期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Effectiveness of Radiation Damage Reduction in Mice by Laser Light in Dependence of the Time Interval between Exposures
1
作者 Karine Voskanyan Svetlana Vorozhtsova +2 位作者 Alia Abrosimova Gennady Mitsyn Victor Gaevskiy 《Journal of Physical Science and Application》 2015年第4期291-295,共5页
A research was carried out to determine the period of time during which it is possible to reduce the radiation damage in mice by means of laser radiation (650 nm) after gamma irradiation. First, the mice were expose... A research was carried out to determine the period of time during which it is possible to reduce the radiation damage in mice by means of laser radiation (650 nm) after gamma irradiation. First, the mice were exposed to γ- radiation (whole body irradiation), then after 2 h or 24 h they were irradiated with laser radiation. The results of these studies have shown that the use of laser irradiation to reduce radiation damage in mice is effective 24 h after the exposure to 5 Gy ionizing radiation which leads to the bone-marrow clinical form of the ARS (Acute radiation sickness). In case of the lethal dose of ionizing radiation 7 Gy (the transitional clinical form of the ARS), the increase in life expectancy of mice is observed using laser radiation both 2 and 24 h after the exposure to γ- radiation, but the effectiveness of the laser used 2 h after the ionizing radiation is significantly more efficient. 展开更多
关键词 Gamma radiation laser radiation reduction of the radiation damage.
下载PDF
Reductive damage induced autophagy inhibition for tumor therapy 被引量:1
2
作者 Yuqian Wang Yingjian Huang +12 位作者 Yu Fu Zhixiong Guo Da Chen Fangxian Cao Qi Ye Qiqi Duan Meng Liu Ning Wang Dan Han Chaoyi Qu Zhimin Tian Yongquan Qu Yan Zheng 《Nano Research》 SCIE EI CSCD 2023年第4期5226-5236,共11页
Numerous therapeutic anti-tumor strategies have been developed in recent decades.However,their therapeutic efficacy is reduced by the intrinsic protective autophagy of tumors.Autophagy plays a key role in tumorigenesi... Numerous therapeutic anti-tumor strategies have been developed in recent decades.However,their therapeutic efficacy is reduced by the intrinsic protective autophagy of tumors.Autophagy plays a key role in tumorigenesis and tumor treatment,in which the overproduction of reactive oxygen species(ROS)is recognized as the direct cause of protective autophagy.Only a few molecules have been employed as autophagy inhibitors in tumor therapy to reduce protective autophagy.Among them,hydroxychloroquine is the most commonly used autophagy inhibitor in clinics,but it is severely limited by its high therapeutic dose,significant toxicity,poor reversal efficacy,and nonspecific action.Herein,we demonstrate a reductive-damage strategy to enable tumor therapy by the inhibition of protective autophagy via the catalytic scavenging of ROS using porous nanorods of ceria(PN-CeO_(2))nanozymes as autophagy inhibitor.The antineoplastic effects of PN-CeO_(2)were mediated by its high reductive activity for intratumoral ROS degradation,thereby inhibiting protective autophagy and activating apoptosis by suppressing the activities of phosphatidylinositide 3-kinase/protein kinase B and p38 mitogen-activated protein kinase pathways in human cutaneous squamous cell carcinoma.Further investigation highlighted PN-CeO_(2)as a safe and efficient anti-tumor autophagy inhibitor.Overall,this study presents a reductive-damage strategy as a promising anti-tumor approach that catalytically inhibits autophagy and activates the intrinsic antioxidant pathways of tumor cells and also shows its potential for the therapy of other autophagy-related diseases. 展开更多
关键词 CeO_(2) reductive damage autophagy inhibitor tumor therapy reactive oxygen species
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部