No.2022Z002)。
文摘In this study,a phase-field scheme that rigorously obeys conservation laws and irreversible thermodynamics is developed for modeling stress-corrosion coupled damage(SCCD).The coupling constitutive relationships of the deformation,phase-field damage,mass transfer,and electrostatic field are derived from the entropy inequality.The SCCD localization induced by secondary phases in Mg is numerically simulated using the implicit iterative algorithm of the self-defined finite elements.The quantitative evaluation of the SCCD of a C-ring is in good agreement with the experimental results.To capture the damage localization,a micro-galvanic corrosion domain is defined,and the buffering effect on charge migration is explored.Three cases are investigated to reveal the effect of localization on corrosion acceleration and provide guidance for the design for resistance to SCCD at the crystal scale.
基金supported by a Korea Agency for Infrastructure Technology Advancement(KAIA)grant funded by the Ministry of Land,Infrastructure,and Transport(Grant 1615013176)(https://www.kaia.re.kr/eng/main.do,accessed on 01/06/2024)supported by a Korea Evaluation Institute of Industrial Technology(KEIT)grant funded by the Korean Government(MOTIE)(141518499)(https://www.keit.re.kr/index.es?sid=a2,accessed on 01/06/2024).
文摘Damage to parcels reduces customer satisfactionwith delivery services and increases return-logistics costs.This can be prevented by detecting and addressing the damage before the parcels reach the customer.Consequently,various studies have been conducted on deep learning techniques related to the detection of parcel damage.This study proposes a deep learning-based damage detectionmethod for various types of parcels.Themethod is intended to be part of a parcel information-recognition systemthat identifies the volume and shipping information of parcels,and determines whether they are damaged;this method is intended for use in the actual parcel-transportation process.For this purpose,1)the study acquired image data in an environment simulating the actual parcel-transportation process,and 2)the training dataset was expanded based on StyleGAN3 with adaptive discriminator augmentation.Additionally,3)a preliminary distinction was made between the appearance of parcels and their damage status to enhance the performance of the parcel damage detection model and analyze the causes of parcel damage.Finally,using the dataset constructed based on the proposed method,a damage type detection model was trained,and its mean average precision was confirmed.This model can improve customer satisfaction and reduce return costs for parcel delivery companies.
文摘The Zika virus(ZIKV),a member of the Flaviviridae family,attracted worldwide attention for its connection to severe neurological effects,notably microcephaly in newborns,first reported during the 2015 epidemic in Brazil.Yet,its impact goes beyond fetal and neonatal abnormalities,also affecting the central nervous system(CNS)in both children and adults,leading to enduring cognitive and behavioral impairments.
文摘Cocoa farming faces numerous constraints that affect production levels. Among these constraints are termites, one of the biggest scourges in tropical agriculture and agroforestry. The aim of this study is to assess the level of damage caused by termites in cocoa plantations. To this end, 3 plantations were selected. In each of the 3 plantations, 18 plots containing an average of 47 ± 6 cocoa plants were delimited. Sampling was based on 25 cocoa plants per plot. The study consisted in sampling the termites observed on the plants and noting the type of damage caused by them, taking into account the density of the harvest veneers and, above all, the termites’ progress through the anatomical structures of the plant, i.e. the bark, sapwood and heartwood. A total of 8 termite species were collected from cocoa plants. These species are responsible for four types of damage (D1, D2, D3 and D4), grouped into minor damage (D1 and D2) and major damage (D3 and D4). D1 damage ranged from 24.67% ± 5.64% to 39.55% ± 7.43%. D2 damage ranged from 6.88% ± 1.31% to 9.33% ± 2.79%. D3 damage ranged from 2.88% ± 1.55% to 6.44% ± 1.55%. D4 damage ranged from 1.11% ± 1% to 3.11% ± 1.37%. Among the termite species collected, Microcerotermes sp, C. sjostedti, A. crucifer and P. militaris were the most formidable on cocoa trees in our study locality. In view of the extensive damage caused by termites, biological control measures should be considered, using insecticidal plants.
基金the National Research Foundation of Korea grant funded by the Korea government(Ministry of Science and ICT(MSIT),Grant No.:2021R1F1A1061840).
文摘Cardiac arrest(CA)is a life-threatening condition with complex pathophysiology and limited treatment options.To gain deeper insights into the pathological state of vital organs,we employed a proteomics analysis in rodents to assess proteome alterations in the brain,heart,kidney,and liver using a rat model of CA.The brain displayed severe protein alterations in essential cellular pathways,including three major energy-generating pathways after CA,which worsened after resuscitation,resulting in the most significant overall protein changes among the organs.Conversely,the liver,experiencing the most substantial protein alterations post-CA,demonstrated significant recovery,presenting the least protein changes post-resuscitation.
基金supported by FoRUM(Ruhr-University Bochum,Germany,to SCJ)the Deutsche Forschungsgemeinschaft(DFG,Germany,RE-4543/1-1,to SR).
文摘In a further aging society,excellent eyesight is an integral part of overall well-being and quality of life.Preserving good vision is crucial to maintaining mobility,independence,and mental health.There can be several reasons for visual impairment in elderly people,these include age-related macular degeneration,the leading cause of vision loss among older adults,cataract,glaucoma,diabetic retinopathy,retinal detachment,and others.
基金supported in part by the National Natural Science Foundation of China (Grant Nos.51975347 and 51907117)in part by the Shanghai Science and Technology Program (Grant No.22010501600).
文摘Regular fastener detection is necessary to ensure the safety of railways.However,the number of abnormal fasteners is significantly lower than the number of normal fasteners in real railways.Existing supervised inspectionmethods have insufficient detection ability in cases of imbalanced samples.To solve this problem,we propose an approach based on deep convolutional neural networks(DCNNs),which consists of three stages:fastener localization,abnormal fastener sample generation based on saliency detection,and fastener state inspection.First,a lightweight YOLOv5s is designed to achieve fast and precise localization of fastener regions.Then,the foreground clip region of a fastener image is extracted by the designed fastener saliency detection network(F-SDNet),combined with data augmentation to generate a large number of abnormal fastener samples and balance the number of abnormal and normal samples.Finally,a fastener inspection model called Fastener ResNet-8 is constructed by being trained with the augmented fastener dataset.Results show the effectiveness of our proposed method in solving the problem of sample imbalance in fastener detection.Qualitative and quantitative comparisons show that the proposed F-SDNet outperforms other state-of-the-art methods in clip region extraction,reaching MAE and max F-measure of 0.0215 and 0.9635,respectively.In addition,the FPS of the fastener state inspection model reached 86.2,and the average accuracy reached 98.7%on 614 augmented fastener test sets and 99.9%on 7505 real fastener datasets.
基金supported by the Traditional Chinese Medicine Bureau of Guangdong Province,Guangzhou(grant No.20231321)the Clinical research initiation program project from Shunde Hospital,Southern Medical University,Foshan(grant No.CRSP2022004)。
文摘Background Acute myocardial infarction(AMI)is a high-risk cardiovascular condition associated with increased cellular damage and oxidative stress.Aldo-Keto Reductase 1C3(AKR1C3)is a stress-regulating gene.Nevertheless,its specific role and mechanisms regarding AMI remain unclear.Methods We assessed cardiac function through echocardiography;tissue damage was evaluated using Hematoxylin and Eosin(HE)and Masson trichrome staining.AKR1C3 expression levels were measured through Reverse transcription-quantitative polymerase chain reaction and western blot.Assessed cell viability using Cell Counting Kit-8 and lactate dehydrogenase(LDH)assays.The extent of ferroptosis was determined by measuring the levels of Fe2+,boron-dipyrromethane(BODIPY)and malondialdehyde(MDA),the glutathione/glutathione disulfide(GSH/GSSG)ratio,and the expression of Glutathione Peroxidase 4(GPX4)and Solute carrier 7A11(SLC7A11).Kelch-like ECH-associated protein 1-Nuclear factor erythroid 2-related factor 2-Antioxidant response element(Keap1-Nrf2-ARE)pathway activation was analyzed through western blotting.Nrf2 was inhibited with ML385and activated with(R)-Sulforaphane to investigate the Keap1-Nrf2-ARE pathway.Results The rats in the AMI group displayed reduced heart function,more tissue damage,and lower AKR1C3 expression compared to the Sham group.Similarly,hypoxia-treated H9C2 cells showed reduced viability,and decreased AKR1C3 expression.Overexpressing AKR1C3 in H9C2 cells enhanced viability.Knocking down AKR1C3 exhibited the opposite effect.Of the inhibitors tested,Ferrostatin-1 most effectively restored cell viability in hypoxia-treated H9C2 cells.Moreover,H9C2 cells subjected to hypoxia suggested Keap1-Nrf2-ARE pathway inhibition.Overexpressing AKR1C3 reduced ferroptosis and activated the Keap1-Nrf2-ARE pathway in hypoxia-treated cells,knocking down AKR1C3 exhibited the opposite effect.Further experiments using ML385 in hypoxia-treated H9C2 cells with overexpressed AKR1C3 showed decreased viability and increased ferroptosis compared to the control.Using(R)-Sulforaphane in hypoxia-treated H9C2 cells with knocked-down AKR1C3 exhibited the opposite effect.Conclusion This study's findings indicate that AKR1C3 plays a role in regulating ferroptosis in myocardial cells,with the Keap1-Nrf2-ARE pathway likely being a key mechanism behind it.
基金funded by the National Natural Science Foundation of China(Grant No.12272247)National Key Project(Grant No.GJXM92579)Major Research and Development Project of Metallurgical Corporation of China Ltd.in the Non-Steel Field(Grant No.2021-5).
文摘The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models.
文摘Objective: To explore the comparative study of myocardial damage in children infected with COVID-19 and influenza A virus during the COVID-19 pandemic. Method: Retrospective analysis of myocardial injury caused by COVID-19 infection and influenza A virus infection in children during the COVID-19 from October 2022 to May 2023, including 106 cases of COVID-19 infection, that is, the COVID-19 group;And 164 cases of influenza A virus infection, namely, H1N1 group;Two groups were tested for various indicators of myocardial enzyme spectrum, and the situation of myocardial injury was compared between the two groups. Result: In the enrolled cases, there was no statistically significant difference in the prevalence rate of men and women in the COVID-19 group (P > 0.05);There was no statistically significant difference in the average age between men and women (P > 0.05);The comparison of the incidence rates between males and females in the H1N1 group showed a statistically significant difference (P 0.05);There was no statistically significant difference in the average age between the two groups of girls (P > 0.05). A comparison between two groups of various indicators of myocardial enzyme spectra showed that the results of AST, -HBDH and LDH were statistically significant (P 0.05). Conclusion: Both COVID-19 infection and influenza A virus infection in children have different degrees of myocardial damage, but COVID-19 infection causes more myocardial damage than influenza A virus infection, and influenza A virus is more prone to myocardial infarction, which deserves our attention.
基金financially supported by the National Natural Science Foundation of China(Nos.42001053 and 42277147)the General Scientific Research Fund of Zhejiang Provincial Education Department(No.Y202352363)the University Natural Science Foundation of Jiangsu Province(No.23KJD130001)。
文摘Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechanisms of water-related micro-crack and the constitutive behaviors of rocks.In this work,we shall propose an extended micromechanical-based plastic damage model for understanding weakening effect induced by the presence of water between micro-crack’s surfaces on quasi-brittle rocks,based on the Mori-Tanaka homogenization and irreversible thermodynamics framework.Regarding the physical mechanism,water strengthens micro-crack propagation,which induces damage evolution during the pre-and post-stage,and weakens the elastic effective properties of rock matrix.After proposing a special calibration procedure for the determination of model parameters based on the laboratory compression tests,the proposed micromechanical-based model is verified by comparing the model predictions to the experimental results.The model effectively captures the mechanical behaviors of quasibrittle rocks subjected to the weakening effects of water.