期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于塑性模型法的钢筋混凝土靠泊码头损伤检测(英文)
1
作者 Srinivasan Chandrasekaran P.T.Ajesh Kumar 《Journal of Marine Science and Application》 CSCD 2019年第4期482-491,共10页
A conventional method of damage modeling by a reduction in stiffness is insufficient to model the complex non-linear damage characteristics of concrete material accurately.In this research,the concrete damage plastici... A conventional method of damage modeling by a reduction in stiffness is insufficient to model the complex non-linear damage characteristics of concrete material accurately.In this research,the concrete damage plasticity constitutive model is used to develop the numerical model of a deck beam on a berthing jetty in the Abaqus finite element package.The model constitutes a solid section of 3D hexahedral brick elements for concrete material embedded with 2D quadrilateral surface elements as reinforcements.The model was validated against experimental results of a beam of comparable dimensions in a cited literature.The validated beam model is then used in a three-point load test configuration to demonstrate its applicability for preliminary numerical evaluation of damage detection strategy in marine concrete structural health monitoring.The natural frequency was identified to detect the presence of damage and mode shape curvature was found sensitive to the location of damage. 展开更多
关键词 Structural health monitoring damage detection natural frequency Mode shape CURVATURE damage parameters Concrete damaged plasticity model Finite element method Numericalmodel
下载PDF
Determination of multiaxial stress rupture criteria for creeping materials:A critical analysis of different approaches
2
作者 Kun Zhang Jian-Ping Tan +2 位作者 Wei Sun Kamran Nikbin Shan-Tung Tu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第6期14-25,共12页
Materials in engineering applications are rarely uniaxially-loaded.In reality,failures under multiaxial loading has been widely observed in engineering structures.The life prediction of a component under multiaxial st... Materials in engineering applications are rarely uniaxially-loaded.In reality,failures under multiaxial loading has been widely observed in engineering structures.The life prediction of a component under multiaxial stresses has long been a challenging issue,particularly for high temperature applications.To distinguish the mode of failure ranging from a maximum principal stress intergranular damage to von Mises effective stress rupture mode a multiaxial stress rupture criterion(MSRC)was originally proposed by Sdobyrev and then Hayhurst and Leckie(SHL MSRC).A multiaxial-factor,α,was developed as a result which was intended to be a material constant and differentiates the bias of the MSRC between maxi-mum principal stress and effective stress.The success of the SHL MSRC relies on accurately calibrating the value ofαto quantify the multiaxial response of the material/geometry combination.To find a more suitable approach for determining MSRC,the applicability of different methods are evaluated.Given that the resulting analysis of the various approaches can be affected by the creep failure mechanism,princi-ples in the determination of MSRC with and without using continuum damage mechanics approaches are recommended.The viability of uniaxial material parameters in correlating withαthrough the analysis of available data in literature is also presented.It is found that the increase of the uniaxial creep dam-age tolerance parameterλis accompanied bythe decreaseof theα-value,whichimplies thatthe creep ductility plays an important role in affecting the multiaxial rupture behavior of materials. 展开更多
关键词 Multiaxial stress rupture criterion Creep failure mechanism Uniaxial parameter Creep damage tolerance parameter Continuum damage mechanics
原文传递
Multiaxial fatigue life prediction of composite laminates
3
作者 Jingmeng WENG Tong MENG +1 位作者 Weidong WEN Shaodong WENG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第12期227-237,共11页
A study of composite laminates under tension–torsion biaxial loading is presented.The focus is placed on fatigue lives of composite laminates under different tension–torsion biaxial fatigue loading paths.A macro-mes... A study of composite laminates under tension–torsion biaxial loading is presented.The focus is placed on fatigue lives of composite laminates under different tension–torsion biaxial fatigue loading paths.A macro-meso model used to predict multiaxial fatigue life of composite laminates is also presented in this paper.Firstly,a macro-scale 3 D RVE corresponding to composite laminates is established to determine strain components in the material principal direction of each layer for each biaxial stress ratio.Secondly,a meso-scale 3 D RVE corresponding to each layer with fibers distributed randomly is established,with progressive damage prediction method,biaxial strength of composite laminates can be predicted,and the final failure layer can be confirmed.Thirdly,select any one of fatigue loading path at which the final failure of composite laminates is fiber failure(matrix failure)to establish the reference curve for fiber(matrix).Finally,with reference curve,fatigue life of composite laminates under any biaxial loading path can be predicted.And numerical results show good agreements with experimental data. 展开更多
关键词 Composite laminates Fatigue damage parameter Life prediction Multiaxial fatigue Multiaxial strength
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部