Fuzzy-ball working fluids(FBWFs)have been successfully applied in different development phases of tight reservoirs.Field reports revealed that FBWFs satisfactorily met all the operational and reservoir damage control ...Fuzzy-ball working fluids(FBWFs)have been successfully applied in different development phases of tight reservoirs.Field reports revealed that FBWFs satisfactorily met all the operational and reservoir damage control requirements during their application.However,the damage-control mechanisms and degree of formation damage caused by fuzzy-ball fluids have not been investigated in lab-scale studies so far.In this study,the degree of fuzzy-ball-induced damage in single-and double-layer reservoirs was evaluated through core flooding experiments that were based on permeability and flow rate indexes.Additionally,its damage mechanisms were observed via scanning electron microscope and energy-dispersive spectroscopy tests.The results show that:(1)For single-layer reservoirs,the FBWF induced weak damage on coals and medium-to-weak damage on sandstones,and the difference of the damage in permeability or flow rate index on coals and sandstones is below 1%.Moreover,the minimum permeability recovery rate was above 66%.(2)For double-layer commingled reservoirs,the flow rate index revealed weak damage and the overall damage in double-layer was lower than the single-layer reservoirs.(3)There is no significant alteration in the microscopic structure of fuzzy-ball saturated cores with no evidence of fines migration.The dissolution of lead and sulfur occurred in coal samples,while tellurium in sandstone,aluminum,and magnesium in carbonate.However,the precipitation of aluminum,magnesium,and sodium occurred in sandstone but no precipitates found in coal and carbonate.The temporal plugging and dispersion characteristics of the FBWFs enable the generation of reservoir protection layers that will minimize formation damage due to solid and fluid invasion.展开更多
Several new calculating equations on the damage-evolving rate are suggested for describing the elastic-plastic behavior of some materials under un-symmetric cyclic loading. And the estimating formulas are given of th...Several new calculating equations on the damage-evolving rate are suggested for describing the elastic-plastic behavior of some materials under un-symmetric cyclic loading. And the estimating formulas are given of the life relative to varied damage value D oi at each loading history. The method is to adopt the ratio of plastic strain range to elastic strain range as the stress-strain parameter, using the staple material constants as the material parameters in damage calculating expression. And it gives out a new concept of the compositive material constant, that has a functional relation with the staple material constants, average stress,average strain and critical loading time. In addition, it calculates fatigue damage as example for a part of car, its calculating results are accordant with the Landgraf’s equation, and calculating precision is more rigorous, so could avoid unnecessary fatigue tests and will be of practical significance to stint times, manpower and capitals, and to provide convenience for engineering applications.展开更多
Variations between earthquakes result in many factors that influence post-earthquake building damage(e.g.,ground motion parameters,building structure,site information,and quality of construction).Consequently,it is ne...Variations between earthquakes result in many factors that influence post-earthquake building damage(e.g.,ground motion parameters,building structure,site information,and quality of construction).Consequently,it is necessary to develop an appropriate building damage-rate estimation model.The building damage survey data were recorded and constructed into files by the Architecture and Building Research Institute(ABRI),Taiwan for the 1999 Chi-Chi earthquake in the Nantou region as a basis for developing a building damage rate estimation model by applying fuzzy theory to express the fragility curves of buildings as a membership function.Empirical verification was performed using post-earthquake building damage data in the Taichung city that suffered relatively severe damage.Results indicate that fuzzy theory can be applied to predict building damage rates and that the estimated results are similar to actual disaster figures.Prediction of disaster damage using building damage rates can provide a reference for immediate disaster response during earthquakes and for regular disaster prevention and rescue planning.展开更多
Based on analysis of deformation in an infinite isotropic elastic matrix containing an embedded elliptic crack, subject to far field triaxial compressive stress, the energy release rate and a mixed fracture criterion ...Based on analysis of deformation in an infinite isotropic elastic matrix containing an embedded elliptic crack, subject to far field triaxial compressive stress, the energy release rate and a mixed fracture criterion are obtained by using an energy balance approach. The additional compliance tensor induced by a single closed elliptic microcrack in a representative volume element and its in-plane growth is derived. The additional compliance tensor induced by the kinked growth of the elliptic microcrack is also obtained. The effect of the microcracks, randomly distributed both in geometric characteristics and orientations, is analyzed with the Taylor's scheme by introducing an appropriate probability density function. A micromechanical damage model for rocks and concretes under triaxial compression is obtained and experimentally verified.展开更多
Suggests some calculating formulas and methods with respect to the damage evolvingrate da / dN|i and the fatigue life and in varied history from uncrack to microcrackinitiation until fracture for a crankshaft, which ...Suggests some calculating formulas and methods with respect to the damage evolvingrate da / dN|i and the fatigue life and in varied history from uncrack to microcrackinitiation until fracture for a crankshaft, which are suitable to stress concentration positionsabout its journal fillets and oil holes on a crankshaft, that it is undergone to bending, twistingand shearing loading and subjected to unsymmetric cyclic many-stage loading. Last the total lifein whole process is estimated by展开更多
This paper describes a new species of the snout moth Berastagia tainanica sp. nov. (Lepidoptera: Pyralidae) from Taiwan. From 2009 to 2016, a biology study was conducted on population dynamics and embryonic developmen...This paper describes a new species of the snout moth Berastagia tainanica sp. nov. (Lepidoptera: Pyralidae) from Taiwan. From 2009 to 2016, a biology study was conducted on population dynamics and embryonic development. Spring season is the peak of the eclosion of overwintering larvae or pupae. The average longevity of adult was 14.8 ± 6.2 days (N = 174), the average number of eggs laid was 259 ± 3 eggs/moth (N = 2), the hatching rate of eggs was 95.4% (N = 262), and the average hatching time of eggs was 99.6 ± 18.6 hours (N = 68). The average body length of males was 5.64 mm ± 0.91 mm (N = 30), and the average body length of females was 6.28 mm ± 0.84 mm (N = 30). This finding indicates that female snout moths are larger than males (Global R = 0.058, P = 0.012). The snout moth eclosion rate was 16.9 moths/100 pods in the first year (2010/2011, N = 2,224 pods) and 10.9 moths/100 pods in the second year (2014/2015, N = 6,382 pods). The pod borer rate was 31.8% (N = 707) and the seed borer rate was 41.2% (N = 3,628) in the first year, whereas the pod borer rate was 76.2% (N = 6,382) in the second year.展开更多
<div style="text-align:justify;"> <i><span style="font-family:Verdana;">Sipha</span></i><span style="font-family:Verdana;"> <i>maydis</i>&l...<div style="text-align:justify;"> <i><span style="font-family:Verdana;">Sipha</span></i><span style="font-family:Verdana;"> <i>maydis</i></span><span style="font-family:""><span style="font-family:Verdana;"> Passerini (Hemiptera: Aphididae) is a pest of cereals in many regions of the world and was identified as an invasive pest of the US in 2007. Regional surveys from 2015-2017 revealed this pest was broadly distributed throughout many of the western Great Plains states where it is a potential threat to cereal production. The common name hedgehog grain aphid, HGA, has been associated with </span><i><span style="font-family:Verdana;">Sipha</span></i> <i><span style="font-family:Verdana;">maydis</span></i><span style="font-family:Verdana;"> in the US. Cross-resistance where a plant is resistant to one aphid species and is also resistant to another species</span></span><span style="font-family:Verdana;"> that</span><span style="font-family:""><span style="font-family:Verdana;"> is known to occur. Six barleys were evaluated for cross-resistance to HGA: Russian wheat aphid, RWA, resistant germplasms STARS 9301B and STARS 9577B and cultivar “Mesa”;greenbug, GB, resistant germplasm STARS 1501B and cultivar “Post 90”;and RWA and GB resistant experimental line 00BX 11-115. Cultivars “Morex” and “Schuyler” were susceptible controls. Antixenosis was measured 5 days after infestation by HGA. Seedling damage ratings and reductions in seedling growth were recorded after 17 days of infestation. Intrinsic rate of increase, </span><i><span style="font-family:Verdana;">r</span><sub><span style="font-family:Verdana;">m</span></sub></i><span style="font-family:Verdana;">, of HGA was determined by following the development of newborn aphids to adulthood and reproduction. 00BX 11-115 and Post 90 had significantly greater antixenosis (fewer aphids/seedling), significantly lower plant damage ratings, and significantly lower intrinsic rates of increase than other entries. Differences in seedling growth were not significant. 00BX 11-115 and Post 90 were the only entries with the </span><i><span style="font-family:Verdana;">Rsg</span></i><span style="font-family:Verdana;">1 greenbug resistance gene. </span><i><span style="font-family:Verdana;">Rsg</span></i><span style="font-family:Verdana;">1 greenbug resistance confers cross-resistance to HGA in the seedling stage.</span></span><span style="font-family:Verdana;"></span> </div>展开更多
In this paper, field experimental comparison is made between a small track-type experimental prototype skidder and a J-50 skidding tractor. Experimental data, including skidding productivity, soil compaction on skiddi...In this paper, field experimental comparison is made between a small track-type experimental prototype skidder and a J-50 skidding tractor. Experimental data, including skidding productivity, soil compaction on skidding trails, and damage rate of the residual trees, are analyzed. The results indicate that with the condition of scattered skidding area and low skidding volume per cycle, small track-type experimental prototype skidder has advantage on working and a higher skidding productivity. It makes lower soil compaction to the skidding trails in the depth of 0-5 cm, 5-10 cm, and 10-15 cm. Under the same work conditions, the damage rate of the residual trees made by small track-type experimental prototype skidder is only 1/5 of those made by J-50 type skidding tractor. The damage rate is reduced by 80%.展开更多
An abrupt ice and snow storm disaster which occurred in the spring of 2008 severely destroyed forests over a surprisingly large portion of southern China. A transect crossing Jinggang Mountain-Jitai Basin-Yushan Mount...An abrupt ice and snow storm disaster which occurred in the spring of 2008 severely destroyed forests over a surprisingly large portion of southern China. A transect crossing Jinggang Mountain-Jitai Basin-Yushan Mountain-Wuyi Mountain was selected as the study area. The authors integrated field data collected in two field surveys to analyze the impacts of the disturbance on forests. The following results were obtained. (1) The extent of damage to plantations along the transect decreased in the order of slash pine 〉 masson pine 〉 mixed plantation 〉 Chinese fir. Slash pine is an introduced species from southern America which is characterized by fast growth, low wood quality and rich oleoresin, and showed a damage rate of 61.3% of samples, of which 70.4% cannot recover naturally. Masson pine is the native pioneer species of forests with harder wood, and 52.5% were damaged due to turpentine, of which 60.9% cannot recovery naturally. Chinese fir is a local tree species and samples showed a rate of 46% and a relative rate of 32.5%, lower than the mixed plantation. (2) From west to east along the transect, we can see that evergreen broad-leaved forest of the western transect on Jinggang Mountain showed the lightest damage extent, and a Cryptomeria plantation at an altitude of 700 m was severely destroyed while Chinese fir showed light damage below 700 m and relatively severe damage above 900 m. Masson pine and slash pine in the central transect in Jitai Basin were damaged severely due to turpentine activities, and closed natural secondary deciduous broad-leaved forest was damaged severely due to high ice and snow accumulation on intertwined shrubs. Masson pine aerial-seeding plantations below 400 m along the eastern transect in Xingguo and Ningdu counties were nearly undamaged for small tree sizes, and Chinese fir at 500-900 m altitude showed a lighter damage extent. However, masson pine which was distributed above 400 m and planted in the 1960s, was severely damaged due to turpentine.展开更多
Canopy shaking is one of the most commonly used techniques for mechanical harvesting of citrus fruits in orange juice industry.However,tree damage and low harvesting efficiency are the top concerns of growers in adopt...Canopy shaking is one of the most commonly used techniques for mechanical harvesting of citrus fruits in orange juice industry.However,tree damage and low harvesting efficiency are the top concerns of growers in adopting the existing harvesting equipment on a large scale.The purpose of this research was to develop a novel canopy shaking system to minimize tree damage and maximize fruit removal for mechanical citrus harvesting.In this study,a two-section canopy shaker composing of top and bottom shaking systems mounted on two rotating drums was proposed and developed.It was configured with two sets of flexible bow-shaped shaking rods in a staggered distribution,which can shake the top and bottom zones of the tree canopy independently.The shaking system was designed based on a linked crank-rocker mechanism.Kinematic simulation analysis was conducted to verify the quick return characteristics and differential properties of this mechanism.Vibration test showed that the frequency of the shaking rod could be adjusted within a range of 1.1-8.8 Hz related to hydraulic motor speeds.The field tests of the shaking system with an average frequency of 4.7 Hz achieved a fruit removal percentage of 82.6%and tree damage rate of 5.4%under a tractor speed of 3 km/h.By contrast,the combined shaking frequency of 4.7 Hz&4.1 Hz of the canopy shaker produced less tree damage with a percentage of 3.9%.This study indicated that the two-section canopy shaker with an optimized frequency combination could be adaptable to the different zones of the tree canopy,and obtain lower tree damage and higher fruit removal percentage.展开更多
Research interest in pneumatic conveying technologies in processes such as peanut harvesting and shelling has grown rapidly in recent years.However,the use of pneumatic conveyors in this application suffers from high ...Research interest in pneumatic conveying technologies in processes such as peanut harvesting and shelling has grown rapidly in recent years.However,the use of pneumatic conveyors in this application suffers from high pod damage rates and duct obstruction.To address these issues,we analyzed the critical speed of pneumatic transport for conveying the peanut pods and measured the angle of friction and coefficient of restitution of peanut pods on a variety of material surfaces.Based on the results of these tests,optimizations and improvements were made to the separator bowl,air supply duct,and conveying duct.A pneumatic conveying experiment was then performed using peanut pods.In the factorial experiment,it was found that increases in fan speed increase the pod damage rate and transport efficiency,while increases in the thickness of the cushioning/anti-obstruction layer decrease the rate of pod damage and transport efficiency.Pod damage rates were significantly affected by fan speed,the thickness of the cushioning/obstruction prevention layer,and interaction between these factors,while transport efficiency was only significantly affected by fan speed.It is proved by the machine verification test,the optimal parameters for the pneumatic transport of Baisha peanut pods with a moisture content of 7.24%was a fan speed of 2700 r/min and a cushioning/anti-obstruction layer thickness of 6 mm.A pod damage rate of 5.19%and transport efficiency of 92.03%were achieved using these parameters,which are sufficient for meeting the requirements of industrial applications.展开更多
Maintaining the safety and reliability of nuclear engineering materials under a neutron irradiation environment is significant. Atomic-scale simulations are conducted to investigate the mechanism of irradiation-induce...Maintaining the safety and reliability of nuclear engineering materials under a neutron irradiation environment is significant. Atomic-scale simulations are conducted to investigate the mechanism of irradiation-induced vacancy formation in CLAM, F82 H and α-Fe with different neutron energies and objective laws of the effect of vacancy concentration on mechanical properties of α-Fe. Damage of these typical metal engineering materials caused by neutrons is mainly displacement damage, while the displacement damage rate and the non-ionizing effect of neutrons decrease with the increase of neutron energy. The elastic modulus, yield strength, and ultimate strength of α-Fe are in the order of magnitude of GPa. However, the elastic modulus is not constant but decreases with the increase of strain at the elastic deformation stage. The ultimate strength reaches its maximum value when vacancy concentration in α-Fe is 0.2%. On this basis, decreasing or increasing the number of vacancies reduces the ultimate strength.展开更多
基金The authors wish to thank the Ministry of Science and Technology of the People's Republic of China(2016ZX05066).
文摘Fuzzy-ball working fluids(FBWFs)have been successfully applied in different development phases of tight reservoirs.Field reports revealed that FBWFs satisfactorily met all the operational and reservoir damage control requirements during their application.However,the damage-control mechanisms and degree of formation damage caused by fuzzy-ball fluids have not been investigated in lab-scale studies so far.In this study,the degree of fuzzy-ball-induced damage in single-and double-layer reservoirs was evaluated through core flooding experiments that were based on permeability and flow rate indexes.Additionally,its damage mechanisms were observed via scanning electron microscope and energy-dispersive spectroscopy tests.The results show that:(1)For single-layer reservoirs,the FBWF induced weak damage on coals and medium-to-weak damage on sandstones,and the difference of the damage in permeability or flow rate index on coals and sandstones is below 1%.Moreover,the minimum permeability recovery rate was above 66%.(2)For double-layer commingled reservoirs,the flow rate index revealed weak damage and the overall damage in double-layer was lower than the single-layer reservoirs.(3)There is no significant alteration in the microscopic structure of fuzzy-ball saturated cores with no evidence of fines migration.The dissolution of lead and sulfur occurred in coal samples,while tellurium in sandstone,aluminum,and magnesium in carbonate.However,the precipitation of aluminum,magnesium,and sodium occurred in sandstone but no precipitates found in coal and carbonate.The temporal plugging and dispersion characteristics of the FBWFs enable the generation of reservoir protection layers that will minimize formation damage due to solid and fluid invasion.
文摘Several new calculating equations on the damage-evolving rate are suggested for describing the elastic-plastic behavior of some materials under un-symmetric cyclic loading. And the estimating formulas are given of the life relative to varied damage value D oi at each loading history. The method is to adopt the ratio of plastic strain range to elastic strain range as the stress-strain parameter, using the staple material constants as the material parameters in damage calculating expression. And it gives out a new concept of the compositive material constant, that has a functional relation with the staple material constants, average stress,average strain and critical loading time. In addition, it calculates fatigue damage as example for a part of car, its calculating results are accordant with the Landgraf’s equation, and calculating precision is more rigorous, so could avoid unnecessary fatigue tests and will be of practical significance to stint times, manpower and capitals, and to provide convenience for engineering applications.
基金Project(93-2625-Z-027-006)supported by the National Science Council of Taipei,China
文摘Variations between earthquakes result in many factors that influence post-earthquake building damage(e.g.,ground motion parameters,building structure,site information,and quality of construction).Consequently,it is necessary to develop an appropriate building damage-rate estimation model.The building damage survey data were recorded and constructed into files by the Architecture and Building Research Institute(ABRI),Taiwan for the 1999 Chi-Chi earthquake in the Nantou region as a basis for developing a building damage rate estimation model by applying fuzzy theory to express the fragility curves of buildings as a membership function.Empirical verification was performed using post-earthquake building damage data in the Taichung city that suffered relatively severe damage.Results indicate that fuzzy theory can be applied to predict building damage rates and that the estimated results are similar to actual disaster figures.Prediction of disaster damage using building damage rates can provide a reference for immediate disaster response during earthquakes and for regular disaster prevention and rescue planning.
基金supported by the National Natural Science Foundation of China (Nos. 10872220 and 50725414)Japan Society for the Promotion of Science JSPS (No. L08538)
文摘Based on analysis of deformation in an infinite isotropic elastic matrix containing an embedded elliptic crack, subject to far field triaxial compressive stress, the energy release rate and a mixed fracture criterion are obtained by using an energy balance approach. The additional compliance tensor induced by a single closed elliptic microcrack in a representative volume element and its in-plane growth is derived. The additional compliance tensor induced by the kinked growth of the elliptic microcrack is also obtained. The effect of the microcracks, randomly distributed both in geometric characteristics and orientations, is analyzed with the Taylor's scheme by introducing an appropriate probability density function. A micromechanical damage model for rocks and concretes under triaxial compression is obtained and experimentally verified.
文摘Suggests some calculating formulas and methods with respect to the damage evolvingrate da / dN|i and the fatigue life and in varied history from uncrack to microcrackinitiation until fracture for a crankshaft, which are suitable to stress concentration positionsabout its journal fillets and oil holes on a crankshaft, that it is undergone to bending, twistingand shearing loading and subjected to unsymmetric cyclic many-stage loading. Last the total lifein whole process is estimated by
文摘This paper describes a new species of the snout moth Berastagia tainanica sp. nov. (Lepidoptera: Pyralidae) from Taiwan. From 2009 to 2016, a biology study was conducted on population dynamics and embryonic development. Spring season is the peak of the eclosion of overwintering larvae or pupae. The average longevity of adult was 14.8 ± 6.2 days (N = 174), the average number of eggs laid was 259 ± 3 eggs/moth (N = 2), the hatching rate of eggs was 95.4% (N = 262), and the average hatching time of eggs was 99.6 ± 18.6 hours (N = 68). The average body length of males was 5.64 mm ± 0.91 mm (N = 30), and the average body length of females was 6.28 mm ± 0.84 mm (N = 30). This finding indicates that female snout moths are larger than males (Global R = 0.058, P = 0.012). The snout moth eclosion rate was 16.9 moths/100 pods in the first year (2010/2011, N = 2,224 pods) and 10.9 moths/100 pods in the second year (2014/2015, N = 6,382 pods). The pod borer rate was 31.8% (N = 707) and the seed borer rate was 41.2% (N = 3,628) in the first year, whereas the pod borer rate was 76.2% (N = 6,382) in the second year.
文摘<div style="text-align:justify;"> <i><span style="font-family:Verdana;">Sipha</span></i><span style="font-family:Verdana;"> <i>maydis</i></span><span style="font-family:""><span style="font-family:Verdana;"> Passerini (Hemiptera: Aphididae) is a pest of cereals in many regions of the world and was identified as an invasive pest of the US in 2007. Regional surveys from 2015-2017 revealed this pest was broadly distributed throughout many of the western Great Plains states where it is a potential threat to cereal production. The common name hedgehog grain aphid, HGA, has been associated with </span><i><span style="font-family:Verdana;">Sipha</span></i> <i><span style="font-family:Verdana;">maydis</span></i><span style="font-family:Verdana;"> in the US. Cross-resistance where a plant is resistant to one aphid species and is also resistant to another species</span></span><span style="font-family:Verdana;"> that</span><span style="font-family:""><span style="font-family:Verdana;"> is known to occur. Six barleys were evaluated for cross-resistance to HGA: Russian wheat aphid, RWA, resistant germplasms STARS 9301B and STARS 9577B and cultivar “Mesa”;greenbug, GB, resistant germplasm STARS 1501B and cultivar “Post 90”;and RWA and GB resistant experimental line 00BX 11-115. Cultivars “Morex” and “Schuyler” were susceptible controls. Antixenosis was measured 5 days after infestation by HGA. Seedling damage ratings and reductions in seedling growth were recorded after 17 days of infestation. Intrinsic rate of increase, </span><i><span style="font-family:Verdana;">r</span><sub><span style="font-family:Verdana;">m</span></sub></i><span style="font-family:Verdana;">, of HGA was determined by following the development of newborn aphids to adulthood and reproduction. 00BX 11-115 and Post 90 had significantly greater antixenosis (fewer aphids/seedling), significantly lower plant damage ratings, and significantly lower intrinsic rates of increase than other entries. Differences in seedling growth were not significant. 00BX 11-115 and Post 90 were the only entries with the </span><i><span style="font-family:Verdana;">Rsg</span></i><span style="font-family:Verdana;">1 greenbug resistance gene. </span><i><span style="font-family:Verdana;">Rsg</span></i><span style="font-family:Verdana;">1 greenbug resistance confers cross-resistance to HGA in the seedling stage.</span></span><span style="font-family:Verdana;"></span> </div>
基金Sponsored by the Special Scientific Research Funds for Forest Non-profit Industry(Grant No.201104007)the Fundamental Research Funds for the Central Universities(Grant No.DL13BB10)
文摘In this paper, field experimental comparison is made between a small track-type experimental prototype skidder and a J-50 skidding tractor. Experimental data, including skidding productivity, soil compaction on skidding trails, and damage rate of the residual trees, are analyzed. The results indicate that with the condition of scattered skidding area and low skidding volume per cycle, small track-type experimental prototype skidder has advantage on working and a higher skidding productivity. It makes lower soil compaction to the skidding trails in the depth of 0-5 cm, 5-10 cm, and 10-15 cm. Under the same work conditions, the damage rate of the residual trees made by small track-type experimental prototype skidder is only 1/5 of those made by J-50 type skidding tractor. The damage rate is reduced by 80%.
基金National Natural Science Foundation of China, No.40971281 International Science and Technology Cooperative Program of China, No.2006DFB91920 National Key Project of Scientific and Technical Supporting Programs, No.2006BAC08B00 Acknowledgments We express our thanks to Mr. Fan Zhewen, who is the director of the Remote Sensing Center of Jiangxi province, and Mr. Qiu Zuozhen, who is the director of the Mountain-River-Lake Office of Ji'an City, for their help in the field investigation, and Prof. Wang Hongqing for logistic support. We also gratefully acknowledge the local governments of Jinggangshan City, Taihe County, Xingguo County and Ningdu County, especially Mr. Tang Xiongjie and Ms. He Qingping, for facilitating the field survey and data collection.
文摘An abrupt ice and snow storm disaster which occurred in the spring of 2008 severely destroyed forests over a surprisingly large portion of southern China. A transect crossing Jinggang Mountain-Jitai Basin-Yushan Mountain-Wuyi Mountain was selected as the study area. The authors integrated field data collected in two field surveys to analyze the impacts of the disturbance on forests. The following results were obtained. (1) The extent of damage to plantations along the transect decreased in the order of slash pine 〉 masson pine 〉 mixed plantation 〉 Chinese fir. Slash pine is an introduced species from southern America which is characterized by fast growth, low wood quality and rich oleoresin, and showed a damage rate of 61.3% of samples, of which 70.4% cannot recover naturally. Masson pine is the native pioneer species of forests with harder wood, and 52.5% were damaged due to turpentine, of which 60.9% cannot recovery naturally. Chinese fir is a local tree species and samples showed a rate of 46% and a relative rate of 32.5%, lower than the mixed plantation. (2) From west to east along the transect, we can see that evergreen broad-leaved forest of the western transect on Jinggang Mountain showed the lightest damage extent, and a Cryptomeria plantation at an altitude of 700 m was severely destroyed while Chinese fir showed light damage below 700 m and relatively severe damage above 900 m. Masson pine and slash pine in the central transect in Jitai Basin were damaged severely due to turpentine activities, and closed natural secondary deciduous broad-leaved forest was damaged severely due to high ice and snow accumulation on intertwined shrubs. Masson pine aerial-seeding plantations below 400 m along the eastern transect in Xingguo and Ningdu counties were nearly undamaged for small tree sizes, and Chinese fir at 500-900 m altitude showed a lighter damage extent. However, masson pine which was distributed above 400 m and planted in the 1960s, was severely damaged due to turpentine.
基金Additional financial supports are also provided from the National Key R&D Program of China“the 13th Five-Year Plan”(Program No.2016YFD0700503)Major Program of Cooperative Innovation for Yangling Demonstration Zone(Program No.2016CXY-20)the Shaanxi Provincial Agricultural Technology Program of Innovation and Development(Program No.2016NY-127).
文摘Canopy shaking is one of the most commonly used techniques for mechanical harvesting of citrus fruits in orange juice industry.However,tree damage and low harvesting efficiency are the top concerns of growers in adopting the existing harvesting equipment on a large scale.The purpose of this research was to develop a novel canopy shaking system to minimize tree damage and maximize fruit removal for mechanical citrus harvesting.In this study,a two-section canopy shaker composing of top and bottom shaking systems mounted on two rotating drums was proposed and developed.It was configured with two sets of flexible bow-shaped shaking rods in a staggered distribution,which can shake the top and bottom zones of the tree canopy independently.The shaking system was designed based on a linked crank-rocker mechanism.Kinematic simulation analysis was conducted to verify the quick return characteristics and differential properties of this mechanism.Vibration test showed that the frequency of the shaking rod could be adjusted within a range of 1.1-8.8 Hz related to hydraulic motor speeds.The field tests of the shaking system with an average frequency of 4.7 Hz achieved a fruit removal percentage of 82.6%and tree damage rate of 5.4%under a tractor speed of 3 km/h.By contrast,the combined shaking frequency of 4.7 Hz&4.1 Hz of the canopy shaker produced less tree damage with a percentage of 3.9%.This study indicated that the two-section canopy shaker with an optimized frequency combination could be adaptable to the different zones of the tree canopy,and obtain lower tree damage and higher fruit removal percentage.
文摘Research interest in pneumatic conveying technologies in processes such as peanut harvesting and shelling has grown rapidly in recent years.However,the use of pneumatic conveyors in this application suffers from high pod damage rates and duct obstruction.To address these issues,we analyzed the critical speed of pneumatic transport for conveying the peanut pods and measured the angle of friction and coefficient of restitution of peanut pods on a variety of material surfaces.Based on the results of these tests,optimizations and improvements were made to the separator bowl,air supply duct,and conveying duct.A pneumatic conveying experiment was then performed using peanut pods.In the factorial experiment,it was found that increases in fan speed increase the pod damage rate and transport efficiency,while increases in the thickness of the cushioning/anti-obstruction layer decrease the rate of pod damage and transport efficiency.Pod damage rates were significantly affected by fan speed,the thickness of the cushioning/obstruction prevention layer,and interaction between these factors,while transport efficiency was only significantly affected by fan speed.It is proved by the machine verification test,the optimal parameters for the pneumatic transport of Baisha peanut pods with a moisture content of 7.24%was a fan speed of 2700 r/min and a cushioning/anti-obstruction layer thickness of 6 mm.A pod damage rate of 5.19%and transport efficiency of 92.03%were achieved using these parameters,which are sufficient for meeting the requirements of industrial applications.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20133218110023)China Postdoctoral Science Foundation(Grant No.2014M561642)+2 种基金the Jiangsu Planned Projects for Postdoctoral Research Funds(Grant No.1401091C)the Fundamental Research Funds for the Central Universities(Grant No.3082015NJ20150021)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Maintaining the safety and reliability of nuclear engineering materials under a neutron irradiation environment is significant. Atomic-scale simulations are conducted to investigate the mechanism of irradiation-induced vacancy formation in CLAM, F82 H and α-Fe with different neutron energies and objective laws of the effect of vacancy concentration on mechanical properties of α-Fe. Damage of these typical metal engineering materials caused by neutrons is mainly displacement damage, while the displacement damage rate and the non-ionizing effect of neutrons decrease with the increase of neutron energy. The elastic modulus, yield strength, and ultimate strength of α-Fe are in the order of magnitude of GPa. However, the elastic modulus is not constant but decreases with the increase of strain at the elastic deformation stage. The ultimate strength reaches its maximum value when vacancy concentration in α-Fe is 0.2%. On this basis, decreasing or increasing the number of vacancies reduces the ultimate strength.